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Stable method for the calculation of partition functions in the superconfiguration approach
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A general method for the calculation of the partition function of a canonical ensemble of noninteracting
bound electrons is presented. It consists in a doubly recursive procedure with respect to the number of electrons
and the number of orbitals. Contrary to existing approaches, this recursion relation contains no alternate
summation of positive and negative numbers, which was the main source of numerical uncertainties. It is
accompanied with a normalization of partition function through the determination of a free parameter consis-
tent with the zeroth-order saddle-point approximation. The recursion relation allows one to calculate accurately
partition functions for ions with a large number of orbitals, and is therefore important for calculations relying
on the superconfiguration approximation.
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I. INTRODUCTION vious recursion relations originally proposed. The formalism
) ] introduces a normalization factor in the calculation of parti-
In hot and dense plasmas of intermediate or fHgéle-  jon functions, and a translation of the energies of orbitals
ment, atomic-physics calculations using a detailedyysige a supershell that arise from a variational principle in a
configuration-accounting method may become CompUtat'ongrand-canonical ensemble.
ally proh|b|'§|ve due to the huge number of .c_onflguratlons t0” |n Sec. Il, the standard methods of calculation of ionic
be taken into account. The supertransition-an@TA)  partition functions are recalled and analyzed. In Sec. IIl, the
method is a rather powerful approa¢h] that permits to  goyply recursive approach is presented, as well as the varia-
model these situations in a statistical framework by gatheringiq51 choice for the scaling of energies and of the normal-
the numerous configurations into a reduced number of SUPe[zation factor, which is shown to be consistent with the
configurations. A superconfiguration consists of supershells,e(oth-order saddle-point evaluation of the integral represen-
i.e., groups of ordinary orbitalgn¢ subshellg which are  iation of the partition function.
populated in all possible ways consistent with the Pauli €x- |y sec. |V, numerical limitations of existing approaches
clusion principle. Average atomic variablésuch as energy  anq of our method are tested by calculating ratios of partition
and width of the transition arrays, shell occupation,)&tan  fynctions for a large supershell. Examples are shown for a
be deduced from the computation of the partition fU”Ct'OnSsupershell representing an ion charge. Average populations

of the supershells. . _ of orbitals are also presented and compared with approxi-
In the STA method, partition functions are calculated Us-5te values.

ing recursion relations which can involve alternate summa-
tion of large negative and positive numbers. In case of large
supershells, this results in a strong numerical instability that
can severely limit the range of applicability of the STA

model, in particular, in the low temperature regime. An im-  Throughout this paper, emphasis is put on the evaluation
provement consisting of a recursion relation on ratios of paryy average ionic variablegsuch as average population of
tition functions has been proposed receri@y, but it still — gpyitals and their variances in each jomwhich can be ob-
contains alternate summations. In RE] an approximate tained from the partition functions @olatedions.

treatment based on a saddle-point technique is proposed

when the numerical instabilities occur.

We propose a stable method to calculate partition func-
tions of superconfigurations without any restriction on ther-  The partition functionZ, of a canonicalQ-electron en-
modynamic conditions and on the dimension of the supersemble may be written in the general form as
shell. Our method represents a considerable progress for
applications of the STA theory, since it allows one to perform Zo=TreP =3 (aePa)= 3 Pk, (1)
fast and precise calculations in any case, even for large su- a(@Q) a(Q)
pershells. The method, based on recursion relations with r€;here o runs over all possibl€®-electron quantum states of
spect to the number of electrons and the number of orbitalggig) energyE,, H is the Hamiltonian of the system taking
is free of the numerical problems encountered with the prejniq accounta all relevant interaction processes, ad

=1/(kgT) wherekg is the Boltzmann constant afdthe elec-

tron temperature. For numerical reasons due to the evalua-
*Electronic address: gilleron@bruyeres.cea.fr tion of exponential terms, it is necessary to introduce a free
TElectronic address: jean-christophe.pain@cea.fr parameter\ in order to scale the energies. Therefore, the

Il. THE PARTITION FUNCTION OF A Q-ELECTRON
SYSTEM

A. Definitions
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wp) =11
uQ — 2 e BELNQ) = e/”QZQ, 2) i=1
«Q)

(8)

partition function which is effectively calculated is N <9i>
pi/

Where(g‘i):gi!/pi!(gi—pi)! is the binomial coefficient.
which is simply proportional tc€q. The introduction of is The mean Hartree-Fock energy of a configuration can be
a Legendre transformation which is similar to the changeobtained by evaluating the nonspherical part of the Hamil-
from canonical to grand-canonical ensemble, but one has t@nian. The energy of a configuration is then given by
keep in mind that the number of electrons in the system is N NN
fixed and therefore the parameteris not areal chemical o 1 .,
potential with physical meanings. E(p) = ;l pici) + E;l 2 pipir = &)1, 9

