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A recently introduced class of quantum spherical spin models is considered in detail. Since the spherical
constraint already contains a kinetic part, the Hamiltonian need not have kinetic term. As a consequence,
situations with or without momenta in the Hamiltonian can be described, which may lead to different symmetry
classes. Two models that show this difference are analyzed. Both models are exactly solvable and their phase
diagram is analyzed. A transversal external field leads to a phase transition line that ends in a quantum critical
point. The two considered symmetries of the Hamiltonian considered give different critical phenomena in the
qguantum critical region. The model with momenta is argued to be analog to theNaligét of an SU(V)
Heisenberg ferromagnet, and the model without momenta shares the critical phenomena ofarHgIdén-
berg antiferromagnet.
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I. INTRODUCTION porating thus the Ising modéfor spin dimensiornv=1), the
x—y model (spin dimensionv=2) and Heisenberg model
The classical spherical model was conceived by Kac. Af{»=3), approaches that of the spherical model in the limit
ter being introduced in 1947 to Onsager’s rather intricateof infinite spin dimensionality—c. Hence, it gives a geo-
solution of the two-dimension&PD) Ising model, he desired metrical interpretation to the spherical model. Since various
to formulate a simpler spin model. As a first step he took thecritical properties where proven to be monotonic functions of
spins to be continuous Gaussian variables, nowadays callede spin dimensionalityr, the critical properties of the
the Gaussian model. This had unphysical behavior at loviHeisenberg model appeared to be bounded on one side by
temperatures which led Kac to consider the “sphericalthose of the Ising model and on the other by those of the
model.” The spherical model has continuous spins that arepherical model.
restricted by the “spherical” constrairEiN:lSIz: N, which The spherical model for antiferromagnets was thoroughly
represents the hypersphere intersecting all vertices of the hgtudied by Knops. The spherical constraint impo$g$)
percube sustained by the Ising spiSss =1. In the end, the =1 for ferromagnets. However, this does not work for anti-
spherical model is formally the same as the Ising model withiferromagnets because of the lack of translational invariance.
a global constraint instead of a local one: the sum of spins i§o recover this, he added a second constraint; more gener-
constrained instead of each of them. At that time the saddlelly, one constraint has to be added for each translationally
point method, needed in the solution, was not widely knownjnvariant set, which in the case of antiferromagnets means
and here Berlin came in, leading the celebrated joint publieach of the two sublattices. Knops found that the two con-
cation on the spherical model in 19%2]. Kac’s personal straints reduce to a unique one, provided the staggered exter-
reminiscence of this history is presented in Réil. nal field vanishes. The fact that the spherical spins are scalars
The spherical model for a ferromagnet has been considnakes it impossible to define an order parameter that can be
ered in great detail. Actually, the paramagnetic to ferromagidentified with the spontaneous staggered magnetization. To
netic transition is similar to an ideal Bose-Einstein condensolve that and get the proper order parameter Knops used a
sation. Since the solution of the model is so simple andrector version of the spherical modd]. He also general-
explicit, the critical behavior can be solved exactly. Criticalized Stanley’s arguments to nontranslational interactiéhs
exponents and scaling functions can be derived. In particular, The spherical model has also been applied to disordered
the model with short range interactions exhiltlis=2 as the  systems. Though, in view of Knops’ finding, perhaps an in-
lower critical dimension; fod<2 no stable ferromagnetic finite humber of spherical constraints should be used, typi-
phase occurs. Likewiseal =4 is the upper critical dimen- cally no analog of the staggered external field is applied, and
sion; ford>4 critical exponents take their mean-field values.one may expect that all constraints collapse into a single one.
These analytic results have been used to test approximatiofifierefore spherical spin glass models may still give insight
and general ideas of phase transitions for a wide range df the physics of the problem which would be more difficult
interactions, short and long range. For a review on the clago study, for example, with Ising spins. In the case of pair
sical spherical model see R¢8]. couplings the exact solution exhibits no breaking of replica
As said, the spherical model was introduced for its mathsymmetry and the replica trick need not be u$@fl The
ematical simplicity. However, Stanlej4] proved that the family of p-spin spin glassespfspin models [8] has been
free energy of a model of arbitrary spin dimensignincor-  shown to exhibit one step replica symmetry breaking by
studying the spherical version. For spin glasses with random
pair and quartet interaction§d=2}+{p=4}, “p=2+4"),
*Email address: rubeng@science.uva.nl one of us showed that an exact solution exists, exposing the
TEmail address: nieuwenh@science.uva.nl full replica symmetry breaking scenario. The simplicity of
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spherical models thus may give insight in difficult problemscloser to Heisenberg spins, as having in the case of free spins
for which otherwise no exact solution is available. For ana gap between the ground and the first excited state scaling
early review on the use of the spherical model in disordereavith the field at small fields.
systems, see Ref9]. The aim of the present paper is to point out the differences
So far the discussion has been classical. The classicalifyetween these two models. We study two Hamiltonians using
can be understood in particular because the entropy divergd§euwenhuizen’s spherical constraint. The first one was in-
at low temperature as T just as for a classical ideal gas. troduced in Ref[14] and we find it to be analogous to the
Different quantum versions of the spherical model have beeffge7V" limit of a SU(V) Heisenberg ferromagnet. In the

proposed. Obermair studied surface effects in phase trangiecond Hamiltonian studied, no momenta are present; mo-
i 101, Identifvi ith . & h i menta only appear in the formalism through the spherical
ions[10]. Identifying with a spin an operatd;, he postu-  ¢,nqiraint. In this case, the same critical phenomena as in the

lated a momentum operatdﬁi conjugate to it,[S A1 ] larges\ limit of a SU(NV) Heisenberg antiferromagnet is
=if ;. To get a spin dynamics, he added a kinetic termfound, which can be described by anO) nonlinear o

1g3,112 to the Hamiltonian, but kept the constraint the samgMedel which, in turn, is analogous to Obermair's model.
‘f g it i tors 3¢S =N. In thi The paper is organized as follows. In Sec. Il the classical
except for expressing it in operators B¥S’)=N. In this spherical model is reviewed and the way to quantize it is

case, the kinetic term may be understood as the kinetic enyiscyssed. The differences between the two quantum spheri-
ergy of rigid rotors. The model remains exactly solvable.cq| constraints are pointed out. In Sec. Ill, the path integral
Many others have therefore used this quantization in th¢grmalism is introduced to calculate the partition function of
study of spin glassefl1], systems with multispin random g quantum spherical model. In Sec. IV this formalism is used
interactions p-spin glasses[12], or the study of quantum to solve the thermodynamics of a ferromagnetic quantum
phase transitionkl3]. spherical model with nearest neighbor interaction and the
One of us presented in 1995 a different quantum approacgritical phenomena is studied in detail. At the finite tempera-
to cure the low temperature behavidr]. In a Trotter ap-  ture phase transition, the critical exponents remain the same
proach to the partition sum, the first step is to take as sphergs the classical ones. In Sec. V a Hamiltonian with the same
cal constraints;>¥3;=No/%?, whereo is a constant that couplings but without momenta is considered. The critical
need not be unity, andl; is the complex parameter charac- exponents are found to be the same as in Obermair’s model.
terizing the coherent state associated with the bosonic annifter that, in Sec. VI a generalization of the two types of

hilation operatorii=[S/ﬁ+i1:[i]/\/§. Hence, in this ap- Hamiltonians presented here is given and the limit of SJ(

proach the momentum appears in the constraint. Indeed, th2€iSe€nberg spins is argued to give the same critical behavior
. . a2 PR ~ as this quantum version of spherical model. Finally some
constraint may also be writtéd,(S{) +#2(117)=2No. As a

