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The phase transition in thegpstate Potts model with homogeneous ferromagnetic couplings is strongly first
order for largeg, while it is rounded in the presence of quenched disorder. Here we study this phenomenon on
different two-dimensional lattices by using the fact that the partition function of the model is dominated by a
single diagram of the high-temperature expansion, which is calculated by an efficient combinatorial optimiza-
tion algorithm. For a given finite sample with discrete randomness the free energy is a piecewise linear
function of the temperature, which is rounded after averaging, however, the discontinuity of the internal energy
at the transition pointi.e., the latent heatstays finite even in the thermodynamic limit. For a continuous
disorder, instead, the latent heat vanishes. At the phase transition point the dominant diagram percolates and the
total magnetic moment is related to the size of the percolating cluster. Its fractal dimension isdfeuBd
+\s“§)/4 and it is independent of the type of the lattice and the form of disorder. We argue that the critical
behavior is exclusively determined by disorder and the corresponding fixed point is the isotropic version of the
so-called infinite randomness fixed point, which is realized in random quantum spin chains. From this mapping
we conjecture the values of the critical exponentBa®—d¢, Bs=1/2, andv=1.
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I. INTRODUCTION the magnetizationx, shows a smooth, monotonously in-

Quenched disorder has generally a softening effect on th&€asingd dependﬁnce,h WT:Ch s?]turayt_as Iat a given ffir;}ite
singularities of phase transitions in homogeneous system¥&'U€ aj— . On the other and the critical exponent of the
As an example we mention that in the two-dimensiaaa) corrglanor} lengthy, which is related to energy-density cor-
Ising model the ordered phag&nd thus the phase transitjon relations, is found ta show only a very wegldependence.

: . The measured values are all around the rigorous b@Liid
is washed out by random field$,2), whereas due to layered v=2/d=1, which is required by general theorem for disor-

bond_ randomness the Onsager Iogarithmic.singulgrity in th(aered systemgNote, however, the conflicting result in Ref.
specific heat of the homogeneous system will turn into a veryg, “\yhich is probably due to the use of the bimodal, i.e.,
weak essential singularitytMcCoy-Wu mode) [3]. Singu-  jiscrete form of disorder.
larities at first-order phase transitions are also soft¢Apdn Despite the intensive numerical studies performed so far
3D the latent heat is either reduced by a finite extéot  seyeral aspects of the phase transition in the RBPM are not
weak disordey or the latent heat completely disappears and|arified yet. Here we mention that there is still little knowl-
the transition becomes second ordfar sufficiently strong  edge about the mechanism which leads to the softening of
disordey [5]. In 2D, according to the rigorous result by Ai- the first-order transition. The effect of different types of dis-
zenman and Wehfl] there is no phase coexistence in theorder, continuous or discrete, has not been investigated. Also
presence of continuous disorder, thus the phase transition imiversality of the transition with respect to the lattice struc-
always continuous. Thus there exists a set of random fixetlre is still an open question. Finally, and most importantly,
points whose possible classification is a great challenge dhere is no example for a specific system in which the critical
statistical physics. However, as in the theory of disorderegbroperties arg¢conjecturedly exactly known.
systems, exact results in this field are scarce and therefore In this paper we are going to investigate the aforemen-
our present understanding of the subject is limited. Since &oned questions using the example of the 2D RBPM in the
weak-disorder perturbation calculation starting from the purdarge4 limit. The use of this model has several advantages:
system’s fixed point is not feasible most of the existing re-(i) The homogeneous model, which has a strongly first-order
sults are numerical. In this respect an important role iphase transition, can be solved analyticg}. (i) In the
played by they-state ferromagnetic Potts modél, in which ~ presence of randomness the model shows the generic fea-
the homogeneous phase transition is of first ordegfed in  tures of disorder-rounded first-order phase transiti@ng.|t
2D [7] and forg=3 in 3D. allows for an important technical simplification since the
According to Monte Carld8] and transfer-matrix9] in- high-temperature expansion of the moflE?] (with arbitrary
vestigations the critical behavior of the 2D random bondferromagnetic couplingss dominated by a single diagram,
Potts model(RBPM) is governed by a line ofi-dependent whose calculation is reduced to an optimization problem
fixed points. For a given the critical exponents are expected [13]. (iv) Finally, this optimization problem is polynomial
to be disorder independent; however, generally there is and there exists a powerful combinatorial optimization algo-
strong crossover regime0]. The anomalous dimension of rithm [14] which works in strongly polynomial time, i.e., the
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necessary compqtational power does not depend on the ac- z=> qOT] [¢?i-1]. (3)
tual form of the disorder. GCE ijcG

This model, which we shall refer simply as random bond
Potts model in the following, has already been considered ifdere the sum runs over all subsets of bor@ls; E, andc(G)
several previous works. Cardy and Jacob@rhave shown stands for the number of connected components.of
a mapping with the random-field Ising model in the level of In the largeg limit, where g?i> 1, the partition function
interface Hamiltonians, which explains the vanishing of thecan be written as
latent heat at the transition point. Numerical studies for large
(but finite) g values[15] predicted a smooth and nonsingular Z= 2 g%, ¢G)=c(G)+B X J;, (4)
behavior of the critical exponents gs— . Relation of the GCE ijeG
random bond Potts model with an optimization problem was ] .
introduced and studied by the method of simulated annealinfhich is dominated by the largest termh, =max;$(G), so
in Ref. [13]. The optimization problem was mathematically that
analyzed in Ref[14]. Here its relation with submodular .
function optimization was shown and an efficient computa- Z=nog? (1+--). (5)
tional algorithm was developed. Some numerical results ob- i ..
tained by the optimization method have been briefly antiere the degeneracy of the optimal &tis no=0(1) and
nounced in a pap€tL6]. the omitted corrections in the rlght-hand s(dbs) go tg zero

