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Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains
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The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anhar-
monic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the im-
purity massM. A crossover between weak and strong chaos is obtained at the samesyaiuthe energy
densitye (energy per degree of freedgrior all the considered values of the impurity mads The threshold
er coincides with the value of the energy densitat which a change of scaling of the relaxation time of the
momentum autocorrelation function of the impurity occurs and that was obtained in a previougMvork
Romero-Bastida and E. Braun, Phys. Revb6g 036228(2002]. The complete Lyapunov spectrum does not
depend significantly on the impurity ma#4. These results suggest that the impurity does not contribute
significantly to the dynamical instabilitichao$ of the chain and can be considered as a probe for the dynamics
of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the
chain has a crossover from weak to strong chaos at the same value of the energy density as the crossover value
er of largest Lyapunov exponent. Implications of this result are discussed.
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I. INTRODUCTION tors, is a system that has been extensively studied over the

During the past two decades or so, there has been growir{gf_St decades with relat_ion to the p,roblem of energy equipar-
evidence of the connection between the underlying chaotifio- From the dynamical system’s perspective, it was the
microscopic dynamics of many-particle systems and its obStarting point in the study of chaotic dynamics in many-
served macroscopic behavior. For example, the largegiégrees-of-freedom systeng®r a recent review, see Ref.
Lyapunov exponent_LE) \;, which measures the exponen- [10D). In particular, numerical simulationgll] revealed a
tial rate of divergence of two originally close trajectories in fich phase-space dynamics that is controlled by the energy
phase space, has been found to be an indi¢atder param-  per degree of freedorae=E/N. Two qualitatively different
eten of phase transitions[1-3]. Moreover, the largest regimes exist in the dynamical behavior of the system: it is
Lyapunov exponent has also been related to the transpostrongly chaotic and phase-space diffusiga be referred
coefficients of fluid systems with continuous potentialsfrom now on as microscopic diffusigns fast when the en-
[4—6]. For some special cases, e.g., hard-sphere systems, tegyy densitye exceeds a threshold;, whereas it is only
theory of Lyapunov exponents is remarkably developdd  weakly chaotiqi.e., almost periodicand microscopic diffu-
However, considering randomness and transport, in generaion is slowed down when the energy density is below the
as signatures of microscopic chaos raises subtle and fundgnresholder, which in Ref.[11] was called thestrong sto-
mental issues in statistical physics that have to be carefullghasticity threshold SST). The detection of this transition
discussed and investigated. For the case Of BrOWnian motiOBet\Neen two diﬁerent dynamica' regimes iS performed by
the analysis of simplified models such as a label@$)  means of the LLE\4(¢), which exhibits a change in its scal-
particle immersed in a one-dimensional system of hard rodﬁ1g behavior precisely at the valug of the SST.

[8] and an impurity in a harmonic crystg], has shown that Recently it was shown that, if the FPU chain is coupled to
the motion of the tracer particle may be Brownian even when, heavy impurity, the latter performs Brownian motig2].

the full dynamical system, part?cle plus_fluid, is not cha_o'gic.-rhiS system, being one dimensional, can be much easily
These examples show that microscopic chaos is sufficienky,gied than three-dimensional systems with continuous po-
but not necessary to produce Brownian motion. The Maifgniials and offers a convenient starting point for a system-

problem then is to prove beyond doubt if it is possible 10¢ic study of the relationship between the microscopic dy-
detect any particular feature of the microscopic dynamics,omics and the macroscopic, statistical behavior. In

either regular or chaotic, in the behavior of the tracer pary,ticylar, it is a suitable model to explore the possibility to