The simplest approach for atomic-physics calculations of - e
a many-electron system is the nonrelativistic central-fieldyhere(i) and(i,i’) are the one- and two-electron energies
model [3]. Any given electron moves independently of the evaluated with basis functions of the central-field Hamil-
others in a central potential that represents the electrostatignian. It is possible to calculaté, with the expression of
field of the nucleus and the spherically averaged mutual Couhe energy of a configuration given by E§). However, the
lomb repulsions of the other electrons. This zeroth—orde@uadratic terms with respect to the populations prevent any

Hamiltonian allows one to construQ-electron wave func-  factorization of the partition functions, as it will be shown in
tions |a) from the one-electron spin orbltalai&meirnsﬂ) in the following section.

the form of determinantal functions, whereBg is simply
the sum of the energies of each electron which do not depend

. B. Closed form evaluation using recursion relations
on magnetic quantum numbemgi andmsi. Therefore, quan-

tum states of the system having the enefigycan be repre-  Despite its apparent simplicity, the direct use of &),
sented by groups of degeneratgléctron configuratiorthat ~ With or without corrections to the energies due to electro-
are noted, static interactions, is often intractable due to the huge num-
ber of configurations to be summed up. As an example, the
N number of configurations with 20 electrons distributed
(Nl )PNtp)P2 .. ()P with > p=Q. (3)  among orbitals 4 to 59 is roughly equal to 0.38 10° (see
i=1 Sec. Il D).

Avoiding a direct calculation of the partition function of a
many-particle system is a classical problem of statistical
physics. The key point is the ability to provide an exact
generating function from which one can derive simple recur-
sion relations. Such closed form formula can be found, usu-
ally, only in noninteracting systems. Indeed, the factorization
of Eq. (4) requires that the energy of a configuration be a
linear function of the populations, as in E). We will

Ug= E e BB @) adopt this approximatipn from now. However, itlcan pe noted
=0 that quadratic terms W|th respect to the populat|0.ns in(B8g.
can be averaged following the procedure described by Bar-
where the sum runs over gl configurations containin@  Shalomet al. in Ref. [1]. This allows one to take into ac-
electrons; this constraint is notég==,p;=Q. The func-  count, approximately, the interaction effects between elec-
tion Q(p) is the thermodynamic potential associated to thetrons.

A spin orbital with a givem¢ value is simply calledr-
bital, p; is the populationof the ith orbital allowed by the
Pauli exclusion principle and varies from 0 gp=2(2¢;+1),
and N is the number of orbitals. A configuration is com-
pletely defined by the sqi of populations of theN given
orbitals. Now, the partition function in Eq2) can be ex-
pressed as a sum over configurational states,

electron configuratiop and reads Using classical results from the independent-electron
model [4,5], partition functionl{y can be recursively built
Qp) =EQ(p) - TIP) - \Q. (5  from
The total energy of the configuration is defined, in the 12
zeroth-order central-field approximation, by Uy(B) = 5k21 (= D* 2 (kB)UG-(B), (10)
EO(p) :§ oie, ©6) \t/)v;lereul(ﬁ) is the single-electron partition function defined
i=1
N
}/_vhereei is the energy of orbitail.aThe entropy _ternﬁ(_ﬁ) is U(B) =S gePa. (11)
inked to the total degeneradi/(p) of the configuration by i
the formula ) . o .
This recursion relation is the central point of the STA ap-
S(p) = kg INW(P), (7) proach, published by Bar-Shaloet al. in Ref. [1], which
allows us to calculate all average variables of the system.
with The strength of Eq(10) stems from the fact that onl®)
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recursive steps are required in order to evaluate the partition One of the consequences of criterid?®) is the impossi-
function of aQ-electron ion, starting frortdo=1 and propa- bility to perform statistical calculations on a set of orbitals
gating up tol/,. However, an algorithm based on Eq§0)  for which energies are spread out on a scale larger than
and(11) is usually numerically unstable without special care ~kgT. Moreover, the condition becomes extremely severe as
for the exponential terms. Indeed the evaluation of @4)  the temperature decreases, and this explains the difficulties to
may in some cases exceed the precision of the processperform STA calculations at low temperatures. In the follow-
(“overflow™) or rapidly decrease to zer@underflow”), re-  ing section, we present an approach allowing to encompass
sulting in a dramatic loss of precision. The situation may gethese limitations.

worse if one has in Eq10) an alternate summation of large

positive and negative terms. These problems can be avoided

by requiring that the maximum value of the argument oflll- A DIRECT AND STABLE APPROACH TO CALCULATE

exponential terms be of the order of unity, THE PARTITION FUNCTION
_ A. Derivation of a recursion relation
le =N\Q=kgT 0Oie[1,N]. (12 _ ) _