The structure of the paper is the following. The model, itsfor largeq. The free energy per site is proportionalo and
random cluster representation, and the way how its thermddiven by

dynamical and correlational properties are related to the .
dominant diagram are given in Sec. Il. In Sec. Il the mecha- - pf = [ (6)
nism of breaking of phase coexistence is analyzed and an N’

estimate of the breaking-up length is given through extreme
value statistics. Thermal quantitiéternal energy, specific WhereN stands for the number of sites of the lattice. In the
heaj are calculated in Sec. IV. In particular we study the Appendix we give an illustration of the convergence wath
effect of discrete and continuous disorder as well as the 100f the family of functionf,().
cation of the transition point for different 2D lattices. The  All information about the random bond Potts model is
magnetization properties of the model, which are related tgontained in the optimal s&. The thermal properties are
the percolative properties of the largest connected cluster d¢falculated from¢’, whereas the magnetization and the cor-
the dominant diagram, are studied in Sec. V. In Sec. VI wegelation function are obtained from its geometrical structure.
show arguments and approximate mappings between olmrst we note that correlation between two individual sites is
model and random quantum spin chains which lead us tainity only if both are in the same connected cluster, other-
conjecture the exact values of the critical exponents. Ouwise the correlation is zero. In this way thgeragecorrela-
conclusions are drawn in the final section while two simpletion functionC(r) is related to the distribution of clusters in
examples are given in the Appendix. the optimal set. Next we note that if, and only if, there is an
infinite cluster the correlation function approaches a finite
asymptotic value, lim...C(r)=m?. The magnetizatiom, de-
Il. FORMALISM: THE LARGE- g-STATE POTTS MODEL fined in this way, is the fraction of sites in the infinite cluster.
) ) o In the ferromagnetic phasel<T,, the magnetization is
The g-state Potts modgb] is defined by the Hamiltonian m~>0 and vanishes at the critical poiflt, as m~ (-t),

where the relative distance from the phase transition point is

H=- E Jjdloi, o) @) measured byt=(T-T,)/T.. As usual the divergence of the
() . - S )
. . _ o correlation length€ at the critical point is given in the form
in terms of the Potts-spin variables=0,1, ... g—1 at sitei. é~|t|™", where¢ is defined as the average size of the clus-

The summation runs over all edges of a latticg) € E, and  ters. At the critical point the largest cluster is a fractal and its
in our study the couplings};; >0, are independent identi- massM scales with the linear size of the systdmas M

cally distributed(i.i.d.) random variables. We consider the ~ L%, whered; is the fractal dimension. Spin-spin correla-
system in the largerlimit where, being the entropy per site tions at the critical point decay algebraically @&)~r=%
s~In g, it is convenient to introduce the reduced temperaswhere the magnetization scaling dimension is givenxby
ture T'=T In q=0(1) and its inverse a@’'=1/T'=g/In q. =d-d;=p/v.

In the following we use these reduced variables but omit in In a system with a free surface one can define surface
the notation the prime. In terms of these variables the partiguantities, whose singularities are governed by surface expo-

tion function is given by nents. In the ferromagnetic phase the fraction of surface sites
I belonging to the largest cluster defines the surface magneti-
z= 2 g P, (2)  zation, which scales as~(-t)%s. At the critical point

o} surface-surface correlations decay @gr)~r~2s and the
which is convenient to express in the random cluster represurface scaling dimensiax, is related to the surface fractal
sentation[12] as dimensiond{ asd—-1=d{+x;. We have als@Bs=xXgv.
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In the random bond Potts model in the laigdimit the  considered non-self-dual randomness, analyzing triangular
structure and the fractal properties of the optimal set ar@nd hexagonal lattices with number of sites up to 16384.
dominated by disorder effects. Other examples of systems in
which the disorder is dominant at the critical point are ran- . DESTRUCSOQTOFI;HAEEDEF?EX'STENCE
dom quantum spin chain4d.7], for which the set of critical UE TO DISO
exponents is exactly known. This analogy and a possible In this section we consider the phase transition in the
isomorphism between the fixed points of the two problemsnonrandom system and see how introduction of disorder will
which will be discussed in detail in Sec. VI, lead us to con-destroy the phase coexistence, i.e., soften the first-order
jecture the value of the critical exponents for the randonPhase transition into a second-order one. In particular in 2D
bond Potts model, which we list below. we will estimate the disorder dependent length sdgleat

The fractal dimension of the infinite cluster at the transi-Which the phase coexistence no longer exists.

tion point and the scaling dimension of ttieulk) magneti- The solution of the optimization problem in E¢b) de-
zation are related to the golden-mean ra{z&g(1+\e’§)/2 as _pends on the temperature: the optimal set is generally_ more
' ' interconnected in low temperature and contains more discon-

di=1+¢2, x=1-¢/2. (7) nected parts in higher temperature. In the homogeneous,

N _ nonrandom model witld;; =J there are only twgtrivial) ho-
The analogous surface quantities are conjectured to be  mogeneous optimal sets: the fully connected diagram and the
empty diagram. Consequently the free energy of the homo-