7 conclusions are drawn.
second step, momenta dependent Hamiltonians were consid-
ered, by replacing]ijSiSjHJijEiTEj. Later [15], the same
formalism was applied to the-spin glass model and was
compared with its Ising counterpart. In spite of the simplicity ~ The spherical constraint was conceived as a relaxation of
of the system and its solubility, the resulting phase diagramhe Ising constraint. Indeed, Ising spifg= Si .= +1#%, ob-
shows very interesting critical phenomena. viously satisfy it. Adjusting the coefficients from the original
Since the momenta are present in the constraint one mayersion it may be written as
also study situations where they do not appear in the Hamil-
tonian. Below we will consider two Hamiltonians with near-
est neighbor ferromagnetic interactions. We will see that the
presence or absence of momenta can change the symmetries
of the action giving rise to different critical phenomena in the

quantum region. The resulting action may be invariant undejyiin o=#2/8 having dimension (J&) The Berlin-Kac

unitary transformations or under orthogonal ones, while i”spherical model is defined by the partition sum
Obermair’s approach only the latter is possible. In the final

section we show that one of these spherical spin models re-

II. CLASSICAL SPHERICAL MODEL

N
2, f=No, (1)

N| =

N
1
Iate_s to a quantum ferromagnet and the other to a quantum Z:j DS e AHsl = 2 SZ—NO'
antiferromagnet. 2=
The two different quantum versions of the model have the _
same quantization rulgS;,I1;]=i%4; ;. Both of them cure :J' DSJIM d_/’Lef,GHf(lIZ);.Zi'\LlsiZJr;Na @
the problem of the entropy, it remains positive and, for tem- i 27 ’

perature going to zero, goes to zero as a power law. Vojta,

[13] following Stanley's arguments, found that Obermair’s , hare

guantization gives a free energy that is identical to the large-

n limit of the O(n) nonlinear sigma model. Therefore it de-

scribes rotors instead of Heisenberg spins. Nieuwenhuizen, DS=H fx ds.. 3)
conversely, gave indications that his version had a behavior i J-w
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A. Vector spherical spins

~ 1 . . 1 .
-—g> 112 -3 2_
For vector spins the generalization of Ed) in the case H‘Ot_zg ; I+ HS ) 2 4 (S)*=Nmo),

of m spin dimensions reads (10
1o ) where u is the Lagrange multiplier that enforces the con-
2 ;1 a; (S)*=Nmo. 4 straint. In equilibrium its value is given by the equation of

the spherical constraintF/du=0. The dynamics is now

It is worth mentioning that the spin dimensionality in Eq. fixéd by the Heisenberg equations of motion,
(4) is not related to the approach of Stanley, who started with
vector spins and ended up with scalar spherical spins. We

A . R
only introduce vector spherical spins to avoid the restriction < = THwe(0),SH(O]=gII}(D), (11)
scalar spins have. We benefit from the fact that the vector

character allows us to study the behavior in a transverse e e

field. A similar step allowed Knops to define a proper order d_tlzi[ﬁtot(t):ﬁia(t)]: ———u(OS). (12

parameter for the antiferromagnetic spherical mg&él :
B. Quantization yvhere the rea] parameter has to pe taken time—depend.ent
. . . . in order to satisfy the soft constrai(®) at each instant. It is
It is natural to pon&d_er th& analogous to position vari- a5 that a nonzerg is needed to get any spin dynamics.
ables of harmonic oscillators. In quantum mechanics the)bombining the two equations one has

become hermitian operatoAS with the dimension of:, Js.

The conjugate momentum operalfif is dimensionless and 1 dZASa gH -
postulated to satisfy the commutation relation 9 = r(DS(L). (13
St
[SFTIP)=i%3,ap- (5)

It is worth remarking that no energy budget is involved in the

. . . . .__spherical constraint,
As for harmonic oscillators, this allows us to define creation P

and annihilation operators

(Hiop=(H). (14)
Sat 1. - a <a 1. s a
3 _ﬁ S?_Eni % :ﬁ S?*‘ E i (6) D. Spherical constraint on the number of spin quanta
In 1995 one of us had proposed a constraint that fixes the
satisfying the commutation relation number of quantdl14]. In a path integral approach it was
assumed that thenumbersS.?, which characterize a coher-
[>2 ,EJ-b M= 8 iOap- (7) ~ entstate, satisfy at each timestep
g
C. Spherical constraint on the length of the total spin constraint 2: E Sa3a= Nm?. (15)
i,a

There is some freedom to choose the spherical constraint,

which amounts to describing different physical situations.t js to be expected that this is equivalent to
The standard quantum constraint considered in literature is
just the quantized version of the mean of E4), o o
L constraint2: Y, (38732 = (n?)szﬁ. (16)
-~ I,a 1,a
constraint 1: > > {((SH%)=Nmo, (8)

e We shall show below that this is indeed the case, and the

where(- - -) denotes the quantum expectation value. Oberrelation, o= o +42, is derived in Eq.(38). This constraint
mair took as the gquantum Hamiltonian the classiki4lS) includes the momenta as can be seen by writing it in the
with spins replaced by operators, and added the kinetic terrform
that one expects for physical rotors, 5
h
o+ ?)

(17)

constraintZ'1 > (S*A+AZ(122)=Nm
A A A 1 ~ ~ "D 4 i i
H(S,Hi)zEgEi 12+ H(S), 9) ha

where g~ ! is the rotor's moment of inertia. An effective For a Hamiltonianﬁ(é,f[) that may, but need not, depend
Hamiltonian which includes the constraint can be derivedexplicitly on the momenta. The effective spherical Hamil-
with a Lagrange multiplier. One ends up with tonian is
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. A 1 Z &2 y a Ill. PATH INTEGRALS
Hio H(S'HHZMi,a LS+ AT In this section we explain, following Refl15], how to
add the spherical constraint to a quantum Hamiltonian using
(18) the path integral formalism for models with the second con-
straint, Eq.(16). In second quantization the spins are given a
bosonic algebra. In the path integral the boson coherent state
representation is used for the spiffer a review of path
Now, the situation where the Hamiltonian does not de-in’[egrajs and coherent states, see, e.g., Fggﬂ and for a

pend explicitly on the moment@o kinetic term, H(S,II) ~ complete study of coherent states see, ¢1g]).
—H(9), still leads to sensible dynamics, since the constraint
already depends on the momenta. Different constraints deA. Bosonic coherent state representation for a single oscillator

scribe different physics. However, at high temperatures one Fock space is the Hilbert space of states labeled by the
expects the differences to become small. number of oscillator quanta. Coherent states are defined as

Equation(11) now bringsTI?= (dS™/dt)/u(t), Eq. (120  the eigenstates of the annihilator opergdorThen it can be
remains the same. They may be combined together into proved that for a system with many particles

second order equation for the spin operators, At
E ¢ éT (¢aa a/)na
|p)=etef0)=]1 | X 0) (20

hZ

—Nm,u,(a'-i-? .

n n,!
df 1 d& )
PO — r()S(1). (190 is a coherent state, whe@) is the vacuum representation in
# IS Fock’s space, and stands for each state for any particle of

the system. Indeed, because of the identﬁy(éZ)”a
=n.(a))"a"1+(al)"ea,, it holds thatd,|¢)= ¢,|4). The

In the remaining of this paper we will simplify the notation scalar product of two coherent states gives

by taking units in whichh=1.
(¢l ¢'y=e>atati (21)

