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We study the relaxation dynamics of a Hamiltonian system ofN fully coupledXY spins. The thermodynam-
ics of the system predicts a ferromagnetic and a paramagnetic phase. Starting from out-of-equilibrium initial
conditions, the dynamics at constant energy drives the system into quasistationary states(QSSs) characterized
by dynamical frustration. We introduce the spin polarization as an order parameter which allows us to interpret
the dynamically generated QSS regime as a glassy phase of the model.
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The Hamiltonian mean-field(HMF) model, originally in-
troduced in Ref.[1], has been intensively studied in the last
years for its extreme richness and flexibility in exploring the
connections between dynamics and thermodynamics in long-
range many-body systems. In fact, on the one hand the
model has an exact equilibrium solution; on the other hand,
because of the presence of a kinetic energy term in the
Hamiltonian, the dynamics can be studied by means of mo-
lecular dynamics simulations[1–4]. From these investiga-
tions, many interesting features have emerged which are
common to other systems with long-range interactions[5–7].
One of the most intriguing characteristics of the dynamics is
the existence of quasistationary states(QSS’s)—i.e., dynami-
cally created states—whose lifetime diverges with the sys-
tem sizeN [8]. In such states anomalous diffusion[3], non-
Gaussian velocity distributions[8], vanishing Lyapunov
exponents[8], and ergodicity breaking and slow-decaying
correlations[9,10] have been observed. These features have
suggested a possible application of Tsallis generalized ther-
modynamics[8,11–14].

In this paper we show that the HMF model in the QSS
regime behaves similarly to a glassy system. In fact, by
means of an order parameter, it is possible to characterize the
dynamically generated QSS’s as a thermodynamics glassy
phase of the model, despite the fact that neither disorder nor
frustration area priori present in the interaction. The main
idea of the paper originated from the observation of slow
relaxation and aging[9,10] in the QSS regime. Such a be-
havior is typical of frustrated systems, whose prototype are
spin glasses[15]: in these systems, the impossibility to mini-
mize simultaneously the interaction energies of all the
couples of spins leads the system to a very complex energetic
landscape. One might imagine it as consisting of large val-
leys separated by high activation energies. Each valley con-
tains many local minima—i.e., metastable states—in which
the system, after quenching in its low-temperature phase, can
remain trapped for a very long time, showing those strong
memory effects better known as aging behavior.

The HMF model describes a system ofN fully coupled
classicalXY spins[1]:

sWi = scosui,sin uid i = 1, . . . ,N. s1d

The equations of motion derive from the Hamiltonian
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whereui s0,ui ø2pd is the angle andpi the respective con-
jugate variable representing the rotational velocity(the mass
is set equal to 1) of spin i. If we associate a particle, moving
on the unit circle, to each spin, the model can be seen as a
system of fully coupledrotators. Though the division of the
potential by a factorN (the so-called Kac’s prescription)
makes the Hamiltonian formally extensive[4], the latter re-
mains nonadditive due to the long-range nature of the inter-
action [12].

The equilibrium solution of the model in the canonical
ensemble predicts a second-order phase transition from a
high-temperature paramagnetic(PA) phase to a low-
temperature ferromagnetic(FE) one [1]. The critical tem-
perature isTc=0.5 and corresponds to a critical energy per
particle Uc=Ec/N=0.75. The order parameter of this phase
transition is the modulus of theaverage magnetizationper
spin defined asM =s1/Nduoi=1

N sWiu. AboveTc, in the PA phase,
the spins point in different directions andM ~0. BelowTc, in
the FE phase, all the spins are aligned(the rotators are
trapped in a single cluster) andM Þ0.

The molecular dynamics simulations at constant energy
(microcanonical ensemble) reveals interesting properties in
the energy rangeU=0.5–0.75. In fact, starting from out-of-
equilibrium initial conditions[16], the system has an ex-
tremely slow relaxation to the equilibrium and shows the
presence of metaequilibriumquasistationary stateswith the
following properties.

(1) The temperature(calculated from the average kinetic
energy) and the magnetization assume constant values for a
time tQSS. Such values are different from the equilibrium
ones and depend on the number of spinsN.

(2) For largeN, M vanishes(asN−1/6) andT tends to an
energy-dependent value so that the QSS’s lie on the exten-
sion for T,Tc of the high-temperature branch of the caloric
curve.

(3) tQSS grows linearly with the system sizeN [2]. For
this reason the QSS regime can be interpreted as the true
equilibrium if the thermodynamic limit is taken before the
infinite-time limit [8].