S — —
di=1/2, xs=1/2. (®) geneous systertfy.y) is given by
Finally, the correlation length exponent is given by 1+NBJz, T<T,
- NIthom: (13)
v=1, (9) N, T>T,
thus saturating the rigorous bound for disordered system&here z is the connectivity of the lattice. At the phase-
[11]: v=1. transition point,3.=1/T.=(1-1/N)/(J2), there is phase co-

We close this section by a few technical remarks. The cogXistence, thus the phase transition is of first order and the
function of the problemp(G), given in Eq.(4), is a super- latent heaﬂe has its possible maximal vaIyﬁ;Ae=;. Note
that this result holds for any reguléeven finitg lattice.

modular function, thus there exists a combinatorial optimiza- As quenched disorder is switched on. sav in the paramad-
tion method[18] to maximize it. For the particular expres- netic ghase its fluctuations will locall bref}(/ar the egistencg
sion of ¢(G) in the present model a specific efficient ' y :

lorithm. th imal . laorithindl. has b of the nonstable fully connected homogeneous diagram, and
algorithm, the optimal cooperation algorithiid], has been g tendency is stronger around the phase-transition point,

formulatgd. The largest random. system we treated by thi§nere the free-energy difference between the two homoge-
method is a 51X 512 square lattice. , _neous phases is small. This mechanism, as the temperature is
The investigations in this paper are restricted to two di-gwered, will result in a sequence of nonhomogeneous opti-
mensions. In particular we work on the square lattice formal sets with increasing fraction of connected component,
which the location of the critical point is known for some whose average size is just the correlation lerigth ¢ stays
distribution of the couplings. For€Q8J; <1 and for a sym- finite at the phase transition point then there is phase coex-
metric distribution P(J+J)=P(J-J), whereJ is the mean istence and thus the first-order nature of the transition per-

coupling, the critical point is given by self-duality §9] sists. This is the case in 3D for sufficiently weak disorder.
In 2D, however, for any small amount of continuous dis-
1 = order the correlation length is divergent at the transition
Te= EC =2J. (10 point, thus the phase transition softens to second order. This

is true in the thermodynamic limit, while in a finite system of
In the numerical calculations we used either a disc(bte linear sizeL weak disorder fluctuations could be not suffi-
moda) distribution, cient to break phase coexistence. The finite length stale,
. . =L, at which the breaking of phase coexistence takes place,
Po(J)=psJ-A-J)+(1-p)dJ+A-J), (11) can be estimated through extreme value statistics in the fol-
lowing way [20].

which is symmetric fop=1-p=1/2, or acontinuous(uni- At the transition point of the homogeneous system, i.e., at
form) distribution, B=1/(J2), we compare the stability of the empty graph with
— — a nonhomogeneous diagraB@y, in which all sites are iso-
_J12A for J-A<I<I+A lated except that of a domain & spins, which are fully
Pu(J) (12 : SR
0 otherwise. connected. The relative cost function is given by
In practical applications the latter distribution is approxi- w=g > Jj—S+1
mated by a set of discrete pedkee, for example, E¢19)], ijeGg

which is necessary since the algorithm works in terms of

_ o _ o Qli2y _
rational numbers. In the numerical calculations we collected =B 2 (‘]'J I+ BISz= aS )-S+1

ijeG
data about systems up to a linear dize256. The number of ”1/2 ©
realizations were about %0for the smaller systems and _ (- JalA) +1 (14)
around 18 for the largest one. To check universality, we zJ ’
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FIG. 2. Distribution of the breaking-up strength of bimodal dis-
order for a sizedL=64. The large individual peak &t/J=1/3 cor-
responds to an instability due to ax3® plaquette.

FIG. 1. Nonhomogeneous optimal diagram for the bimodal dis-
tribution at a sizd. =256, corresponding to the breaking up disor-

der,A/J=693/2693=0.2573. The connected part of the diagram is For the bimodal_ disor_der the qiStribUIion. of _the limiting
compact and percolates in one direction. values ofA for a given sizel =64 is shown in Fig. 2. The

distribution consists of several individual peaks; some of
_ those are related to instabilities due to small finite plaquettes.
where we used that the distribution is symmetric, withJ. The size of the smallest such plaquettejs given byl
Here in the second line the number of occupied edgeSsof ~ J/A, but the typical size of a connected domain varies
is Szminus the missing bonds at the perimeter of the fullybetweerl andL, thus there are strong sample-to-sample fluc-
connected domain, which is given a5"2 In the last equa-  tuations. We have checked the validity of the relation in Eq.
tion we used that we are at the critical temperature and in¢16) for the bimodal distribution and the result is plotted in
troduced the representatiaf};(J; —J)=AS"%, in terms of  Fig. 3. In the region of sizd. <128 we could work the
the Gaussian random variable which has zero mean and asymptotic behavior in Eq16) has not yet been reached; the
variance one. data points deviate from the expected straight line. The ef-
Next we consider all independent positions of the fully fective behavior of the breaking-up length for these sizes is
connected domain in the finite lattice, whose number is debetter describeche relative error is 0.00dy a dependence
noted byNsg, and look for the largest value of the cost func- In L~J/A, as seen in the inset. In the numerical calculation
tion, Wy, in these diagrams. According to extreme value sta/A goes to infinity faster than the prediction given above in
tistics [21] in the largeNg limit its value is related to the Eq. (16), because we implicitly consider in E¢l4) a Eu-
cumulative probability distributiorP(W>W,) and follows  clidean domair§, whereas the optimal cooperation algorithm
from the equation finds more complicated domains.