E. Comparison of the two constraints ) )
o . . Acrucial property of the coherent states is that they form
The main difference between the two constraints is obvip, overcomplete set of states. Any vector in Fock space can

ously the presence or absence of momenta. In the secoRen pe expanded in terms of coherent states. This is ex-
case, Eq(16), the spherical constraint can carry all the dy- pressed by the closure relatiph7]

namics of the model. On the contrary, using the first con-
straint, Eq.(8), a kinetic term, with an external parametgr f I dim(¢,)dRe(b,)
e
« s

has to be added to the Hamiltonigh0]. This parameter "ot b p)(P|=1 (22)
determines the strength of quantum fluctuations; the classical

model can be recovered fg=0. This fact makes models

with the first constraint describe quantum rotors, as Wagvhe.re the_ measure in the_ integral comes from gagssian in_te-
pointed out in Ref[13]. The first constraint, Eq(8), brings gration with complex variables and the exponential term is

actions which are invariant under orthogonal transformadue to the fact that coherent states are not normalized. Let us

. : : heck that Eq(22) is indeed a representation of the identity
tions. Conversely, using the second constraint, #6), the ¢ . . .
choice of Hamiltonian can bring symmetry under unitaryOf Fock space. We insert it in the left hand side of Ezf)

transformations or orthogonal ones depending on the que?—nd we get

tion whether the Hamiltonian contains momenta or not. dim(y,)dRe( 1)

Hamiltonians with unitary transformation symmetry vyield <¢|1|¢r>:f 11 @ i e—2a¢2w0<¢|¢><¢|¢r>

free energies analogous to the larydimit of the generali- a ™

zation of SU2) Heisenberg spins to SW(). Hamiltonians dim(y,)dRe( )

with orthogonal transformation symmetry share the critical :f 1T « LI O L S P G

phenomena with the largt’ limit of O(N) nonlinear sigma a ™

model and describe therefore quantum rotors as occurs by S

using the first constraint, EG8). =e*alatu (23)
Each of the symmetries belong in different universality ) ] ]

classes in the quantum regime, yet classical critical phenonWhich indeed is the right hand side of EQ1).

ena are always the same as in the classical model, consistent The partition function of any quantum systerd

with the expectation that quantum effects do not lead to=trfe #H@"®] can be computed by the Trotter approach.

qualitative changes at finite temperatures. We will see thathe exponential has the same form as a time evolution op-

the dynamical critical exponeumtis different in both symme- erator in imaginary time. Thus it is possible to create a path

tries, causing the difference in critical exponents at the quanintegral over closed paths. The procedure is to split the ex-

tum critical point as was pointed out in R¢1.6]. ponential in a product oM equal terms. Between each pair
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of them a representation of the identity, EB2), is inserted.  sponding fields¢; are denoted a&?. We remind that the

The partition sum then has the following shape: spherical constraint we use is the one defined in(&E6).
1 In order to impose this constraint in the path integral for-
Z=tr{(e"H@ .M} malism, the identity definition Eq22) is modified to adopt

of A o A o A to the spherical case, in a way inspired by Rdf5]: one
—€ T —€ T, —€ T, . . ! . .
=tr{e” @ D1e @ D1 .. 17 @D (24 regpricts the path integral to states which exactly satisfy the

where e=B/M and eachl is an identity operator. Each of constraint by employing the truncated identity

these identities is given an index; they represent the steps the ., 1

herical
system passes through in a discretized path. By using the spheriea

identity defined in Eq(22) the following matrix element is dim(ZfdRe(2?) |, R
neede)é: ’ ? =C 1;[ 'Tr —e X3\ (3| 8(A—Nmo)
(¢le”HE D ). (25 (29
Provided the Hamiltonian is normal ordered, the outcome igvhere the number operatér
[17]
at s e A= 37132, (30)
(pile M@ Vg, _)~(¢j|1—-eH(a,a)|¢;_4) ERE
—edf P 1— eH(oF  bj-1)] counts the total number of spin quanta. We insert
:ed)}*.qgj,reH(qsf l‘ﬁj*l)—{—O(ez). S(A—Nmo) = fw G;j_“e—iep(ﬁ—ng)
(26) e
Correction terms can be neglected in the linvit—oo :fm ﬂj_l{«e,m(ﬁ,Nm(,), (31)
[17]. Each identity brings an integral at each time step. These —iw 2

integrals cover any path between its initial and its final state. . ) ) ) )
The trace will finally tie the ends giving a closed path. TheWhereu=i%z is imaginary.(Strictly speaking, we should in-
partition function finally reads sert a Kronecke# function, rather than the Diraé; but for

large N this amounts to the sameRepeating the same pro-
cedure with this new identity we get

z- | D(¢%(7) (")
bo(B)=4(0)
Z:f DuDX*DXexp —A), (32
d de(7) 3(8)=3(0)
xexp 2 dr) ¥ (1) —;— +H(@* (1), g(7—dm)| [,
70 7 with the action
(27)
b d=(7)
where the subindex of the integral reflects the trace structure A= >, d7| 3*(7)- g, Tm(DE(n)-X(r—dn)
of the partition function since it gives a closed path integral, =0
7 stands for the imaginary time step, 07) = ¢; ; dr is the
imaginary time difference between steps, ggr—dr) —Nmo)+H(E*(7),%(7—d7)) (33
=¢i-1; and
and integration measures defined as
dg(r)  d(n—(r—d7) b= J
dr dr - BIM 28 = e dIm(S3(7))dRe(Z3(7))
f pD3*D3=]] f f : :
Despite the fact that the nomenclature used in these for- lar J e e ™
mulas suggests a continuous time, it should always be under- (343
stood as being discrete. The lint—« should always be .
taken at the end of the calculations, otherwise some indeter- _ = edu(7)
Ken | : . el Du=c]] : (34b)
minacies may arise. Continuous notation is used nevertheless 7 Joie 2mi

because it is more compact.
where (1) is the Lagrange multiplier introduced to impose
B. Coherent state representation for spherical spins the spherical constraint and the prefac(;ﬁ"’ is added to
) ) ) ) ensure, if needed, a proper normalization. Details on this
We can deal with spherical spins using almost the samey.ior are given in Ref(15].
approach. The operatd; is identified with3.?, where the It should be noted that the particle number operator in the
index a denotes the spin vector direction, and the corre-definition of the identity, Eq(29), will be surrounded, as is
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the case for the Hamiltonian, by spin operators on differensteepest descends, a procedure that allows the particle num-
timesteps; therefore its creation and annihilation operatorber to fluctuate; therefore the satisfiability of the constraint
will also be projected on different timestep&?2S2  remains only in average.

—32*(7)23(7—d7). In Refs.[14,15 the spherical con-

straint was slightly different from the one presented here.