(4) The QSS’s are characterized by non-Gaussian veloc-
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ity distributions [8], Lévy walks, and anomalous diffusion
[3].

(5) The largest Lyapunov exponent vanishes and the sys-
tem resides in a restricted part of thea priori accessible
phase space. Such aweak-mixingdynamics suggests a con-
nection with the Tsallis generalized thermodynamics[8], but
also the possibility of framing the QSS’s within the so-called
weak-ergodicity-breakingscenario [17], typical of glassy
systems.

The last point has been recently corroborated by the dis-
covery of aging in the QSS regime[9,10]. In the following
we show how the analogy with glassy systems and the weak-
ergodicity-breaking scenario can be made more stringent
[18] by the introduction of an order parameter inspired by
the microscopic dynamics of spin-glass models.

The materials that originally were calledspin glassesare
alloys formed by a noble metal support(gold, silver, copper)
containing randomly distributed magnetic impurities(iron or
manganese). Such a configuration determines a random dis-
tribution (“quenched disorder”) of the interactions: according
to the distance between each pair of spins, the interaction
among them may be either ferromagnetic or antiferromag-
netic, thus generating frustration. The first theoretical spin-
glass model was the short-rangeEdwards-Anderson(EA)
model [19]. However, the first solvable one was the
Sherrington-Kirkpatrick(SK) model [20], where the spins
are coupled by infinite-ranged interactions independently
distributed according to a Gaussian. Depending on the tem-
perature and the parameters of the Gaussian distribution, the
SK model shows three different phases: namely, ferromag-
netic, paramagnetic, and spin glass(SG). Since the magneti-
zationM vanishes in the SG phase as well as in the PA one,
an additional order parameterqEA—called the EA order
parameter—was proposed[19,20] in order to discriminate
between spin-glass disorder and paramagnetism. The physi-
cal meaning of this order parameter is that of one quantifying
the degree of freezing in the SG phase. In fact, the three
phases are characterized by a different microscopic behavior.
In order to get an intuitive picture of this behavior, let us
imagine taking some snapshots of the spin configuration in
each of the three phases[21]. If a snapshot is taken at one
particular time, one easily would be able to recognize the FE
phase, since all the spins are aligned and frozen in their
equilibrium position. However, it would be impossible to
distinguish between the PA and SG phases. In fact, in both of
these phases the orientations of spins are random, due to the
high thermal noise for the PA phase and to the quenched
spatial disorder for the SG phase. Discrimination between
these two phases is possible only if one takes a temporal
sequence of snapshots. In fact, in the PA phase the orienta-
tion of each spin at successive instants of time would be
random, so the sequence of snapshots shows every time a
different spatial configuration. On the other hand, in the SG
phase all the snapshots are identical, since each spin is frozen
and retains the same orientation over very long periods of
time.

As previously discussed, the HMF model at equilibrium
has only two phases—PA and FE. The main goal of this
paper is to show that the dynamically generated QSS’s can
be interpreted as a glassy phase of the model. For this reason,

inspired by the arguments described above, we propose to
introduce an order parameter, theaverage polarization p, in
order to measure the extent of freezing of the system. The
physical meaning ofp is related to the elementary polariza-
tions pW i—i.e., the time averages of the successive positions
of each elementary spin vector—defined as

pW i = ksWistdl =
1

t
E

0

t
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The average polarization is then obtained averaging the
modulus of the elementary polarization over all the rotators:
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1

N
o
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N

upW iu. s4d

Such an order parameter has to be compared toM, the modu-
lus of theaverage magnetization, calculated as

M = kMstdl =
1
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In the FE phase each elementary polarization vector coin-
cides with the correspondent spin vector, both being frozen
and parallel; then, the average polarizationp keeps a nonzero
value equal toM. In the PA phase the orientation of each
spin vector at every time is completely random, so this con-
tinuous motion yields a zero value both forM andp. On the
other hand, if the QSS’s correspond to a glassylike phase of
the model, we expect to find a zero value forM, as in the PA
phase, and a nonzero value forp, as in the FE one. All these
features are summarized in Table I.