Numerical errors due to the summation of alternate-sign
This set of inequalities defines, roughly, the domain of stanumbers is one of the major source of instability in the re-
bility of Eq. (10). Therefore, we see that the introduction of cursion relationg10) and(13). These problems appear when
the free parametex is essential since it can be adjusted inthe consecutive terms in the recursion relation become com-
order to reach a numerical stability. As will be shown further,parable to round-off errors. A good way to eliminate this
an optima| value of the parametercan be chosen according problem is to derive a recursion relation that consists in add-
to a simple variational principle. Moreover, the stability of ing only positive numbers. For that purpose, we have derived
relation (10) can be severely limited if the number of elec- & recursion relation with respect to the number of electrons

tronsQ in the system is too high. and orbitals in the system. The derivation of this recursion
Blenskiet al. have proposed in Ref6] to apply Eq.(10) ~ relation is now detailed. _
for the “holes”(complement of the electropghen the num- The constraintp|=Q in Eq. (4) can be removed if, at the

ber of electrons is bigger tha®/2, G being the total degen- same time, the following identit{g] is inserted in the rela-
eracy of a supershe{fsummation of degeneracies of all or- tion
bitals). The use ofelectron-holeformalism presents two -

iTt+ag

main advantages. First of all, numerical instabilities are con- 1 f dtet

doL=5 - (15

siderably reduced, because when valuesifgf, become i
huge(i.e., whenk is close toG/2), one prefers reasoning on

holes rather than electrons which allows us to deal with reagshere L =Q-|f| and ay is an arbitrary real parameter. This
sonably large numbers. The second advantage of this metheglows us to factorize Eq4) in the form

is that it allows a reduction in calculation time. This can be

—imtag

explained by the fact that calculation time grows witand 1 (i N g
becomes particularly important nele=G/2. Uo==— dte?] [ > (gs)(xse—t)ps, (16)
Wilson and Chen proposed recenjj to reformulate Eq. 27 Cizeaq =1pgs0 \Ps
(10) into a recursion relation over ratios of consecutive par-
tition functions using the notatioiX;=e A&, By settingz=e™, the integra-
_ tion in the complex plane is performed around a closed circle
Ro(B) Q ) (k+1)B) 1 of radiuse™@0, surrounding the pole &=0. The last expres-
QR _ 1+ (-] =2 A , sion becomes
R1(B) i=2 k1 RikB)  Ro(B)
13 1 F(2)
(13 UQ = ET§ dZﬁ, (17)
whereRq(pB) is defined by
where F(z) is defined by
Uy(B)
Ro(B) = , (14) N o
Ug-1(B) S (s
FQ=11 2 |7 @x)" (18)
and is initialized with the conditiorR,=U; [see Eq.(11)]. s1pg=0 s

There are many good reasons to calculate ratios of partition

functions. First, this latter quantity appears explicitly in the N

expression of average variablese Sec. IV B for the aver- =[] +2X)%. (19
age level population Then, it is a way to compensate the =1

large values of the partition functions, and to handle more

“reasonable” numbers. Although recursion relat{@) is a  Expression(17) is calculated using the Cauchy formula, by
little more robust than relation10), it does not solve the evaluating the residue of the functigf(z)/z°*! at the pole
problem of alternate sums. z=0 of orderQ+1,
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- ‘7:(2) — i 1 O')Q 2 i N .
Uo=Re F’O =lim a&_zQﬂz) . (20) uQ;Nzqu—i;N—lxN<i )G)(QN—I), (25)

z—0

The partition functionl/g of a non-interactingQ-electron  and is initialized withi{q.0= 6.0

system is thus obtained by successive derivations of the Generalizing this result, the partition functid., of t
functionz— F(z), which is called thegenerating functionA  electrons distributed amorigorbitals can be obtained from a
recursion relation can be found by searching relationshipsecursion formula which reads, in compact form,

between two consecutive derivatives of the functigi). A

recursive formula over the number of electro@sof the min(t,y)

s i i U= D U p € PP (26)
ystem has already been establisltigfl and presented in tk t-pk—1 '

Sec. II B. =0

The speciality, here, consists in the derivation of a recur- '
. . where we define
sion relation over the number of electro@sand over the
number of orbitald\ of the system. This can be done starting 1
from_the_ usgal generatin_g_ functic_mﬁ(z) of the system, and_ QP = Pul€c—N) = _|n<gk>_ (27)
considering it as an explicit function of the number of orbit- B \P«
als. Therefore, we define one generating functfiz) for )
each possible value of the number of orbitals, and we intro:onﬁ may note thaft n qu%) the terms lhave b_eendgathered
duce the notatiod/y,, which refers to the partition function " (€ argument of a single-exponential term in order to pre-

of Q electrons distributed amony given orbitals. Using the vent n_umericgl !mprecisions due to muIt.ipIication of a large
multiple derivative formula of Leibnitz binomial coefficient by a small exponential term. The proce-

dure used to calculate the partition function@glectrons in
0 e _ an N-orbitals system is as follows. Starting with.o= 6.,
a—Q[AB] S (Q)[ a A} [iB} (21) Eq. (26) is applied in order to determine titg¢ possible val-
I S \i /o az |’ ues of the partition functionsf.;(1<t<Q) for a chosen
orbital. The results are used to build the néxwaluesif;.,
we can write that take into account one additional orbital, and so on. The
expected valuél, is obtained at iteratiol, i.e., when all
orbitals have been taken into account. Therefore, the parti-