The proposal was to take the constraint not in terms of the
particle number operator but in terms of its generating vari-

ables(which arec numbers, at every imaginary timestep, Using the formalism described in Sec. Ill we can study
the Hamiltonian

IV. FERROMAGNETIC HAMILTONIANS WITH
CREATION AND ANNIHILATION OPERATORS

N m
2*~2=_§,1 §=)1 33 (1)33(r)=Nmo (35)

so they acquire the same time-index. The two actions then i
differ only in the timestep projection of the spherical con-
straint, so with this constraint one obtain& (7)-X(7)
rather thar®* (7) - 3(7—d7). The difference that this brings
can be seen as follows. Starting from Eg2) we want to
have two operators projected at the same time. To achieve
this, it turns out that we must exchange the order of thewvhere in the second equality we inserted in E). The
opgrator§2T2=EET— 1. The termE;* can be prolec.ted at iéif[j cancelled since we assumed symmetric couplidgs,

a single time as one can see following E26). _For a S'“g"? =Jj; . Obviously, the momentum operators do occur in this
component spin at timestgghe relevant matrix element is expression. The coupling®; can in principle express any

kind of interaction, ferromagnetic, antiferromagnetic, spin

, Jij(éiéj+ﬁiﬁj)_2 rsS (39

(21'+1|e_€He_€”ETEe_EH|2j71> glass, etc. Thd'; represent an external field, that can be
~ - A ~ constant, variable, random etc. Later on, we will focus on
=(Zjale" M1+ ep—enX3Ne M3 ) ferromagnetic couplings in the presence of constant magnetic
- - field. This Hamiltonian without the external magnetic field is
=(1+ GM)<2J+1|efeH|zj><Ei|97€H|2j71> symmetric under unitary transformations, a fact that will de-
S A A y termine the critical behavior.
— (S ale” MEEHE R e M ) The first step to get the partition function is to diagonalize

0 . the couplings,
= (14 ep—epST S (S ale T )(E e s, ) P
=eH (T e MTN(E e T ) (36 \
%i(n)=2 (e},
Thus a factoe#~ <+ "(DX7(9) comes for each spin operator
32 at each timestep. This leads to the spherical constraint

dim(3®)dRe(3?) 2)\(7):2 Si(ne', (40)

ia m

- * .
1spherica|EC e * E|2>

wheree]' is the normalized eigenvector of the coupling ma-
trix J” .

Keeping in mind its ill definedness, we may write the
that with definition Eq(35) should be compared to E(9).  Partition function sum as a continuum expression,
In words, the spherical constraint can indeed be taken on the
coherent state variables as in E85) or in Ref.[14], pro-

><<2|5(2 SA*2E~Nm-Nmo (37)

a
vided one makes the identificatiGh=o+1, or, restoring N . B ay,  O2X(7)
vided z_forozoz exp{ drS | 335 (=,
T=0+h2 (39 () (D)2(r—d7)—Nmo) =2 (1) 237
In Eq. (48) we will verify that with this identification the two _ _i ax a, __
approaches indeed yield the same free energy. d) \/EFA(E" (N+2X(r=d7) 1. (41)

It is worth remarking that we imposed the spherical con-
straint strictly, no thermal average has been performed. In the
following sectionu will be integrated over by the method of In discrete notation, the action of E(R2) reads
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a* a ax 1 1 1 Fi
:2 E|_2 (XX 3R -l el U+1=N§>\: [1—e"3(”‘JA)+2(M—Jx)2]
X| > 3F3R —Nmo| - EJAEE‘* -1 :fdJ () : + fi
o WM 1me B30 T 2(u-3,2)
X ”T] “

The sums over the different eigenvalues of the coupling
matrix have been changed into integrals. Eaghhas a
weight in this integral given by(J,). The actual form for
this weight function will depend on the type of couplings. A
set of weight functions for ferromagnets in different cubic
lattices can be found in Ref3], and for spin glasses with

dsy dE long range interactions in Refgl5,7].
ZI DMH |f H ( ) XF{—Z Pk Bijzf,j In Ref. [15], where the spherical constraint used was the
ra . one in Eq.(35), the matrixB was different, namelyB;
=[1+eu(je)]d;—(1+€J\)d ;1. Then Eq.(46) reads

wheree=dr is the imaginary time step,the time index and
I,=3T;€e) is the field in the basis of eigenvectors bf.
CoIIectmg all terms we have

(SRT+38,-0)
+ el—‘;
3 S

where Bj=6;; —[1+eJ,—eu(j€)]& ;.1; here the prime

] erNma'e,u.(je), (43)

o m L
BF——BumonLN};,[In(eﬁ“ ef? ))— 2= J)’

stands for the fact thaf) ), ;=1 due to the trace structure 1 (B
of the partition function. We can now integrate over the spins = —ﬁﬂm( o= 5|+ mf dJp(3))) In| 2 sinh 5 (n
1 ) oL } (48)
Z:f D/.LEX[{)\Za | mlndeB + 2 Blj N Z(M—J)\)

confirming that the already found shift=o+1, see Eq.
(38), indeed brings the same value for the free energy.
At large temperatures these equations reduce to

(44)

+mo-ez (] e)] .
i

As usual, in thermodynamics, one-time quantities like 12
u(7) can be taken independent of We will employ this __ f A
simplification throughout the rest of this paper. The determi- BF=—puma+m [ dp(d\))InB(r—Jy)— 2( -J0’

nant and the matrix inversion can then be perforEd. (49)
Integrating overu by the saddle point method we obtain
22 T dJ,p(Jd )[ T r (50)
1 MeTy ‘T:f IVICUN — * .
__ = _a)— m=Ih o 2(u—d))?
BF=—moBu+ g [In(l a,) 2(1_3-)\)], (m—=J\
(45)

Apart from a factor two, these are exactly the equations of
the classical spherical model, see, e.g., R&f.This factor 2

wherea, =1—e€(n—J,). SendingM — we finally get arises because the momenta double the degrees of freedom,
see, e.g., Refl14]. Near the phase transition they are already
m E [ . ﬁri } approximate, but the transition stays within the same univer-
F=—Bumo+ IN(l—e A#7N)——— i
B Bumo+ > ( ) 2(1=3) sality class.
B A. Ferromagnetic couplings with transversal field
=—Bum| o+ > +mj dJ)\p(J)\){ In| 2 sml‘(—(,u in d dimensions

B2 In this section we will use the results given in the preced-
A)” A ] (46) ing section for the concrete case of ferromagnetism cou-
2(p=d) plings with uniform transversal field. The Hamiltonian in this
case differs from the one before E&9) in the fact that the
where in the last equality we have assumed that the cowzouplings only act in the direction while the external field
plings satisfy (IN)=,J,=0. The saddle point equation only acts in thex direction(we restrict ourselves therefore to
reads m=2). The free energy reads
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d9 B whereq=1/N(3Z' ;3Z_ ) is the ground state occupation.
BF=—Bu(2o+ 1)+f (27r)d|n 2 S'”"(E[#_J(k)]” can be evaluated from the saddle point equatiqgn (
—Jo)Jq=0. Thus whenu=J, the occupation of the ground
[ Bu BI? state can take nonzero values that can be determined using
+1In 2 S'”"(T T 2m (51 Eq. (55). Hence the ground state occupation is macroscopic
in the ordered phase.
and the saddle point equation A transversal field will lower the transition temperature.
Above a certain valu@'., the transition does not exist any-
d9k 1 1 r2 more, thusT=0,'=TI; is a quantum critical pointfor a
2(ct1)= j —— + — —, complete study over quantum phase transitions, see, e.g. Ref.
(2m)¢ 1—e Al 1 —e7Pr 242 [19]). We will now first study the classical critical point,

(52 wherel'=0.

where we have applied the changgs—J(k) and o -
1. Finite temperature phase transition

= dik For the dimensions where the phase transition exists, the
ddp(J\)= r 2m) (53 critical temperature is found by solving the equation
We choosel(k)~Jy—J’|k|* for |k|—0. In the case of d9k 1 1
short range couplings, for instance, one has2 since 2(0+ 1)=J’ — — + —
J(k)==J cosk~J(0)—2J|k|2. A long range coupling that (2m)? 1—e Feldo™ I 1 g™ Acdo
decays ad(r)~1/r—“ at larger givesx=a—d. (56)
As in the theory of Bose-Einstein condensation, the
saddle point equation fixes the dependencg @in tempera- The dependence of the chemical potential on the tempera-

ture. There should be a solution at &fyin order to have a ture near the transition is the first thing needed. To get it, we
real free energyu cannot be smaller than the maximum expand the saddle point equation around the critical point
value forJ(k). Therefore, we should investigate the conver-T=T_ + 7, u=J,+ du. The integral gives, up to first order
gence of the integral in the limjz— Jo. If the integral di-  in u andr

verges,8 must go to infinity beforew reachesl, in order to

satisfy the saddle point equation, so there exists far all

temperatures and no phase transition occurs. If the integrj” d’k 1

converges, however, there will be a range of temperatures in _ . (27)9 1— e~ Blr—3K)

which the saddle point as it stands cannot hold. This indi- J
cates that we have overlooked a macroscopic occupation of _ f” d’k
the ground state, as occurs in Bose-Einstein condensation. —m(2m)8
The relevant integral behaves as