In Fig. 1 we show the modulus of the elementary polar-
ization for each spini. We consider a system ofN=1000
spins and different energy densities. The values of the aver-
age polarizationp and the average magnetizationM are also
reported in the figure. In the simulation we have performed,
the time averages ofp and M are evaluated over an oppor-
tune time intervalt,tQSS, in order to stay inside the tem-
perature plateau for those energy values where the QSS re-
gime appears(U=0.5 andU=0.69). In particular, we have
usedt=2000 and a transient of 1000 time units. The results
do not depend significatively ont. As usual in molecular
dynamics simulations, in order to make our results indepen-
dent of the specific dynamical realization, we have also taken
averages over a set of different realizations(events) of the
same out-of-equilibrium initial conditions. As expected, the
two parametersp and M coincide and are close to 1 at low
energy—e.g.,U=0.1—while both of them tend to zero forU
above the critical valueUc=0.75. The situation is different

TABLE I. Values of M and p in the three phases of the HMF
model.

M p

Ferromagnetic phase FE Þ0 Þ0

Paramagnetic phase PA 0 0

Glassy phase 0 Þ0
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for U=0.5 and forU=0.69, two energies at which the QSS’s
appear. In these cases the values ofp andM are different: for
N=1000, we have, respectively,p=0.67, M =0.63 andp
=0.24, M =0.20. We have checked that the difference be-
tweenp andM increases with the system sizeN. In particu-
lar, for largeN, in the QSS regime, we expect a vanishing
average magnetizationM and an average polarizationp dif-
ferent from zero.

In Fig. 2 we study the behavior ofp andM with the size
of the system. We report only the caseU=0.69 where the
anomalous effects of QSS’s are more evident. As expected,
while M vanishes asN−1/6, p is independent ofN (within the
error) and equal to 0.24±0.02.

Finally, in Fig. 3 we consider a system withN=10 000
and we compare magnetizationM and polarizationp at equi-
librium for different energies. In order to let the system reach
equilibrium for the energy range 0.5øUøUc we ran the
simulations for a time much larger thantQSS. In this way
every trace of metastability, and consequently also of the
glassy phase behavior, disappears. The numerical values of
M and p reported in the figure coincide, in agreement with
the previous statement about the equivalence betweenM and
p in the pure FE and PA phases.

Our numerical results support the interpretation of the
QSS regime as a dynamically created glassy phase of the
HMF model. In the QSS regime the simulations show the
formation of a dynamical clustering[10]. The rotators feel
the attraction of the dynamically generated clusters in com-
petition within each other. Each rotator remains trapped in a

cluster for a while and then eventually succeeds in escaping
from it [22]. This is also the cause of the anomalous diffu-
sion and Lévy walks observed in Ref.[3]. Such a competi-
tion between the different clusters in the QSS regime there-
fore realizes adynamical frustrationthat slows down the
dynamics and prevents the system from exploring all poten-
tially available phase space. Such a behavior is also related
to the aging phenomenon observed in Refs.[9,10] and can be
interpreted in the framework of the weak-ergodicity-breaking
scenario[17]. When at the end of the QSS regime the system
relaxes to the equilibrium of the pure FE phase, all the rota-
tors concentrate in a single cluster which rotates with the
same phase of the average magnetization vector—i.e.,f
=tan−1sMy/Mxd [23]—and all the anomalies disappear.

In conclusion, the results of this paper show that the most
remarkable features of the long-range HMF model—namely,
the dynamically generated metastable states—can be inter-
preted as a thermodynamical glassy phase of the model. If

FIG. 1. The modulus of the elementary polarizationupW iu
= uksWistdlu for a system withN=1000 and different energies. The
values of the average polarizationp (dashed lines) and magnetiza-
tion are also reported for comparison. Notes that only forU=0.5
and U=0.69 are we in the QSS regime. In the other cases, the
system is at equilibrium.

FIG. 2. We plot the values of the polarizationp and the magne-
tization M calculated in the QSS regime forU=0.69 as a function
of the sizeN of the system. Whilep assumes a constant value
~0.24±0.02,M decreases asN−1/6.

FIG. 3. ForN=10 000, we show the polarizationp and magne-
tizationM vs energy per particleU once the equilibrium regime has
been reached.
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the system is started sufficiently far from equilibrium, the
long-range character of the interaction produces dynamically
a very complex configurational landscape typical of glassy
systems. We have introduced the polarizationp as an order
parameter to characterize the degree of freezing of the spins
due to the presence of the dynamical competition among
clusters in the metastable state. Considering that the HMF

model is paradigmatic of a large class of long-range Hamil-
tonian systems, it seems very interesting to search for further
connections with glassy dynamics, which likely could help
understanding some of the open problems in this field.
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