NsP(W > W) = 1. (15)

bimodal distribution —+—

Making use of the relation for a Gaussian variable, L
P(> L) =exp-¢3/2)/ L, we obtain from Eg.(15) that T
Wy,>0, i.e., the new diagram has a larger cost function than 100

the empty set, iNg>exg constJ/A)?]. Here we are inter- A

ested in the case whesis in the same order d<, i.e., when i
there is a complete breaking of the homogeneous diagram, ir P P
which caseNg scales afNs~ L2, with 0<a<2. Thus the 190
breaking-up length scale is jukt~L and given by - L

J 2 /_/"‘/ —r/
Iy~ 1o ex A(K) ; (16) * 54 26 28 3 82 34 36

JA

. 10 1 1 1 1 " " 1
wherel, is a reference length. 6 7 8 9 10 11 12 13

The relation betweet, and A has been studied numeri-
cally, by calculating the smallest at which the breaking of
phase coexistence in a system of dizakes place(We used FIG. 3. System sizd_ as a function of the inverse average
periodic boundary conditionsAn example of a nonhomoge- breaking-up disordet,J/A)2, for bimodal distribution(In the aver-
neous optimal diagram obtained in this way for the bimodalage ofJ/A we considered the contribution of all peak&or the
disorder is illustrated in Fig. 1. sizes we considered a fit witd/A) is better, as shown in the inset.

(J/A)2
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35

n — " equivalent to sites in the RFIM having a random field of
30| CONtinuous distribution ] J;—J and the perimeter contribution in E(L4) is related to

the domain-wall energy in the RFIM. Thy&] corresponds

to the ferromagnetic coupling in the RFIM. This mapping on
the level of the interface Hamiltonian is, however, restricted
to a smooth, nonfractal interface. Therefore it applies in the
same way in the stability analysis of the pure phases, result-
ing in a similar breaking-up length scale as in Etf). How-

ever the(fractal) structures of the clusters in the two prob-
lems are different. As a consequence the bulk and surface
fractal dimensiongand the related critical exponeptare

0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48

120 | Continuous distribution ] different in the two problems. For the RFIM the percolating
clusters have the same fractal properties as ordi(sitg)
100 T percolation, as has been demonstrated by numerical calcula-
g sof L=64 tions [22].
a
60
40} ] IV. SINGULARITIES OF THERMAL QUANTITIES FOR
20 DISCRETE AND CONTINUOUS DISORDER
0 oo ﬁL LA I et In this section we analyze the singularities of thermal
020 0.24 028 o082 0.36 0.40 quantities, in particular we consider the internal enexgyd

the specific heat,,. We start to rewrite Eq(6) for the free

FIG. 4. Distribution of the breaking-up strength of quasicontinu- energy of a given realization of disorder as
ous disorder composed ai=127 individual peaks in Eq19) for

two different sizes. For larger sizes the separated peaks are due to F=- C(G*)T— 2 ‘]ij’ 17
the discreteness of the disorder. ijec”

where the optimal seG” changes discontinuously as tem-
doerature is varied. For sufficiently high temperature,

peaks. As seen in Fig. 4 now the distribution of the breaking® Z M) <1, G is the empty set, whereas for low tem-
strengthA, for a relatively small siz& =16, is Gaussian-like; Peraturesg’zmin(J)>1, it is fully connected. In between,
however, for a size.=32, there is a secondary structure around the transition point, however, there are more frequent
reflecting the effect of discreteness in the representation dfhanges. In a finite system of sizgthe temperature interval
disorder. As can be seen in Table I, the measured breakirff Stability of the optimal set is found numerically to be
strengths are consistent with the result in Bi), unless for ~around~1/L for the bimodal distribution. As a consequence
the two larger sizes, where the effect of discreteness of thi#! 2 finite system the free energy is a piecewise linear func-
distribution becomes significant. tion of the temperature, whose sloftee entropyc(G')] is

In the numerical calculations on the critical properties ofmonotonously increasing with the temperature. From Eq.
the RBPM, whose results are reported in the following sec{17) the internal energy is obtained by derivation, which for
tions, we always choose the disorder strong enough, so thatgiven sample is
the relationL > 1, is satisfied.

At this point we comment on a relation between the E=- X Jij-
RBPM in the largeg limit and the random-field Ising model
(RFIM) at T=0, which has already been observed by CardyThis is a piecewise constant function of the temperature.
and Jacobsef®]. The form of the cost function in Eql4)is  Thus in a given sample, even for a finite system, the internal
identical to that of the RFIM, where bonds in the RBPM areenergy shows discontinuities. We illustrate this point in a

simple example in the Appendix, where the comparison be-

TABLE |. Breaking strengths for the continuous disordéar  tween the bimodal and the uniform distributions for a general

We have repeated this calculation by usinggaasjcon-
tinuous disorder, which is approximated by 127 discret

(18)
ijeG

the fourth columriy=1 is useq. simple triangle is given. In the givetfinite) sample the
phase transition point separates the two qualitatively differ-
<ﬁ> o (é)zlnE Samoles ent regimes in which the largest cluster is not percolating
J & J) L P (paramagnetic phagdrom that in which it is percolating

(ferromagnetic phage This phase transition in the given

16 0.34854 0.00016 0.3368 31324 sample is sharp and of first order. Later we shall use this

24 0.3275 0.0002 0.3408 13927 definition to locate the transition point of a series of samples

32 0.3142 0.0002 0.3422 14786 and study their distribution.