1
1— e FclIo— (K]

P ) 1
= ddk 1 Oy 1 T (JO_J(k)) —om (JO_J(k))'
~ -1 2 .
ﬁw (2mm)9 1— e AlIo— ] (Zw)dfodkkd o ¥ 4TZsink? T AT sink? T,
(57
ch dkkd=17x (54)
0 The coefficient of6u is an integral that diverges fat

_ _ _ =<2x. This means that for these dimensions the leading term
WhereQd is the hypersurface ofa Sphel’edmilmenSIonS. At in the 51“’ expansion of Eq(57) has a power smaller than
k=0, this integral converges fal>x, hence there will be a one. For dimensiond>2x we will have o+ which will
phase transition for dimensions larger than lead to the mean-field exponentsy & therefore the upper

At low temperaturesy. may get stuck aly and the saddle  critical dimension. To study the system near the critical point
point equation as it is in Eq52) is no longer valid. This is  we subtract Eq(56) from the saddle point equation, a pro-

because, as in Bose-Einstein condensation calculations, th@dure that will cancel the zeroth order term in the expansion
ground state is not properly included in the integral. It shouldn  and sy, giving finally

be taken out of the sum before this one is converted to an
integral. This causes a change in the free energy by a factor

(m—Jp)q and the saddle point equation becomes Tmad<2><5'“(dixyx for x<d<2x,
d9 1 1 r?
2(o+ 1)=f - ot +— A0qTem
(2m)9 1—e Alr=I0l - —emhr 2y Ba<n= @ d [(d=x)7)’
dy/rzyeinl — 7
o (55 (2)°J xxsm( X )
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T~ag_ouIndu  for d=2x, whereay are the prefactors in E¢58) for the corresponding
dimension. In the ordered phageis stuck in its minimum
40,13 value (u=Jg) for any temperature. Henc€= Cy(u=Jo)
Ag=o2x= a—d/cz’ in the ordered phase. The critical exponerit the expected
(2m)°3""x one: a=(d—2x)/(d—x) for x<d<2x, and the mean-field
value @=0 holds ford>2x, which describes a jump in the
T~ag=p0u  for d>2x, specific heat.
Adding a small longitudinal fieldh, the free energy reads
. f d’ 1 . 1
Ag>ox=ale — d9% B
(2m)¢ Gl T 300 inr2| 22 F=—pBu2o+1 +J In Zsinl‘(— —-J(k )
sint? o7 sink? oT B Bu( ) (2 5 Lu=3(k)]
58
%9 +1In| 2sin Bu —'B—FZ—B—hZ (64)
where 2 2u 2(p—=Jo)
= d% Jo—JI(k) Jo o and the saddle point equation becomes
B P K P TS R I
sint? sink?| =— ddk 1 1 2
2T, 2T 2(o+ 1)=f + +—
(59) (2m) 91— A=) 1 e hr 242
is a finite, positive number. h2 65
The internal energy of the system reads Ao 65
gy 3% 2(:““_‘]0)2
d _ _
U=—u(20+1)+ j” dk w J(k)cot,{ﬁ[“ J(k)]} By differentiating the free energy with respecttdt can
= (2m)9¢ 2 2 be seen that the magnetization Ms,=h/(u—Jg). In the
) limit h—0, it is proportional to the square root of the occu-
" ﬁcot)—( 18_“) _ F_ (60) pation of the ground state, §inceAby comparing ®%) with
2 2 2 Eq. (55) one findsq=(1/N)(3Z! ;32_,)=M2/2. The factor

% appears because it is actually the real part of the spin field
Yhe one macroscopically occupied and a half term appears in
the change Eq(6). From Eg.(65), we can approach the

The specific heat close to the transition from the parama
netic side can be written as

X transition by sending the longitudinal field to zero at the
Co+ —dClT(ZX_d)/(d_X) for x<<d<2x critical temperature. The saddle point equation now accounts
C~ 3g<2x(d=X) for the dependence of the chemical potential on the field. The
Co C. for d>2 calculation is similar, yielding finally
or X
0 ad>2X ! Q 12
(61 h~ 2Q4Tem PR
d—x
where (27)93" 9 sin( m ))
17 d%  [p—d(K)] p for x<d<2x,
CTar2) L 2me eI ik
™M ginr| L) ar2sing| £ 12
2T 2T Qch 3/2
(62) h~ m'ﬂ 5/,L for d=2X,
= d% [1 —J(k
C1=—20'—1+J’ ils cotr{'u—()} h~ dk 1
cSin Z—TC
pm—J(k) 1 o 1 1/2
_4Tsinh2(,_L—J(k) 3 coth o7 fr| e for d>2¢ (66)
2T 2Tcsmhz(2—_|_C
2
_Lﬁ_r_ (63 Therefore the critical exponend is given by §=(d

+x)/(d—x) for dimensionsx<<d<2x and the mean-field

4Tsinte| 2= 2
2T value 6= 3 is recovered fod>2x. From the magnetization,
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the susceptibility follows ag~1/5u. Therefore we findy  group argumentfl6]. The critical behavior is controlled by
=x/(d—x) for x<d<2x and y=1 for d>2x. In the or- a classical fixed point, therefore quantum dynamics does not
dered phase, the expansion of the saddle point equation, Eplay a qualitatively new role. Hence, the results are the same

(65), for T near the transition yields as in the classical spherical modé&] or other models with
; different quantum dynamics considered at finite temperatures
Miwiz Jw ddk JO—J_(k) Jo _ [13].
2T¢| J=m (2m)° sinhz(w) sinhz(i) 2. T=0 quantum phase transition
2Te ZTC(67) In this section we analyze the behavior of the system at

T=0. As it can be seen from E¢2), when the transversal
Therefore for all dimensions where the phase transitiorfield increases, the temperature of the transition decreases till
exists, one hag=3. it reaches zero. This defines a quantum critical p@int 0
For other critical exponents the correlation functionat '=T.. In order to study it, an analogous procedure as
is needed. It can be computed adding the right sourcéefore should be followed. Ak=0 everything happens to be

term to the Hamiltonian,3, (g, (7)) +9¥(r)2,) and rather simple. The free energy reduces to
differentiating

FZ
G\, g\, 7,) FZ_ZO',LL—ﬂ. (72
=(T[2§T(rq)iz,(rr)]> The saddle point equation turns out to be
=0\ ” 49 ,g)‘ ' 20= F—z in the paramagnetic phase
M ogk (r)dan (1) Zo lge_gg 242 '
(68) r2
whereT stands for the time ordered produg(g*,qg) is the 20= Eﬁ +q in the ferromagnetic phase. (73)

partition function of the Hamiltonian including the source
terms andZ, is the partition function without them. This

_1p2 :
procedure is carefully explained in RgL7] giving the result where g=3M; is the occupation of the ground state for

small transversal fields. Since the temperature vanishes,
G(k,7)=G(k, 7k,0) quantum fluctuations, controlled By, give rise to the phase
transition. Therefore, the parameter that should be used to
=e™ IO g(r— ) (1+n)+ 60(— 7+ m)n}, (69  control the transition is the transversal field and not the tem-
perature. Then the proper analog of the specific heat will be
where ¢ is a Heaviside step function angl is a positive  proportional to the second derivative of the free energy with

infinitesimal that indicates that the second term is the relrespect to the source of fluctuations, the transversal field.
evant one atr=0. Furthermore,

1 70 c 9°F 1 . I ou 74
n,= = = — — _—
< epo—1 Parz w2l

is the boson occupation probability, with= u— J(k). Fou- As before, we must know the dependencedsaf (u=J,

rier transforming this last result to Matsubara frequencies wer Su) on the distance to the critical poind[’) in the para-
get magnetic phase. In this problem, the lower critical dimension

is d;c=0, since ford>0 the volume elementd®k is finite.