Q
Uon = Iimia—Q[]-'N_l(z)(l +2ZXy)ON] tion function is obtained in a maximum &fQ steps, i.e.N
z-0Q! 2z times more than the recursion relatiofi®) and (13). This
Q Q\(Q-1)! J additional numerical cost remains very reasonable compared
=> ( ) )—'uQ_i_N_llim{—(l +sz)9N]_ to the enhanced precision of the method. The most interest-
i=o \ ! Q! " z0l 97 ing property of this recursion relation is that the contribution

(22) of each orbital to the total partition function has been sepa-
rated from the others in successive steps. This becomes more
evident if the relation is compared to the direct expression of

The derivative of the polynomial function in the square the partition functions given by Eg4), and noting that

brackets can be easily calculated by
N

d < . ! _ S
5(1 + 2% 0N = X3 (1 +ZX )N (g,\?ﬁ 5 O(gy-i). Q(p) gi Qu(py) - (28

(23) The recursion relation given by E(26) can be considered as
a direct approach to calculate the partition function because
The Heaviside functio®(gy~—i) ensures that thith deriva-  the (,(p,) functions are components of the thermodynamic
tive is null in the case wherieis greater than the Ordgf\‘ of potentia] Q(ﬁ), whereas the entropy term apparent in Eq.
the polynomial. Evaluation of the last expression in the Iimit(27) is hidden by mathematical complexity in Eq&0) and
z—0, and the substitution of the result in E§2) leads to  (13). This particularity can be used to introduce a shift to the
thermodynamic potential and thus normalize the partition
Q Q\(Q-i)! C O ) functions, as we will see in the following section. In the
Z/{Q:N:E i TUQ—i;N—lxN( i) O(gy—1). practical implementation, the precision of the relati@6)
=0 ' O 1e depends critically on the choice of the free parameter
(24)  whose role is taminimizethe values ofQ),(p,) in order to
prevent numerical problems due to the evaluation of expo-
The factorial numbers can be simplified and arranged in aential terms. Thus, we see that an optimal valug o&n be
single-binomial coefficient. Thus, the final expression for thefound from a variational principle applied to the potential
recursion relation over the number of electrons and over th€(p). This point will be also detailed in the following sec-
number of orbitals of the system reads tion.
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B. Normalization of partition functions by variational implicitly evaluated by taking. =Aq. The numerical stability
considerations and accuracy of EqQ.(33) relies on the property

When the orbitals of the system have too different enerAQk(pw) >0 O k, which eliminates overflow problems in the
gies(separated by more thdgT), the Q,(p,) functions can evaluation of exponential terms, and, at the same time, al-
take significant values, whatever the choice.ahay be. In  lows one to take correctly into account numerical underflow
that situation, numerical problems of overflow or underflow©f exponentials corresponding to configurations with a very
of exponentials appear inevitably in E&6). A way to avoid  |ow probability. Moreover, the fact that the partition func-
these problems consists mormalizingthe partition function  tions are normalized, i.e¥o.n=1, allows one to calculate
Uq. The basic idea is to factorize the dominant exponentiatatios of the form{;Q;N/f;Q_l;N with a high accuracy.
term in Eq.(AL)*, this term being associated to a particular  \We note that the resolution of E¢30) provides a con-
configurationp of the system, and to evaluate the normal-figurationg* with fractional populations. However, an accu-

ized partition function/, with rate value ofQ(°) is not necessary since it is used only in
Uon . order to prevent the divergence of exponential terms. There-
Vo= L = > gAP-0F)] (29) fore, it is possible to retain the closest integer populations to
g pup) Ipl=Q this solution for the practical implementation. Nevertheless,

the advantage in using the fractional populations is the con-

Con_flguratl_onp '.Wh'Ch represents the most prqbable eIeC'sistency with the zeroth-order saddle-point evaluation of the
tronic configuration of the system, can be obtained througq1

ational derati Th hf " lead integral representation of the partition function. This point is
variational considerations. The search for extrema leads one. '\ccoq'in the following section.
to impose the condition

C. Equivalence between variational normalization coefficient

> a2 Iy, «
va(p)=0 O Py (p)=0 Uke[LN]. (30 and saddle-point approximation

It has been shown that the partition functidg,y of a
noninteractingQ-electron system withN orbitals can be
evaluated more easily with the change of variables,

The resolution of the system of E¢30) is performed by
approximating binomial coefficients with Stirling formula.
As a result,p" involves the well-known Fermi-Dirac distri-
bution, ~ ~ o

Zon=Ugne %= Ve AP, (35)
* _ Gk ~ o
=T flamng D KelLNL (3D whereVq, is evaluated from recursive Equatied), (5"

is the normalization coefficient, and, is the translation of

where Lagrange multipliexq is adjusted in order to ensure energies obtained from a variational principle. It is interest-
preservation of the number of electrons in the system, ing to stress the link between this change of variables and the
continuous representation of the partition functj8h which