48 0.3133 0.0002 0.3801 15561 In the random system, as we mentioned before, the aver-

64 0.3075 0.0004 0.3932 2878 age quantities, such as the average free energy and its deriva-

tives, are of physical relevance. The averaging procedure
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E
1L

Bimodal distribution |

L=16 —
08| L=32
L=64 ........
L=128 e
06} 0. L=256 ———
041
02}
0 1 1 1 1 1
0.7 0.756 08 8 0.85 09 0.95 1

FIG. 5. Internal energy with bimodal disord¢gJ;=1/6 and
BJ,=5/6) as a function of the inverse temperatyse Note the
discontinuities which are present after averaging in the thermody-
namic limit, cf. at3=0.75. In the inset the discontinuous behavior
at the transition poinB=5/6 isillustrated(the lines from bottom to
top are for increasing size froin=32 to L=256).

generally acts to smear out the discontinuities in the internal
energy. In this respect the behavior of the averaged quantities

PHYSICAL REVIEW E 69, 056112(2004)

with independent plaquettes, where a fraction of 1/8 squares
have the above degeneracy, each of which gives a local jump
per site of /4. ThusAe=3T/32 which agrees reasonably
well with the measured jump in Fig. 5.

The average internal energy displays also a finite jump at
the transition point, as illustrated in the inset to Fig. 5. For
the bimodal distribution this jump comes from those con-
figurations in which a corner site has a strong and a weak
bond, so that the isolated corner and the connected corner
have the same contribution. The fraction of these corners is
finite at the transition point, which leads to a finite average
jump. Note, however, that the positions of these degenerate
corners are distributed overall in the sample, thus their con-
tribution is not exclusively related to the appearance of a
percolating cluster.

The jumps in the average internal energy will disappear, if
a continuous distribution of disorder is used. To illustrate it
we used a distribution, which consists ah2liscrete peaks
of equal weight:

m-1

Pu(d) = %n S {80-A-[(M=-1)/2-Kle-J)+5J+A
k=0

+[(m=-1)/2 -K]e = J)} (19

is different for the discrete and the continuous distributionsso that in the largen limit we approach a continuous distri-

(See also the example in the Appengliks illustrated in Fig.

bution. In Eq.(19) ¢ is a small number, and in the simulation

5 for the bimodal distribution several discontinuities remain,_ 5315 has been used. As shown in the inset to Fig. 6 the

in the average internal energy,
tribution the average internal energy is continuous, as illus:

whereas for the uniform dis-

jump in the average internal energy at the transition point
goes to zero as-1/m, which can be understood as follows.

trated in Fig. 6. For the discrete distribution the origin of the g 4 given corner site out af different coupling sets there

discontinuities is the degeneraciesght some temperature.
For example, consider a square lattice where the bonds fo[-
low the bimodal distribution in Eq11). In this lattice let us

re onlym for which the degeneracy, as described for the
imodal distribution, holds. Therefore the average jump
should scale with Irh, as observed.

focus on an elementary square, whose bonds are all strong. Going back to the internal energy for the bimodal distri-

The sites of this plaquette are either nonconne¢i@dng a
contribution tof of 4T) or fully connectedwith a contribu-

bution we argue that the true singularity can be observed at
two sides of the transition point, i.e., &s>0" ort—07. In a

tion to f of T+4(J+A)]. These two situations are degeneratefinite system of lengtth., we expect a singularity in the form

atT:4/3(j+A). The average jump in the internal eneryg
at this temperature can be estimated by the approximation

i

1008 ’ T
e v L=64 -
08 A ¢ L=32 oo
. - xf Continuous distribution
2 e ’ f
g o6t |- f
g 01 02 03
- 1/m ‘é‘t
2 3
g 04} H
S H
D i
/
/
02 /
,'/I
0 e - ) ) )
0.7 0.8 1 1.1 1.2 1.3
B

e(t,L) =e(0",L) +t1*&(tLY"), t>o0, (20)

and similarly fort=<0. Here the specific heat exponedat
satisfies the hyperscaling relatiodv=2-a. The scaling
function€(y) is expected to be an odd function and, thus, for
small argument, to behave &g/) ~y. The scaling prediction

in EqQ. (20) has been checked and the results are shown in
Fig. 7. The scaling collapse of the data is indeed very good
with the exponentg=1 anda=0, as conjectured in Eq@9).
From the collapse of the points we estimatel within a
numerical precision of 1%.