1 k—0 -1 The upper critical dimension will bd,.=x. Between those
G(k,w,) = 30— n—iw Tk o+ ian two dimensions, &.d<x, the analysis of the saddle point

(71) equation yields that the produ@du goes to finite, strictly
positive value forT—0. This leads to a scaling fromu
So when we approach the critical point, we can see fron?l'/?. On theT=0 line, the analog of the specific heat
this equation thag e Su, then using Eq(58) we find that  9oes continuously from the paramagnetic vaulg~
v=1/(d—x) for dimensionsx<d<2x and v=1/x for d = —1/o+T/IZST "D to the simple ferromagnetic value
>2x. p=2—x due to the fact that the couplings depend onCr= —1/J,. This implies thate= (d—x)/d. Adding a lon-
k*, and z=x because in the denominatar appears as a ditudinal field we find the dependencéuoc sh?X/(d4+2)
linear term. Bothy andz are valid for any dimension. bringing 6= (d+2x)/d and y=d/x. Subtracting the saddle
This finally gives all the critical exponents of this finite point equation near the transition in the ferromagnetic phase
temperature phase transition, which are exactly the same &om the one at the transition, we ggt=(I'>—T2)/2J3,
in the classical model. This is expected from renormalizatiorwhich in the lowest order giveMﬁmﬁF and therefore, as

056119-10



QUANTUM SPHERICAL SPIN MODELS PHYSICAL REVIEW E59, 056119 (2004

always, 8=3%. Equation(71) can be used here once it is spherical constraint directly to the Hamiltonian. The proce-
transformed to real frequencidsy,,= w+i#7. Then we find dure is as follows: first the couplings matrix is diagonalized
v=1/d, n=2—-x, andz=x. by inverting the lattice as done before in E¢0) and then

For dimensiongi>X, from Egs.(74) and(73), it can be  the S's are shifted to absorb the field term. This finally gives
seen that the analog of the specific heat has a jump discon-
tinuity, implying a=0.

- Msre st L5 3
Cr=0 in the paramagnetic phase, H= 2;* [(’“_ ?) EKEA_Z(EXZ*WENE*)
ry

-1 — = —Nmuo. (77

Cer—O in the ferromagnetic phase.  (75) 2(p=3)

where the minus sign comes from the fact that The0 free ~ Performing the Bogoliubov transformation it turns into
energy, Eq.(72), is negative. Adding a small longitudinal
field as before, we find the critical exponeéit3, since

M,och/Su and Such?® at T',. For the susceptibility, we it r2
find y=1 sinceyxdu 1«1 As before we find3=3 H:; V(= dy) @y e — 2(—1J,) —Nmuo,
and sincedux=dsl’ we find v=1/X, »=2-—x and z=X. (78)

Hence, ford>x, we find the mean-field values. This occurs
because the quantum critical point oflalimensional model
shares the critical exponents of a classical critical point of
(d+2-dimensional model, as it was shown by general renor-
malization group argumenf{4.6].

ANhICh is a Hamiltonian analogous to E@9). So it can be
diagonalized as explained, giving finally

1
V. HAMILTONIANS INVOLVING SPINS BUT NOT e m( . +mJ' 43 (]
THEIR MOMENTA A Pu 2 AP

In this section we are going to extend the analysis of Sec.
IV to a Hamiltonian which only depends on the spin opera-

tors S and not on the momentH. When going from the

classical to the quantum model, we have to keep in mind thaj hare we have put back the factorstanding for the number

the Hamiltonian must be Hermitian. To be precise, theyt components of the vector spin. The saddle point equation
Hamiltonian we will deal with is is obtained as

X1In

(B BIS
2 S'”"(E\/M(M_Jx)”_ m} (79

1 A a -
—5 2 %SS-2 I'§ (76)
b ' coth—\/ m(p—Jy)

| —
o+ 5= dJp( x){
i om oA 2 AVp(p—J\
with real valuedJ;; andl’; and whereS=(2"+3)/\2 is the

real part of the former spin field. Hence, the Hamiltonian ,BFf
does not involve momenta, but the spherical constraint does, +m :

see Eq(16). This changes the symmetry of the problem from e

invariance under unitary transformations to orthogonal ones.

In terms of boson creation and annihilation operators the At large temperatures these equations reduce to
coupling term for symmetric interactiond; = J;; , is propor-

tional toJij(ZEiTE,- + 33 +2iTEjT), where we can notice the
symmetry of the problem. We will see that this model repro-
duces the Q) quantum rotor model.

We can get the partition function in many ways. A similar )
procedure using discrete imaginary time path integrals can BT’ 81)
be done as before. This gives us many problems due to the 2(,u IR
fact that creation and annihilation operators are projected on
different time steps which is a lengthy and tedious procedure.

However, the form of the Hamiltonian makes it suitable to T 2

apply a Bogoliubov transformatiaffior details see, e.g., Ref. f dJ,p(J ) ALY

[20]). Due to that, we get the same Hamiltonian as before but MR Z(M J)\) 2(u—J,)2
with different coefficients. In order to do so, we must add the (82

(80)

pF=—pum| o+ 5

J deP(Jx)[mﬁ\/M(M )
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These equations are very similar to the standard ones of 20T
the classical spherical modeglp to a factor 2), see E¢49), Ageoy=0 c
but they are only identical where they should be, namely, at (2w)dJ’gxsin( (d_x)”)
large T, where alsqu~T is very large, see also Rg8].
A. Ferromagnetic couplings in the presence ZQdTg
of a transversal field T~ayg—p O INdu, ayg_,y=a—————— for d=2x
(2m)93"?x

Analyzing the phase transition of the Hamiltonian that
does not depend on the momenta is analogous to the previ-
ous case. We begin again by choosing the coupling term in T~ag-0u, for d>2x
the z direction and the external field in theand we assume
ferromagnetic couplings. The saddle point equation gives a
phase transition via a macroscopic occupation of the ground
state, which in the present case is a bit more complicated. 8g>2x=«
The critical exponents are different, due to the fact that the
symmetries of the system have changed. The free energy

if d%  2u—J3(k)
I (2m)? 2ypu(pn—3(k))

reads Xcot}{g ulpu—I(K)] +c0tl’< ﬁ'u) ,
=Jy
BF=—Bu(20+1) (86)
d%k
+f In Zsin)‘(éx/,u[,u—\](k)]” where
(2m)¢ 2
2 - d% 2Jo—J(k)
+In Zsim('%u”—'i— (83 a= J °
# - (2m)® (¢JdJo—J<m1)
2sintff| —
and the saddle point equation 2Te
Jo o
T 67
d%  2p—J3(K) }_{,8 } . ( o)
40'+2=f J J(k sink?| —
(2m)0 2 FM 3 mlpu—3(k)] 2T,
2 The internal energy of the system reads
+c0tl’< 'B'u) — (84) » Y
U=—u(20+1)
We now analyze this model in detail.
7 d% Vulp—dK)] B
. iy +f q th S Vulpe—JI(K)]
1. Finite temperature phase transition 7w (2) 2 2
Following the same procedure as before we can find that ,u Bu F2
the transition exists fod>x and that the upper critical di- 5 ?'( (88

mension isd=2x. The critical temperature is the solution of

The specific heat has the same expression as inf@g.
whereay now correspond to the prefactors of E§6) and
with coefficients