N
S =0 (32) can be expressed, using E@$6) and(35),
k— .
k=1 B ’
_ £ il B+ag Bt
In this way, we find the optimal valua=\q, which has Zon= 2 ) imipray € du, (36)

been introduced as a free parameter in this paper. It is inter-

esting to mention that Blenskt al.in Ref.[7] used the same with

Eqg. (31) in their superconfiguration code in order to calculate N

the average populations of the orbitals inside a supershell 1

made ongeIeF():tr%ns. P fu=- 732 g In[1 +Y;e*]+uQ, (37
The introduction of the normalization factor into the re- =

cursion relation(26) can be done by using E@28) for f'.  where Y;=e "< and o}, is an arbitrary real parameter. The

The recursion relation can be therefore written as saddle pointv is obtained by a minimization of the function

u—Z£(u) on the real axis,

min(t,gy) .
f;_ — 2 f)_ o e‘BAQk(pk), (33)

tk s t=p;k-1 dg_(“) o= _E gLeBV . Q (38)

it du |, STL+Ye

- ~ ~ Therefore,v is the root of
AP0 = (P - (P ’
N

B L1 Ok Ok L N Ye” Oi

=(ek=No)(Pk— Py — E{In(pl() - In(p;ﬂ . §1 Pi=Q with p= g'l Ty, P BETPCCRCR (39

(34) which implies, comparing Eq(39) with Eq. (31), that v

The symbol” reminds one that the corresponding variable is=\q and thatf):ﬁ*. Moreover, it can be proven that
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N N i . TABLE I. Number of configurations and number of nondegen-
- B¢(v) = E (g In[l +YieB”] - Igyﬁi):E In{ ( gl )Yipi } erated states calculated with Eg49) and(46) for different values
i=1 i=1 i of the number of electrons distributed in orbitalsth 5g.
== ALO(P) +\oQ), (40) o v W
a_ssuming Stirli_r!g approxima.tion for th_e binomial coefficient. 1 15 110
Smcg tht_a partmo(gl) fun_c;;)y? is equal, in the zeroth-order ap- 5 11028 0.12239152 1¢°
proximation, toZ =€ , We can write 10 1407606 0.4689763710M
N g . X 15 35997772 0.1175759810°
20 =B =] ( \ )Yipi =g AP IRl (47 20 0.3770061% 10° 0.43939715¢ 1072
=1 M 25 0.2199713& 10'° 0.3634704X 107°
The comparison of Eq$41) and(35) shows that the nor- 30 0.8407657( 10%° 0.8366230%K 1077
malization factor, introduced by variational considerations in 35 0.2313551% 10'* 0.6195455% 10?°
the preceding section, is strictly equal to the zeroth-order
saddle-point evaluation of the integral representation of the
partition function. The change of variable can be rewritten as N
@ =111 +2)%, (45)
s=1

ZQ;N = Zg),)NVQ,N (42)
- from which is derived
This means that the normalized partition functigg, rep- _
resents the exact value of the neglected tefonder =2) in mnQe /g
the development of the continuous representation of the par- Waon = E (
tition function. The first-order correction being equal to zero =0

[Eq. (38)], f/Q;N can be estimated in the second-order ap- The exact number of possibilities to distrib@eelectrons

i)WQ—i;N—lv Wo.0=9g.0). (46)

proximation by in N orbitals(i.e., the number ofonfigurationsf all orbitals
. are gathered in one single supershetlads
5 1 -t2 3
VQ;N = ffo e dt+ O()\Q), (43) NQ;N - E 1. (47)
Ip=Q

whereI'=m\={"(\q)/2p3. The consistency of the recursion From a derivation similar to the one presented in Sec. Il A,
relation on normalized partition functions with the approxi-it can be shown that the relevant generating function
mate saddle-point approach is interesting since it allows us tg— 7,(z) is

develop a fast optimized algorithm that selects the appropri-

ate method, according to the number of electrons in the sys- N 1 -9t
tem. Indeed, the second-order saddle-point approximation HN(Z):Hl 17 (49
S=

appears to be accurate for highly degenerated and half-filled
system. We note that a similar hybrid algorithm, betweeneading to the recursion relation
exact and approximate calculations, has also been proposed

by Wilson and Chen in Ref2]. minQ.en)

Non= > No-in-1. WNgo=g0)- (49
i=0

D. Applications to statistical counting . ] )
This formula can be applied, more generally, when the orbit-

An additional possibility of the recursion relation is t0 45 are gathered in more than one supershell, and therefore
provide, with slight modifications, a fast and exact method toyhen each ion can be represented by many superconfigura-
count the number of conflguratlons and n(_)nde_g_enerategons_ For example, considering a superconfiguraBocom-
s;ates(number of basis functions of the Hamiltonjaim a posed of many supershebscontainingQ, electrons and,,
given ion. orbitals, the total number of configurations is given by

The number of nondegenerated states of the system €&, Nq v . and the total number of nondegenerated states is
be formally evaluated from the expression simply We=T1 Wo