As we mentioned below E¢18) one can define a transi-
tion temperaturd (L) in a given finite sample, which sepa-
rates the regime in which there is a percolating cluster from
that in which the largest cluster is not percolatifig/e note
that the percolating cluster at strong enough disorder, i.e.,
when I,<L, is fractal, in contrary to the cluster at the
breaking-up strength of disorder in Fig. 1, which is com-

FIG. 6. Internal energy foquasjcontinuous disorder as given Pact) The distribution of this temperature for bimodal and
in Eq.(19). In the inset the latent heat is plotted as a function of thecontinuous disorder is shown in Fig. 8 for periodic boundary
inverse number of the discrete peaks in the distribution.

conditions. For large systems one expects that the distribu-
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FIG. 7. Scaling plot of the singular part of the internal energy in ;g o.03 | @m{ i
Eq. (20) for bimodal disorder. In the plot there is one free parameter ™ 002 #' %

v for which we used the conjectured value in E8@).

&
0.01 M\ 1
tions approach a unique limiting curve in terms of the scaled . ; . ;

o}

B5-g.

variabler=t./ o, wheret.=T,(L) - T, is the distance from the 08 085 09 095 rs/1rs 108 11 15 g2
critical temperature in the infinite system and the variance of '
the distribution scales as(L) ~ L™, with some scaling ex- FIG. 9. Distribution of the finite-size transitiofpercolation

ponentw. As seen in Fig. 8 this limiting distributiorR(7), temperature for triangular and hexagonal lattices with continuous
has its maximum inr>0 and the integrated distribution is distribution of disorder for different sizes.
Psp=/o P(r)d7>1/2. As a matter of fadP s the spanning
probability given by the fraction of samples in which the that in a pure system the shift exponent is generally given by
largest cluster is percolating. Indeed a largmt finite) e=1/v, if the transition is of second order. If, however, the
sample percolating at>0 is also percolating af=T.. Ac- transition is of first order the critical exponent is given by its
cording to our numerical results for the bimodal distribution discontinuity fixed point valug23,24, which is v4=1/d.
Ps,=0.631). The finite-size corrections to the spanning This is in accordance with the exact result in the pure model,
probability are given byPg,—Pg{L)~At(L), where At(L) in which the shift in the transition temperature is given by
~L"¢ is the shift of the critical temperature. Here we note ~1/N, as given below Eq(13). From the available data we
could not make an independent estimatedgowever, the

o smoothed T, distribution data points seem to be consistent wathl/v=1 for bimodal
1 =18 —— | randomness. The exponentcould be determined also with
o.08 | jﬂ 588 —— | relatively large errors giving an estimaie=0.91).

L Bimodal distribution We have also studied the location of the critical point on
< 008 K 1 the triangular lattice, for which the coordination number is
< i z=3, and on the hexagonal lattice, which fzzs3/2. In Fig.

oot 9 we present the distribution of the finite-size critical tem-
o.02 | peratures for different values of the number of shefr the
L ] triangular and hexagonal lattices, with symmetric and con-
Q i 7 [ ——— tinuous disorder, and for periodic boundary conditions. Here
0.07 o . we take as reference temperaty8e=1/(zJ), which is the
006 1 : Eé% E ] transition point_for the nonrandom system and expected to be
| Continuous distribution a good approximation for symmetric disorder. The spanning
0.05 1 1 probability at the reference temperatureFg,=0.655) for
§ 0.04 | both kinds of lattices, which is close to that in the square
* oosl lattice.
0.02
0.01 r V. MAGNETIZATION AND THE FRACTAL PROPERTIES
0 OF THE PERCOLATING CLUSTER

Order and correlations in the RBPM are related to the
FIG. 8. Distribution of the finite-sizepercolation transition ~ Structure of clusters in the optimal €8t. As we explained in
temperature for the bimoda) and the continuougb) disorder for ~ Sec. Il at the critical point the largest cluster is a fractal, its

different sizes of the system. Note that the difference from the exadnassM scales with the linear size of the systdmas M
transition temperature is in the same order as the variance. ~L%. The structure of a typical optimal set is illustrated in
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100 |
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FIG. 10. Average mass of the percolating cluster within a region FIG. 11. Scaling plot of the cumulative distribution of the mass

of sizer at the critical point for the square and the hexagonal Iat'of the clusters at the critical point, using the conjectured value of

tices. The conjectured asymptotic behavior is indicated by a straigi}he fractal dimension in Eq7). In the inset the fractal dimension is
line. Inset: average mass of surface points of the percolating clust

in the square lattice eprresented as calculated from the ratio of the masses of the perco-
: qu Ice. lating clusters in different finite systengsee texxt

Fig. 1 of Ref.[16] for the bimodal distribution. Note that in
G" each connected component contains all the possibl

. ed cq . 0SSIE, (7).
_edges, since the |nclus_|on of any coupling wi>0 V.V'" . Next we studied the cumulative distribution of the mass
increase the cost function. The topology of clusters in ordi-

nary bond percolating is evidently different, since they con-Of the clustersR(M, L), which measures the fraction of clus-

tain all the strong bonds but none of the weak ones. ters havr:nglzt least a m_asi Mfl.)Ar::cordmg to scaling theory
We checked numerically that the largest cluster is indeeézs] It should asymptotically behave as

a fractal by measuring the number of points in the cluster, . d

wu(r,L), which are at most at distangefrom a reference RIM,L) = MR(M/LT) (22

point. Similarly we measured the number of points in thewith 7=(2-d;)/d;. Note that the scaling relation in E(22)

cluster in the distance betweer1 andr: s(r,L)= u(r contains only one free parametrwhich can be estimated

+1,L)-u(r,L). Here we performed averagin@ over the from an optimal scaling collapse of the distributions calcu-

position of the reference point ariil) over the disorder re- lated for different sizes. As shown in Fig. 11 the scaling

alizations. Under a scaling transformatian:>r/b, u(r,L) collapse is excellent if the conjectured fractal dimension in

d;=1.81(1) in good agreement with the conjectured result in

ands(r,L) are expected to behave as Eq.(7) is used. By analyzing the accuracy of the collapse we
obtained an estimatel;=1.8105), in very good agreement
w(r,L) = b%u(r/b,L/b) with the conjectured value.