ticle. Only then it would be possible to assess the relevancg,y some indication of the known microscopic dynamics in
of the microscopic dynamics on macroscopic behavior. ¢ giatistical behavior of the heavy impurity. The results of
_ The Fermi-Pasta-UlaniFPU) model, which is a one- o nresent work suggest that this is the case indeed. In Sec.
dimensional chain of nearest-neighbor anharmonic oscillay \ve describe the model to be used. In Secs. Ill and IV we
report the results of the statistical and dynamical behavior of
the system, respectively. Section V is devoted to discuss the
relationship between the results found in the two previous
*Electronic address: rbom@xanum.uam.mx sections. In Sec. VI some conclusions are drawn.
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IIl. THE MODEL AND ITS NUMERICAL INVESTIGATION e A
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with m=1 for i #0 and my=M; periodic boundary condi- 2 P N B ..:32

tions are assumetky)+1=X-n2). The model describes a 10 10 ® 10 10

system of one-dimensionBl coupled nonlinear oscillators of

unit mass with nearest-neighbor interactions, displacements FIG. 1. Relaxation timer vs energy densitg. The continuous
{x}, moment&p;}, and a central oscillatdimpurity) of mass (dasheai.lines correspond to the power-law &t for the e<1(e
M with displacementx,=X and momentump,=P. The =1) regime and alM+1 values.

value 8=0.1 was used in the computation of all the nu-

merical results hereafter reported. This model will be re-M-independent scaling exponesmtfor each regime. Follow-

ferred to as the modified FPUMFPU) model. ing the methodology of Ref12] we estimatex=~—0.019 for
As initial conditions we choose the equilibrium value of e<1 anda=-0.182 fore=1. Thus we can conclude that
the oscillators displacements, i.ex(0)=0 for i= the power-law scaling exponent undergoes a sudden change

-N/2,---,N/2. The momentap;(0)} were drawn from a at a threshold value.~ 1.00, since the estimated values
Maxwell-Boltzmann distribution at temperatufeconsistent ~ differ by one order of magnitude.

with a given value of the energy density It is known that

the dynamics of both the homogenequsiform mass,M

=1) FPU model[11] and the MFPU mode]12] is strongly IV. PHASE-SPACE DYNAMICS

chaotic for largee values, whereas their dynamics, for small |, Ref. [12] the change in the scaling behavior ofe-

e values, corresponds to a chain of coupled harmonic oscilyicteq in Fig. 1 was attributed to the change in the dynamical
lators. Consequentlg was chosen in the range 08%  phepayior of the chain as the energy densitgoes from a
=100 withM=1,40,60,80, and00. Finally, the X first-  egime of low chaos to a regime of fully developed chaos.
order Hamilton equations of motion were integrated using However, it remains unexplained why the aforementioned
third-order bilateral symplectic algorithifil5], which is a change occurs at a precise vakeof the energy density. To

high-precision numerical scheme. address this problem we consider in more detail the dynami-
cal behavior of the FPU chain. As is known, the LAHe) is
lIl. STATISTICAL BEHAVIOR OF THE HEAVY IMPURITY a parameter that can be used to quantify the degree of chaos

in the dynamics of a given system with either low or large

Thermal equilibrium between the impurity and the FPUnumber of degrees of freedom. For the homogeneous FPU
chain with N=300 000 unit mass oscillators is attained model[11] it is known that the behavior of the LLE for large
within the time interval oft=5x 10° natural time units. Af- (small) values of the energy densityis \;(e) ~ €”. The ex-
terwards the heavy impurity performs Brownian motion for ponento has a large value in the weakly chaotic regime
all e values studied12]. The momentum autocorrelation e¢<e; and a small value in the strongly chaotic regime
function (MACF) po(t)=(P(t)P(0));/(P*(0)); of the heavy ¢>¢.. That is, the exponent undergoes a sudden change
impurity was obtained by computing the time averages;  around the threshole. This provides an operational defini-
over a time interval ot=2x 1. For all e and M values tion of the SST, which is defined by a crossover in the scal-
considered the exponential fit gxjt/ 7), wherer is the re-  ing behavior of\;(e). Further analytical studiegl3,14 of
laxation time of the MACEF, is valid foit<50. Since the the dependence of the LLE on the energy density homo-
magnitude ofpy(t) is negligible fort>50 in all cases, its geneous FPU lattices confirm the conjecture that the LLE