N A numerical exam?)Ie, in which the number of configura-
Wan = > W(p)= S TI (gk)_ (44) tions and the number of nondegenerated states are calculated
" a0 Ibl=Q k=1 ‘P« exactly through Eqs(46) and (49), is presented in Table |

versus the number of electrons distributed in one single su-
It appears thalVg, is the high temperature limjg—0 of  pershell containing orbitals fromsto 5g.
the partition function of the system. Therefore, it is easy to  Another interesting quantity that can be easily and pre-
show that the relevant generating functio® G\ (2) is equal  cisely obtained from our approach is the number of pairs of
to configurations connected by a given one-electron transition
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between two superconfigurations. Considering two orbitals TABLE Il. Screened hydrogenic average-atom energ@jsof
and 8 for an ion containingQ electrons andN orbitals, the  orbitals Is to 6h for a gold plasmaT=100 eV,p=0.01 g/cc, and

number of transitionsc— 3 is given by[8] Z'=26.024=-32.833 ..
Tg;_[)\]B:NQ—l;N(ﬂﬂ), (50) Orbital Degeneracy Energi.u)
where notationN@#7%-) [1] represents a set dfl orbitals 1s 2 -0.27405% 10*
where degeneracies of orbitals 3,7, 6, ... areequal tog, 25 2 —0.48428% 10°
-1, gﬁ—l, 9, 1, g,;—_l, etc. Indeed, the.trans!tlon will be 2p 6 ~0.47335X 10°
possible only if there is a vacang¢gr hole) in orbital 8, and

the electron involved in the transition will leave a vacancy in 3s 2 ~0.13796X 10°
orbital @. Thus, the number of transitions is equal to the 3p 6 ~0.132304 10°
number of configurations o®-1 electrons amongl orbit- 3d 10 -0.12058% 10°
als, degeneracies of both involved orbitals being diminished 4s 2 -0.54283% 10°
by one. In the superconfiguration approximation,aifbe- 4p 6 -0.500120< 107
longs to supershell 1 having, electrons andN; orbitals and 4d 10 -0.42564K 107
B to supershell 2 havin®, electrons andN, orbitals, the 4f 14 ~0.32010% 10
number of transitiongt— g is given by 5s 5 ~0.240696< 10
TE'S;Tf = NQl-l:N(f“’ NQz-l:Ngﬁ)' (51) 5p 6 -0.23146% 107
5d 10 -0.19243% 107
whereN=N;+N, and Q=Q,+Q». 5f 14 ~0.15235(K 107
59 18 -0.148924 107
IV. NUMERICAL RESULTS 6s 2 ~0.10501% 1
A. Ratios of partition functions 6p 6 -0.10382% 107
In Sec. Il B, it was shown that the accuracy of E¢K)) &d 10 ~0.98435210"
and(13), called here standard approaches for the calculations 6f 14 ~0.964902¢ 10*
of partition functions, are considerably limited by the sum- 6g 18 —-0.956894 10"
mation of alternate-sign numbers. This can be emphasized by ~ 6h 22 -0.95499% 10"

comparing the results from these numerical methods with
results from our recursion relatiof26) with respect to the
number of electrons and orbitals of a supershell. The study igxpression in hole counting. All calculations were performed
limited to one supershell made of six orbitals by setting the parametarequal to -32.833. Standard calcu-
(4p4dafssspsd), with a number of electrons varying from 0 lations are known to be correct for a small number of elec-
to the total degeneracy 48. For numerical convenigifoe  trons or holes and to show a breakdown in accuracy near half
purpose is only to check the stability of the recursion rela-occupancy of the supershéivhich prevents the use of the
tions), the energies of the orbitals for all possible configura-recursion relations for a large number of electrons or holes
tions are “frozen” to the average-atom values calculated frond his can be observed in Figs. 1 and 2, where ratios of parti-
a screened hydrogenic model W||[ﬂ‘.sp||tt|ng [9]. The ex- tion functions for 26 Q=23 are not accurately reproduced
amp|e Corresponds to a go|d p|asma at a temperature &y these approaches, neither in electron counting nor in hole
100 eV and a density of 0.01 g/cc, the energies of the orbitcounting. Indeed, near half-filled supershells contain con-
als being specified in Table Il. According to the qualitative figurations with a high degeneracy. Therefore, the calculation
criterion defined by Eq(12), this case is numerically un- Of the partition function involves an alternate summation
stable for standard approaches since the difference of ener@jlarge numbers, which leads to cancellation errors as ex-
between orbita|3g_and 5 is much greater than the tempera- plained in Sec. lll A. These numerical problems can be fixed
ture: |ezp— €sq| =8.37gT. by a multiprecision arithmetic calculatiof2], but the nu-
This can be checked in Figs. 1 and 2, where ratios ofmerical cost is definitely prohibitive. On the contrary, the
consecutive partition functions, i.@/gn/Uo-1, are plotted — recursion relatior26) is applied with single-precision arith-
versus the number of electrons in the supershell. Result®€tic and provides correct ratios of partition functions for all
from standard approaches are compared with results obtain&d in electron counting, as well as in hole counting. This
with the recursion relation in the simplest formulatifiig.  demonstrates that the summation of alternate-sign numbers,
(26)] that does not take into account the normalization of thentrinsic property of the standard recursion relations, can
partition functions. In Fig. 1, partition functions are calcu- have a dramatic impact on the accuracy of partition func-
lated separately from the recursion relation of Bar-Shaéom tions, and that the resulting error cannot be everywhere com-
al.in Ref.[1], i.e., by using Eq(10) in electron counting and Pensated by hole counting.
its equivalent expression in hole countif&]; the ratios are
obtained thereafter. The ratios in Fig. 2 are calculated di-
rectly from the recursion relation of Wilson and Chen in Ref.  We have shown that the recursion relati(6) can be
[2], expressed by Eq13) in electron counting, and a similar improved, with a proper normalization of the partition func-