B d 2.JO J(k) r{ﬁ }

) ﬁmﬂ - C_lfwd% AVEN(S)
coth ——|. 0=,
2 4720 =7 (2m)¢ Vulp=3(k)]
sink? 7
The dependence of the chemical potential in the tempera-
ture near the classical critical point reads w?
+ (89
)73
A/ AT?sint?| —
T~ a4 09T for x<d<2x, 2T
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+ dik 2u—Jd(k) S are not the variables that diagonalize the Hamiltonian in

Eq. (78). We must writeS in terms of & and then compute
the correlations. This brings

Ci=—(20+1)+
el fwzﬂ)“ im0

J(k)
B G(k, 7/K,0) = ———={nycosti 7\ u[ u—I(K)1]
><cotr<§\/#[ﬂ—\1(k)]) ANp[p—IK)]
+ e Nulp=d(D (93
2u—J(k)
Vil p=3(K)] where
8T sintf| ———
2T
1
= 94)
1 M M Ny V‘,*— ’ (
2 2T m
ATsink| — o
2T which in frequency space reads
This is analogous to the previous model and gives the Ik
same exponente=(d—2x)/(d—x) for x<d<2x and « G(k,iwy) = (k) . (95)
=0 for d>2x. Adding a small magnetic field longitudinal to 2 w2— u[ w—I(k)]]

the couplings, the free energy becomes

dimensionsx<d<2x and v=1/x for d>2x. Since cou-
J ddk plings appear in the same way as before we also get the same
+ In
(2m)°
5 5 thereforez=x/2. Here we see how the model reproduces the
il 2 sinl‘(ﬁ'u” Br Bh critical exponents of the rotor model as in Rf3] bringing

When approaching the critical point we find th&at*
2 sinl‘(g\/u[,u—\](k)]” value, n=2—x for all dimensions.. The difference appears
- (97 : . - o .
2 2 2(m—Jp) thus a different behavior at thE=0 quantum critical point

BF=—Bu(20+1) «du as before and we get the same valuel1/(d—x) for
in the dynamical critical exponent. Hees, appears squared,
from the model of Sec. IV A 2.

therefore the magnetization M ,=h/(u—Jg), which is as

before the square root of the occupation of the ground state

q:1/N<§2(|k|=0)2>= M2. The saddle point equation is  In this case the'=0 phase transition is more interesting

now due to the fact that the dynamical critical exponeatx/2 is
smaller tharnz=x of the preceding section. The free energy
reads

2. T=0 quantum phase transition

= di%  2u—J(k)

= (2m)® 2Juln—3(K)]

2(20+1)=

(27)8 2 2 2u

d’%k Vulp—3(1 w7

F=—/J,(20'+1)+J

B Bu\ T?
X cot E\/M[M—J(k)] +coth —-|+ — (96)
o
He and the saddle point is set by
+—. (92
(n=J0)?

dk  2u—J(k I?
4a+1:f e GO A

With all these and following the algebra of the preceding (2m® 2Julp—3(K)] wu?

section one finds the same critical exponents for the magne-

tization for the same dimensions since we are in the classicgle find that the transition exists for dimensions larger than

critical point. o d>x/2 and d=3x/2 is the upper critical dimension. The
The time ordered correlation functiofTSy(7)S? (0)) chemical potential depends on the source of fluctuations

differs from the previous one, E¢9), since in this case the SI'=I'-T. as
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ST~a F) 2d—x/2x, 3x
d=3x20K 5F~ad>3x,25,u, for d>7
r 3 d r d ) ) |
e T2 )k x| a2 Z_Fc_f dk [ !
B o (2dxm 2 2 21 3 (2m) [ V3o[ 30— I(K)]
23— J(k)
ST ~ay_ 320 I8 - . 3/2] : (98)
d=3x20p INow, AHIo[Jo—I(K) T}
Q 352 3 where thel™’s on the right hand side of the first equality are
ad*3x/2:—d 0 r d= _X, Euler'sT" functions. The specific hegsee Eq(74)] coming
- (27)9 8xJ'37 2 from the disordered region will behave as
__1_ 4FC ST —2d+3x/2d—x for i<d<§
Jo  agoaypdf2d—x) 2 2
Cr= ) -1 (99
—1+21“C 2I'¢ ‘ d>3x
—+—|—=—a or -
‘]0 Jg Jg d>3x/2 2
|
whereay is the prefactor in Eq(98) for the proper dimen- VI. GENERALIZATION AND MAPPING
sion. Coming from the ordered region, converseB~ FROM HEISENBERG SPINS
—1/Jy. Thereforea=(2d—3x)/(2d—x) for x/2<d<3x/2 . . . . e
anda=0 for d>3x/2. In this section we generalize the two preceding Hamilto

- . nians and we map the Heisenberg model onto the spherical
The dependence of a small longitudinal field on themodel. In a more compact way, we can write the former

chemical potential, in case the transversal field is at its Cr't"HamiItonians in absence of external field as
cal value, reads

— s1s L Biirarer, ¢ g
112 (2d+3x)/4x X 3X H__iz Aijzizﬁ?[zizi tE)). o1
h~ayZs,,0u for §<d<7, !

If the matricesA;; and B;; can be diagonalized simulta-
neously, the techniques from preceding sections can be used.
3x The free energy reads

h~[ag_axln su]?6u%? for d= —

2
1) m BA,
. BF=—pBum 0'+§ +N; [T
21?2 3x
~ ¢ 312 ity
h ( 3 Ag>3x2| OM for d 5 (100 +In ZSin"(g‘/(M_Ax)z_sz)Hv (102

From these equations and the ones for the magnetizationhere . satisfies the saddle point equation
and the susceptibility we can find that (2d+ 3x)/(2d
—X) and y=2x/(2d—x) for x/2<d<3x/2, while §=3 and
y=1 for d>3x/2. As before=1/2 for every dimension. 1
For the correlation function the calculation is the same as in o+ > =
the finite temperature case, projected into real time, the ex-
ponents arer=2/(2d—x) for dimensions/2<d<3x/2 and

v=1/x above the critical dimensiom=2—x andz=x/2 for % cot E \ /(M—A )2—B2}. (103
all dimensions. 2 » »
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The coefficientB;; in Eqg. (101 is responsible for a N oo B Q2
change in the symmetries of the problemBlf is zero, the AF=1 ; In(1— e~ Alr=QII) 4 J(k=0)—BSuN
action is symmetric under unitary transformations while if it (108
is nonzero the symmetry is reduced to orthogonal.
The mapping from Heisenberg spins comes as followsand the saddle point equations are
The Hamiltonian can be written in terms of Schwinger
bosong 20]. The Schwinger boson transformation for QW 1
spins reads = _
N ; (109
S*=ala,, S =aja,, S=3i(ala;—aja,). L
(104 52 An=Qi(k=0) (110
K