contribution was not considered in the computationr.of reaches a finitee dependent, value in the thermodynamic
Figure 1 shows a graph of the relaxation timeersus the limit N— oo,
energy densitye in log-log scale for all the considered For the homogeneous FPU model we have numerically

values, as goes from the regular to the chaotic regime. Wecomputed the LLE by a standard technigu#)] for chains
observe that the data points are separated into two differemtith N=300 000 andN=2000 unit mass oscillators, as
and well-defined regions, depending on thealue. In all  shown in Fig. 2. The results for these tWbvalues overlap
cases the dependence ofon the energy density is weak very well over the entire range of thevalues studied with
whene< 1. On the contrary, whea=1, 7 decreases rapidly the best available analytical estimate Xf(e) valid in the
as e increases. In each of these regimebkas a power-law thermodynamic limitf13]. Since our numerical data are in-
scaling my(e) = 7o €™, with the samery ) value for all the  dependent of the approximations made in R&8] to obtain
data points with the samd value. The slopes of each of the the analytical estimate, they provide an independent corrobo-
fits in Fig. 1 are approximately the same for the 1 regime.  ration of the stability of\;(e) in the thermodynamic limit.
The same result occurs fe= 1, though with another slope This result justifies the study of the dynamics of the FPU
value. These facts imply that there is a commonchain withN values smaller than those needed to compute
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FIG. 2. Largest Lyapunov exponeR vs energy density for FIG. 4. Spectrum of Lyapunov exponents &#26,N=100, and

the homogeneous FPU mod@¥=1). Asterisks correspond tb @l the considered # 1 values.

=2000 and filled triangles thl=300 000. The continuous line is the
analytical estimate of Ref13]. chains ofN=100 unit mass oscillators and seve¥élvalues.

The results are presented in Fig. 4. The linear shape of the

the relaxation timer of the MACF of the heavy impurity. LS has been previously obtained for the homogeneous FPU

Figure 3 shows the results for the MFPU model with ~ model with e values much larger than the S$F [19]. We
=2000 unit mass oscillators. For all thé values considered see that the LS is unaltered by the heavy impurity; that is, the
the scaling behavior of; remains unaltered by the presenceLS is dominated by the positive Lyapunov exponents corre-
of the heavy impurity embedded in the chain for the en¢ire sponding to the FPU chain without the impurity. This type of
value range considered. This result indicates that the dynanfpehavior has been reported for the case of a heavy tracer
ics of the system is dominated by the FPU chain, with noparticle in a two-dimensional molecular fluid, where the
contribution from the heavy impurity. A rough estimate of tracer and fluid particles are hard disks undergoing elastic
the crossover energy density, which defines a common SS@ollisions[20], but not for the case of a continuous potential,
&7 for both the homogeneous FPU and MFPU models, can bike the one considered in this work.
obtained from Fig. 3 by the intersection of the straight lines Another useful quantity to characterize chaos is the
that describe the low- and high-energy power-law asymptoti¢&olmogorov-Sinai(KS) entropyh,s which, for conservative
behavior of \;(¢). The crossover between the two power Systems, can be written dg.=2>\; for all \;=0. The KS
laws occurs ater~1.18. A straightforward observation is entropy describes the mean information production rate
that the computed SS& value, which is a distinctive char- caused by all positive Lyapunov exponents along a trajectory
acteristic of the microscopic dynamics of the entire systemin phase space and therefore measures the degree of stochas-
is very close to the value,~1.00 obtained from the cross- ticity. Results for a chain wittN=100 and twoM values are
over in the scaling behavior of the relaxation timef the ~ reported in Fig. 5. We observe that the KS entropy, just as the
MACEF, which is a property of the heavy impurity. This result LLE, exhibits a change in its scaling behavior between two
suggests that the change in the scaling behavierexthibits  different and well-defined regimes, characterized by the scal-
macroscopically the existence of the S§T ing laws s~ €*% for e<1 and h~€>*® for e>1. The