B. Average populations and their variances

056117-7
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2 ] AAAA E Table 1. Results obtained from the recursion re-
é 100_: AN L lation of Bar-Shalonet al. in Ref. [1] applied in
3 103 AAAAAAAA . electron counting®) and in hole countingO)
E 1 o . 5 E [6] are compared to the results obtained with the
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tion, in order to treat arbitrarily defined supershells without Ok Ok
any limitations on the number of orbitals and on the values (Pq= EA = ~ - (52
of their energies. This allows one to perform very accurate 1+ 2N e 1+ Van® eBlarQ
statistical calculations on large thermodynamic ensembles. ZQ-1N0 Y

. . oo : . Vo-1.NK
To illustrate this possibility, the formalism was applied to the QN

evaluation of average properties of ions where all the elecwe note that the restriction of averaging the populations over
trons are distributed in a single supershell containing all they-electron configurations introduces an additional factor in
orbitals of Table Il. The difficulty of this case is apparent the usual Fermi-Dirac expression, which is the ratio of the
since the difference of energy between orbitadsathd G is  partition functions corresponding to two ions of consecutive
|€1s— €gn| = 743.14gT, which is enormous in terms of tem- charges, evaluated for degeneracy of the involved orbital di-
perature. We put the focus on the evaluation of the averagginished by one unit. This change of degeneracy, applied to

population of orbitals and their standard deviation.

The average population of orbitklin the Q-electron ion,

the orbitalk, is symbolized by the notatioN™. If this re-

striction is removed, which means that the average is per-

noted(p,)q, can be expressed in the form of a generalizedormed over allQ-electron configurations, the average popu-
lation is given by Eq(31). It is important to mention that the

Fermi-Dirac distribution2,6]
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FIG. 2. Same as Fig. 1. Results obtained from
the recursion relation of Wilson and Chen in Ref.
[2] applied in electron counting®) and in hole
counting (O) are compared to the calculations
performed with the recursion relatiof26) ap-
plied in hole counting onlyV).
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FIG. 3. Each ion is represented by one super-
configuration made of one supershell containing
all n¢ orbitals of Table Il. The recursion relation
on normalized partition functiong3) is used to
calculate the average occupation num@espu-
lation divided by degeneragyf these orbitals in
each ion.

Average occupation numbers

Number of electrons

average population determined by E82) is independent of eracy of the involved orbital, to calculate the normalized
Aq, because ratios of normalized partition functionspartition funct|onsV Nk and ; o-1nk. The ratio of both
VQ'N(k/VQ 1.k are proportional t@®e by constructior{see  values are then used in Eq52) to determine the average
Eqg. (39)]. population of the orbitak in the Q-electron ion.

The average occupation numbetise population divided It is interesting to see the difference between average
by its degeneragyof several orbitals are displayed in Fig. 3 Populations of @-electron ion{py)q, and the valuep, (31)
as a function of the number of electrons in the supershellused by Blensket al. in Ref. [7].
The values were obtained by using the following procedure. The relative differencep, —(po/(Pq. is plotted in Fig.
For a given value 00, the populationg” and the Lagrange 4 for several orbitals. The difference was considered to be
multiplier A associated to the conservation of the number ofzero in the case wherkpk <Dk>Q|<I0k>Q$ 10°8. Significant
bound electrons of the ion are evaluated through Bd). discrepancies between both averaging methods are observed
These quantities are part of the normalization coefficient ofn some range of supershell population. As we can see, per-
the approach. Then, for each orbikalwe apply the recursion forming the average with E¢31) leads to an overestimate of
relation[Eg. (33)], taking into account the change of degen-the 2o population up to 50% and thed2rbital around 20%.

50% L1 [ T TN T T SN TN NN TN [N TN TN S MO NN T SO S 1

FIG. 4. For the case from Table Il, the relative
error of two methods of calculating the average
= occupation numbers of orbitalgEgs. (52) and
L (31)] is estimated vs the number of electrons.

Relative error

-10% —

20% T T T [ r r T 1 [ r 1 T T [ T T T T [ T T T T [ T 1T

0 5 10 15 20 25
Number of electrons

056117-9



F. GILLERON AND J.-C. PAIN PHYSICAL REVIEW E59, 056117(2004

0.4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
] As C
= ] 3s C
2 - -
s 0.3 -
= 1 2s [
3 - -
g ] C
= ] N
T ] C
% ] C FIG. 5. The standard deviation of orbital oc-
g 02 E cupation is calculated with the model as a func-
§ ] ap r tion of the number of electrons in each ion. The
2 ] C case is specified in Table I1.
= - 3 -
g . P 3
Eo1d |2 4d af C
@ ] 3d C
O-IIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIII|IIIIIIII-
0 10 20 30 40 50 60 70

Number of electrons

The differences observed for the other orbitals are close testimation of the variance can be obtained by the standard
10%, and become negligible when the number of electronformula
becomes large. .