This can be generalized to SV} spins and expand
around the largeV limit [21]. In a path integral formalism
for ferromagnetic interactions

wheren, is the boson occupation number, Eg0), with »
= u—QJ(k). Subtracting the two saddle point equations we
can see that for larg8 and smallT we can approximat€
~ S recovering then the spherical model E¢$6) and (47)
for zero external field or Eq(102 and (103 for B;;=0.
3 > JiiS-S§—— E Jij @ m@im@injn From this approach we thus see that the free energy of a
g SU(N) Heisenberg ferromagnet for largé is formally the
(109 same as the quantum spherical model proposed if3@yin
the thermodynamic limit, so when the radius of the hyper-
wherei,j represent lattice sites amd,n represent the boson sphere that defines the modél in Eq. (16)] is also very
flavor. The Hilbert space spanned by Schwinger bosons ifarge. Thus the largd/ limit is somehow analogous to Stan-
much larger than the one given by Heisenberg spins. Thiy’s large spin dimensionality limit.
constraint needed to restrict it to the physical Hilbert space is |n the case of an SW) antiferromagnet the procedure is
that the number of Schwinger bosons at each site has to hfore or less the same but the symmetries are different. The
kept fixed=n,,=\S. This is inserted into the formalism in lattice is divided in two sublatticed,B. In one of the sub-
the same way as we have done it with the spherical conlattices a spin rotation is performed that allows us to write
straint, a Lagrange multipliex;(7) appears. The biquadratic the Hamiltonian in the fornj21]
terms can be decoupled by a Hubbard-Stratonovich transfor-
mation(see, e.g., Ref17]). In the case of a ferromagnet, the 1 1
transformation at each time step and for each flavor in the —
path integral reads P H=3 2 0SS - 2N |2 Ji A &im oo
(111

Performing a Hubbard-Stratonovich transformation as be-
p{ E Jja aia] al] fore, the Hamiltonian with the Schwinger boson constraint in
the mean-field approximation finally reads

N
“f ll_J[ dQj; exp{% .2, QijJij Qji

AFM B Q t 4t
M 2 /'La|malm ”Em‘]ij(aimajm-i_aimajm)

E Qlj‘]lj Jai]y (106)

N 2
+TZ Jij— MNSu. (112
i

where a fieldQ;;(7) has been generated. In the mean-field o
approximation, one put®;;(7)=Q and u;(7)= . Hence, It is important to stress that here the SUJ symmetry

one gets up to a non interesting constant has_been reduced to a residualNO). The free energy per
particle reads

NQ? N 1
HFNI B(M 2 /~La|ma|m QE ‘Jljajmalm 2 ;J: Jij ,BF=N§|(: |n(2Sim‘{g\/ﬂz—Qsz(k)D—ﬂ%S-{— E)M
~ NS, (109 BAQ?
+

J(k=0) (113

where we have already added the Schwinger boson con-
straint. The free energy per particle reads and the saddle point equations read
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In the formulation of the model, the strict spherical con-
1 ” 1 1 ) _ :
— E —_— | N+ = | =S+ = (114 straint has been used where fluctuations on the particle num-
N & u?-0Q232%k) 2 ber are not allowed. The constraint is added to the action via
a Lagrange multiplier. The strict approach has to be aban-
doned when we integrate this Lagrange multiplier using the
1 J?(k)Q 1 saddle point approximation. In this step, we automatically
N 2 | Nt 5|=QJIk=0), (119 allow fluctuations on the particle number and therefore the
N Ju?=Q2(g L 2

constraint ends being satisfied only in average. These effects
are immaterial in the considered thermodynamic limit, but do
whereny is, Eq. (70), for w=u?—Q?%J?(k). Subtracting enter finite size corrections.
the first equation timeg from the second time® we get The analogy of the two Hamiltonians studied here with
Heisenberg models in the large spin dimensionality limit has
a drawback. Both models have different coupling to the ex-
—Q2J(k=0). ternal field. In spherical models it comes in linearly, as a
source term. No analog has been found for this in the large
(116  spin dimensionality limit of the Heisenberg model where
each spin contribution brings a bilinear term in Schwinger
The first term is proportional t@, so for very small tem- bosons.
peratures and very largs, near the transition wherg Another approach could have been to start directly from
~QJ(k=0), we can approximatéQ~S+3. Then Egs. the SU() Heisenberg model and to do the already stated
(113 and (114 are analogous to Eq$102 and (103 for  large NV limit to get to a solvable model. In order to have a
Ajj=0. This will have the same critical behavior as thetransversal field that competes with the ordering of the inter-
model in Sec. V due to the fact that it comes from the termacting spins one could introduce anisotropy in the model. A
coti Vu—J(K)]/Vu—J(k) which also appears here due to study of this type has been done for two dimensions by

1 1 1
NS BT me ] =u 545

the equality 21+ 1=cotH \/(u+QJ(k))(u—QJI(k))]. Timm et al. [22] in terms of Schwinger bosons and in terms
of Holstein-Primakoff bosons by Kagane al.[23] for any
VII. CONCLUSION dimension. The anisotropy term brings a residual spin sym-

metry describing Ising oKY spins. The phase transition de-

In this paper we have explained a way of working with pends on the type of this residual symmetry; an additional
quantum spherical spin models using path integrals and caransversal field decreases the transition temperature towards
herent states. Some examples of the use of this formalism agro giving a quantum critical point, result qualitatively re-
given, Egs.(39) and(76), and their critical phenomena are produced by our model.
studied. We propose a comparison with 31J( Heisenberg In spite of the lack of direct interpretation of the source
models that gives a geometrical interpretation to the quanturerm in the mapping from Heisenberg spins, the phase dia-
spherical spins. The spherical constraint we use, fixes thgram follows the expected behavior for a spin model with an
number of spin quantél, Eq. (16); in other words, it fixes ~e€xternal transversal field. The critical exponents for the clas-
sical and the quantum model are the ones expected by renor-
) . -, ) malization group arguments. The quantum critical point be-
the one of its conjugate momentuid”. The usual VErsion hayes as the classical one for dimensi@ng an= dejasst 2
of the quantum spherical model, on the contrary, involvesyherez is the dynamical critical exponent.
only the spin parS. The presence of momenta in the spheri- Many other models have a clear analog with this one.
cal constraint allows the Hamiltonian to have no kinetic Sachdev and BhaltP4] represented pairs of spins in a square
term, since it can be induced by the constraint, a fact that calattice with a bond representation; they form either a singlet
change the symmetries of the problem, and due to that, ther a triplet. These elements can be written down in terms of
critical behavior. the canonical “Schwinger boson” representation of the gen-

The Hamiltonian in Eq(39) yields an action invariant erators of SU(2% SU(2)=S0O(4). Since a couple of spins
under unitary transformations. It brings formally the sameeither form a singlet or a triplet, a constraint must be added
free energy as a SW() Heisenberg ferromagnet in the limit sTs+2at£ta= 1, wheres represents the singlet annihilation
of large V. The other Hamiltonian studied, E(/6), brings  operator, and, represents a triplet annihilation operator in
an action invariant under orthogonal transformations; it giveshe « direction. Sachdev and Bhatt study using this formal-
the same critical behavior as an SU) Heisenberg antifer- ism systems with interactions up to third nearest neighbors.
romagnet in the limit of largéV, which is, in its turn, analo- They make the further assumption that the singlet part con-
gous to an Q) nonlinearc model or quantum rotor model denses and replace tlseoperator by its mean field value
[13,19. The main difference between these models lies insy=s, and solve the rest for the triplets. The final Hamil-
the dynamical critical exponerst which brings a different tonian is very close to our Eq76), or, better, the generali-
behavior at the quantum critical point. Classical critical phe-zation of our model Eq(101) with the proper couplings. A
nomena are, as expected, the same in both models and equaihor difference is the role played by the nonconstant mean
to those of the classical spherical model. value of the singlet part.

both the average length square of the spin operéforand
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