To characterize chaos in more detail we compute thé&rossover between both regimes occurs at an energy density
Lyapunov spectruniLS) of positive exponent$\;} using a  Value e that is closer to the threshold valug of the relax-

standard methoc[]_?]’ as imp|emented in Ref[18]’ for ation time = than the thrEShC)ld'T of the LLE. Thus the KS
entropy, just as the LLE, is a suitable quantity to probe the
10° F—T—T T T T dynamics in the consideredvalue range. A similar behavior
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FIG. 3. Largest Lyapunov exponeni vs energy density for
the MFPU model and alM values. References to power-law scal-
ings valid for small and large values are shown by dashed lines. FIG. 5. KS entropy vs energy density foi=100. Vertical
Vertical dashed-dotted line indicates the approximate locatia®.of dashed-dotted line indicates the approximate crossover point be-
Open symbols correspond t8=2000 and filled symbols tiN tween the regimes of weak and strong chaos, with dashed lines
=300 000. indicating the asymptotic power laws valid fer<x1 ande> 1.
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in the KS entropy has been previously reported for the onemass of the heavy impurity23], and the random initial con-
dimensionalg* model, with a threshold value of the energy ditions, rather than of the degree of chaos in the system.
that separates two integrable limits of this syst@ti. However, although diffusion itself is a collective phenom-
enon and, therefore, largely independent of the microscopic
dynamics, some of itspecificfeatures, such as the crossover
V. DISCUSSION in the scaling behavior of, can yield information on the
o dynamics of the system to which the heavy impurity is
From a macroscopic, i.e., statistical, perspective it is notoupled, which in the case of the FPU chain studied here is
at all clear what kind of collective mechanism, if any, could the transition from weak to a strongly chaotic regime. Nev-
be held responsible for the crossover vakdeat which the ertheless, in order to consider the heavy impurity as an ef-
scaling exponenix changes its value. However, from a mi- fective probe of the Hamiltonian dynamics we have to study
croscopic Hamiltonian perspective the change of the scaling suitable macroscopic variable, which in our case is the
exponenta can be straightforwardly interpreted as a macro-relaxation timer, which is computed from the momentum or
scopic manifestation of the chaotic transition described byelocity of the heavy impurity.
the SST. This interpretation arises by comparing Figs. 1 and Finally we would want to remark some implications of
3, which suggest that the behavior gf(e) and\,(e) is due  the behavior of the KS entropty,s Although 7 is a property
to the same mechanism. Since the microscopic dynamics Gemputed from the momentum of the heavy impurity,

the MFPU and FPU models are practically identical, we carfvhereas the KS entropy is essentially a property computed

apply the same explanation of the origin of the chaotic traniTom the full dynamics of the FPU chain, both quantities

sition that was previously given in context of the FPU modelprovide information about the microscopic dynamics. In fact,

e : both reflect the chaotic transition at the S&T as shown in
[Cgﬂ'Jehsv;'t?gllitr?r:;lnfgt;'ther the FPU or the MFPU model Figs. 3 and 5. The important point to be stressed is that the

KS entropy is a property that can be computed by other
IH4l methods, such as time-series analy2#. Recent theoretica]
H(0,1) =Ho(l) +Hy(6,1), p= —"<1, (2)  work suggests that the information extracted from the time
[Hol series of the position of a Brownian particle is unable to
where(4,1) are the action-angle canonically conjugated vari-unambiguously determine the natygsther regular, chaotic,
ables and|---| is a suitable norm. A consequence of the O Stochastigpof the system to which the particle is coupled
perturbationH, is that the resonant manifolds w(1)=0 of ~ [25]- This result is entirely consistent with the lack of any
H, are destroyed for any smali and are replaced by finite- signature pf the chaotic transition assqc_lated with the SSTin
thickness chaotic layer@ is an integer component vector the behavior of the self-diffusion coefficient as a function of

and w is a vector whose components ase=dHy/dl;). As € in the case of our MFPU mod¢l2]. In Ref. [25] the KS

these chaotic surfaces intersect the constant energy hypers@ntrOpy of an impurity in a harmonic crystal, which corre-
. ) onds t MFPU model far<1, was computed usin
face forN>1, a chaotic networkthe Arnold web is pro- E)on s 1o our m P 9