We close this section by studying the surface magnetiza-
tion of the model. Using open boundary conditions we mea-
s(r,L) = b%s(r/b, L/b), (21)  sure the average mass of the surface sites belonging to the
largest clustenM,. According to considerations in Sec. Il in a
Now in the first equation takin=r we obtain u(r,L) finite system at ttle critica! point this should asymptqtically
=r%%(L/r), thus in a log-log plot one should obtain a behave asvis~ LY. According to the data presented in the

straight line forL>r. As seen in Fig. 10 this relation is inset to Fig. 10 the surface fractal dimension is givendpy
indeed satisfied both for the square and for the hexagonal0-49%10), which is in good agreement with the conjectured
lattices, in both cases—within the error of the calculation—Value in Eq.(8).

having the same asymptotic slopes, which are compatible

W'tTt.]Ehe tccl’mecﬁ”“?d rff“'t. N Etﬂ|7)- we a"T’O ]Perftorlm defd @ V], ANISOTROPIC RANDOMNESS AND RELATION WITH
multirractal analysis snowing only a Single fractal Imen- THE STRONG DISORDER FIXED POINT OF

sion. . . _ _ RANDOM QUANTUM CHAINS
To have a more precise estimate of the fractal dimension

we calculated s(r,L) for finite systems of sizesL In this section the random bond Potts model is related to
=16, 32, 64, 128, and 256. Comparing results of two conanother problem of statistical physics, which has partially
secutive sites we obtainefi from the second equation of Eq. exact results about its critical properties. The analogies and
(21) by settingb=2. The effective fractal dimensions as plot- relations between the models will be used to conjecture the
ted in the inset to Fig. 11 have only weak. andL depen- values of the critical exponents in the random bond Potts
dences, and from the asymptotic behavior one can estimateodel, which are already announced in EG3—(9).
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The problem we consider first is the Potts model withimagine that at the fixed point of the anisotropic problem we
correlated bond disorder, in which the vertical bonds are conlet the couplings to be random also in the vertical direction.
stant denoted by, whereas the horizontal couplings have In this way translational symmetry in the vertical direction is
the same value in a given columirs1,2, ... L, denoted by broken and in the originally homogeneous strips connected
J,. Here theJ; are i.i.d. random variables and in the following and disconnected parts will appear. At the critical point these

we chooseJ;=J. This model, which for Ising spins is the WO (creation and destructignprocesses are symmetric,
well-known McCoy-Wu model[3], is translationally sym- therefore it is pl_ausm_le to assume that the mass of the largest
metric in the vertical direction. Consequently the optimal sefcluster stays invariant. Thusl~L;x L*> ~L%, from

has a striplike structure, and the 2D diagr@is uniquely ~ Which the value of the fractal dimensiah=2-x, as an-
characterized by its 1D cut, denoted fpyThe cost function Nnounced in Eq(7) follows. Repeating this argument for a
of the problem can be written a#(G)=L,(g), where the surface cluster we obtain the result in E8). Another, and

size of the system in the verticgiorizonta) direction isL, related, assumption is that the correlation volume, i.e., the
~L(L) and surface of the largest cluster, grows in the same way in the

two problems, as the transition point iszapprc2>ached. This
1 — means thatV(t) ~ &(t)&, (1) ~ L[|+ ~ &t)2~|t|"2, from
w(g):cl(g)+fuc2(g)+,82 Jj+ BL-c(@] (23 which v=v,/2=1 fHoIIows, in Haccordance with the an-
hes nounced result in Eq9).
is the cost function of the 1D problem. Heog(g) is the
number of isolated points anch(g) is the number of con-
nected diagrams which have at least two sites. In the thermo-
dynamic limit the second term in the rhs is negligible and  One of the most spectacular effects of quenched disorder
redefining the temperature we arrive to an equivalent cosg the rounding of first-order transitions. In 2D this phenom-

VII. CONCLUSION

function enon cannot be studied in a perturbative basis around the
~ ~ pure systems’ fixed point. In this paper we have demon-

¥(g) =c1(9) "'B_E Jij» (24)  strated that an almost complete understanding of this phe-

=g nomenon can be achieved in the other limiting case, when

with 732,8/(1—,8J_) and at the critical poinfi’jzl.The opti- the effect of disorder is strong and dominates the critical
mization problem in Eq24) will be the subject of a separate behav_lor. We argued that the appropriate system for th|§ pur-
publication pose is the random bond ferromagnetic Potts model in the
Next We. consider the extreme anisotrof#6] (time con- largeq limit, in which thermal fluctuations are strongly sup-
tinuum or Hamiltoniap limit of the strip-random Potts pressed. In the random cluster representation the properties
— ) of the system are related to the dominant diagram of the
model, where we led;/J— 0 and the transfer matrix of the