The other interesting quantity that can be studied is the Uiz pL(l _ pk)_ (54)

second-order moment Ok
5 g— 1 It can be derived by substituting the ratios of partition func-
(Pido = (Po| 1+ = . (53 tions by one in Eqg52) and(53), which leads to the change
4 Vaonke Blaho) (Po— P, and oy o— oy. Numerical results of Eq(54) for

Vo 1k the same case is presented in Fig. 6. Strong discrepancies are
‘ observed between both averaging methods.

The ratio of partition functions of two consecutive ions,
which appears in the last formula, must be evaluated by re-
ducing the degeneracy of the orbitabf interest by two; this

is noted NK¥. The variance of population inside the A numerical method for the calculation of partition func-
Q-electron ion is therefore defined by} ,=(PPo—(PWa:  tions of Q-electron ions and their average thermodynamic
where oy g is the standard deviation of the population. Thequantities was presented. It consists of a recursion relation
variation of this last quantity is displayed in Fig. 5 as awith respect to both the number of electrons and the number
function of supershell population for orbitals 20 4f. An  of orbitals. This recursion relation does not contain any al-

V. CONCLUSION

04 PO ST T T Y T TV T T T T T S S T T A
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FIG. 6. Same as Fig. 5, but the standard de-
viation of orbital occupation is evaluated through
Eq. (54).
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ternate summation, which permits one to avoid numericahecessary in the recursion relation, but still allows one to

difficulties due to the substraction of large numbers that maylivide calculation time by a factor close to 2.

appear in the formula of Bar-Shaloet al. in Ref. [1]. Furthermore, this recursion relation can be adapted in or-
The precision and stability of the method is considerablyder to obtain a recursion relation for different statistical

improved by the introduction of a translation of the energiesguantities(such as the total number of nondegenerated states,

for the Orbita|S inside a Supershe” and Of a norma”zation Oﬁhe number of Configurations gathered in a Superconﬁgura-

partition functions consistent with the continuous zeroth-tjon or the number of transitions between two superconfigu-

order saddle-point approximation. rations. It is important to mention that the approximation of

This method brings a considerable improvement to the, " yarition function by an integral evaluated through the
STA method, since it allows accurate calculations of partitio addle-point technique appears to be precise in the case

functions, even in the case of large supershells. Indeed, here the number of electrons is close to half the degen-

permits to initialize the superconfiguration calculations Witheracy One can therefore establish a criterion that would al-
a single super_configuration for each ion ch.arge state, prepaf,, oﬁe to determine the best method for the calculation of
ing further refinement of the supershell dimensions. More-

s . o .~ partition functions, in order to find the best compromise be-
S(;/aeéblrt]:l;;énportant to mention that calculation time remains;yveen precision and calculation time. It is important to have

Thus, this numerical method is interesting for all codes? strong and fast method of calculation because the number

relying on the superconfiguration approximation in IocaIOf qgantltulas Ito.be d%termlnebd in a phgtoabsorptlon Cross-
thermodynamic equilibriunLTE) [1,6] as well as non-LTE section calculation code can be tremendous.
conditions[10-13, provided in the latter case that local ther-

modynamic equilibrium is approached inside a supershell. ACKNOWLEDGMENTS

Furthermore, this method can also be generalized to the case

where one deals with holes rather than with electrons. How- The authors would like to thank P. Arnault, T. Blenski,
ever, contrary to existing approaches, such a procedure is nahd G. Dejonghe for numerous helpful discussions.

[1] A. Bar-Shalom, J. Oreg, W. H. Goldstein, D. Shvarts, and A. (1997).

Zigler, Phys. Rev. A40, 3183(1989. [7]1 T. Blenski, A. Grimaldi, and F. Perrot, J. Quant. Spectrosc.
[2] B. G. Wilson and M. H. Chen, J. Quant. Spectrosc. Radiat. Radiat. Transf.65, 91 (2000.

Transf. 61, 813(1999. [8] G. Faussurier, Phys. Rev. B9, 7096(1999.
[3] R. D. Cowan,The Theory of Atomic Structure and Spectra [9] F. Perrot, Phys. Sc139, 332(1989.
1

—_ =

(University of California Press, Berkeley, 1981 [10] O. Peyrusse, J. Phys. B3, 4303(2000.
[4] P. T. Landsberg,Thermodynamicginterscience, New York, [11] A. Bar-Shalom, J. Oreg, and M. Klapisch, Phys. Rev56,
1961). R70(1997.
[5] H. J. Schmidt and J. Schnack, Physica280, 479 (1998. [12] A. Bar-Shalom, J. Oreg, and M. Klapisch, J. Quant. Spectrosc.
[6] T. Blenski, A. Grimaldi, and F. Perrot, Phys. Rev55, R4889 Radiat. Transf.58, 427 (1997).

056117-11