— . the time-series of the position of the impurity. However, if
duced which is everywhere dense in phase spac&>M. o KS entropy is computed using the full dynamics of the
the resonances are strongly overlapped and microscopic digystem, as was done in the present paper for the case of the
fusion is allowed in every direction in phase space, with a\iFpy model, it can indeed detect the stochasticity transi-
large value of the LLE. In this dynamical regime the scalingtjon, as is evident by inspecting Fig. 5. By comparing Figs. 3
exponente has also a large value, which produces a rapidand 5 it can be inferred that; and h, convey almost the
decay in the value of the relaxation timeof the MACF of  same information, which in turn is reflected in the behavior
the heavy impurity. On the contrary, ak e, the resonance of the relaxation time(e) as depicted in Fig. 1. Now(e) is
overlapping is drastically reduced as the energy density decomputed from the MACF, which is a property that depends
creases, diffusion in phase space occurs only along resenly on the momentum of the impurity. This observation
nances, and the LLE takes a smaller value. Correspondinglguggests that, if the momentum time series, instead of the
the scaling exponent is smaller, which accounts for the position time series, is used to compute the KS entropy by
almost constant value of the relaxation timen this e value  methods of time-series analysis, the stochasticity transition
range. The behavior of the relaxation timge) has a direct associated with the SST of the FPU model could indeed be
relationship with diffusion in configuration space, sinde)  detected. We stress that we are not implying that methods
is directly related to the self-diffusion coefficient of the based on time-series analysis can detect chaos in a generic
heavy impurity through the Green-Kubo relatidi?)]. dynamical system. Even for one-dimensional systems, this
Although it is not our aim to directly address the problempossibility remains controversial25]. The dynamics of
of the origin of diffusion in many-particle Hamiltonian sys- three-dimensional systems or those with long-range interac-
tems, a discussion will clarify some of our results. Recentlytions is still not well characterized, which poses an obstacle
a class of one-dimensional maps has been reported whickhen trying to define which specific features of the micro-
present normal diffusivelike behavior in the absence of chaoscopic dynamics of these type of systems could be detected
[22]. For the case of the MFPU model the diffusion coeffi- at a macroscopic level. But, for the particular case of the
cient of the heavy impurity obeys a unique power |[®v MFPU model, it can be conjectured that the KS entropy,
~ €2%4in the entire range of values considerefl2]. From  when computed from the momentum time series, would dis-
these results it is clear that macroscopic diffusion is a complay a different behavior at smadl values compared to the
bined result of the large number of degrees of freedom, theorresponding behavior at largevalues.
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VI. CONCLUSIONS variables. Another open problem is to investigate if this tran-

sition between two diferent dynamical regimes can be de-

In this work we have presented evidence, obtained from gected by other methods, such as those provied by nonlinear
systematic study of certain dynamical parameters, that thgme-series analysis.

inclusion of a heavy defect in a FPU chain does not affect its
Hamiltonian dynamics. Furthermore, the crossover in the
scaling behavior of both the LLE and the KS entropy, which
depend on the dynamics of the whole system, has a macrosp- | wish to acknowledge M. A. Nufiez and Professor L.
copic manifestation in a similar behavior of the relaxationGarcia-Colin for their comments and suggestions. | am grate-
time 7 of the MACF of the heavy impurity alone. An inter- ful to L. Casetti for letting me have his numerical code,
esting development in this direction would be to explore thewhich has been an invaluable starting point for the develop-
possibility that certain dynamical features could be detectednent of my own. Financial support from CONACyYT, México
in more complicated systems by monitoring the appropriatés also acknowledged.
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