: . i ; - high-temperature expansion. At the critical point this dia-
model in the vertical direction is written &=exp(~77). gram is a self-similar fractal, giving a natural explanation of

Here 7 is the (infinitesima) lattice spacing and is the  {he diverging length scale, and its bulk and surface fractal
Hamiltonian of a random Potts chain in the presence of &imensions are related to the critical exponents of the tran-

transverse field24]: sition. We have introduced a plausible mapping between our
g-1 isotropic system and that of strictly correlated disorder,

H== 2 J8(s,S41) — > EE M!(, (25) which is isomorph with random quantum spin chains for

i i Ok=1 which the critical properties are known. The critical proper-

) ) . ) ties conjectured in this way are then checked by large scale
whereM;|s)=|s+1,modg). If the couplings in vertical lines  ;merical calculations based on a very efficient combinato-
vary randomly from line to line then the transverse fiehils 5| optimization algorithm. We have studied in detail the
are random variables, too. The fixed point of the 2D strip-y,ssiple differences in the results obtained for discrete or
random Potts model and that of the random quantum Poti§yntinuous disorder. For discrete randomness, such as the
chain with Hamiltonian in Eq(25) are isomorph, thus they pimodal one, which is frequently used in numerical calcula-
have the same set of critical exponents. The latter system hgg s the internal energy displays discontinuities, also the
been studied in detail by a strong disorder renormalizationyent heat is finite. This observation should make people

group method, which was originally introduced by Ma, Das- ¢4 tious while analyzing data obtained by the use of discrete
gupta, and HY27] and used later by Fish¢t7] and others  jisorder.

[28-3Q. This meth_od is assum.eld to give asymptotically €x- The results of this paper can be extended in several direc-
act results; in particular the critical exponents pr2 are  (jons, Including in the distribution of the couplings the val-

identical[28] and are given by17] uespJ; <0 andBJ; > 1 we obtain a system in which perco-

=2 —1-¢/2, X =1/2, 26 lation and rqndom bond effepts compete. This problem can
= XL ¢ X1 (26) also be studied by our optimization algorithm and the prop-
which also hold for the 2D strip-random model. erties of the stable fixed point can be calculated by analyzing

Having the critical behavior in the presence of correlatedthe fractal properties of the relevant diagrams. Another ex-
anisotropic randomness we try to relate it to the originaltension is to include negative couplings, thus a Potts spin-
problem, in which the disorder is isotropic. To do so weglass problem is obtained. This still can be formulated as an
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40 =5 - - - - - - a, b, andc (a=pJ,, etc). By simple inspection one finds that,
a5 e 3320 """" for a given triplet{a,b,c}, the free energy is
Gt S 2
>3o- q=10— 1+B@+b+7) |fa+b+csE
S5 e “BFand®=)
= 1 N % it . . ~ g ~
220 infinite — 3 if—<a+b+¢
) B
215} o~
E whena+b=<<¢ and
for —1— b T ( 1
N e 1+B@+b+7) if?:sl—g
O e e 1
~BFapclB)=) 24T iTA+D= =T
FIG. 12. Average internal energy as a function@for various if 1 <%+h
values ofg. In the inset the analyzed plaquette is shown, where the 3 1 /_3 =at
thick lines represent strong bon¢3=5) and the thin lines weak _ \ _
ones(J=1). whent<3a+b. We use the notatiofd,b,¢}={a,b,c} anda

<b<%T (i.e., the variables with the tilde are ordered in as-
optimization problem, which is most probably np-complete.cending ordex
Considering the ferromagnetic case one can try to perform a For the uniform distribution of disorder in E¢12) with
largeq expansion around the conjecturedly exact results. FOR_A=1/2 onefinds for theaverageinternal energy
the critical exponents the corrections are expected to go as

1/In g [15]. Finally, a further possible study is to clarify the 1, 5.3
" X . -=T"=-T°+—-, T<1
dynamical properties of the system and to show if there are 8 2
some relations with the ultraslow dynamics present in ran- 27 3
dom quantum spin chaifd7,31. E(T)={ - 2T*+8T3-9T?+ 5 1<T< 5
3
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APPENDIX 6 16 a 4 Tl 7%
Here we present two examples to illustrate the discontinu- 3 NE 1 43
ous nature of the internal energy in the-« limit. > 1 3 <T< > + 6
We start with a X 3 plaquette of the square lattice in E(T) :< ~ — -
which the couplings are 1 or 5 with the same probability. The 3 3 1 N \3 “T< 3 . V3
realization we investigate is shown in the inset to Fig. 12. To 4 8' 2 6 4 12
illustrate the approach tq—c we have calculated for dif- 21 3 3 3 3 3
ferent values ofg the internal energy as a function of the &= \_ 2L 724
reduced temperatur€l — T In ), as introduced below Eq. 16 16 4 12 4 12
(1). As seen in Fig. 12 for any finitg the internal energy is 3 3 \5
continuous and becomes discontinuous only in the « \E 4_1+1_2 <T.
limit.

Our second example is to illustrate the effect of roundingThis presents five discontinuities of width 0.079, 0.296,
due to averaging over disorder. We consider here an eleme:158, 0.671, and 0.296 at the temperatures 0.317, 0.423,
tary triangle in which the edges carry tf@ositive) weights:  0.789, 0.894, and 1.183, respectively.
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