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Entropy and information in neural spike trains: Progress on the sampling problem
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The major problem in information theoretic analysis of neural responses and other biological data is the
reliable estimation of entropy-like quantities from small samples. We apply a recently introduced Bayesian
entropy estimator to synthetic data inspired by experiments, and to real experimental spike trains. The estima-
tor performs admirably even very deep in the undersampled regime, where other techniques fail. This opens
new possibilities for the information theoretic analysis of experiments, and may be of general interest as an
example of learning from limited data.
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[. INTRODUCTION regularize learning of the underlying probability distributions
) ) o from the experiments. The question is if we can keep the
There has been considerable progress in using informgyenerality of our analysis by introducing the gentlest of regu-
tion theoretic methods to sharpen and to answer many quefgrizations for the abstract learning problem, or if we need
tions about the structure of the neural cqde-8]. Where  stronger assumptions about the structure of the neural code
classical experimental approaches have focused on mean ligself (for example, introducing a metric on the space of re-
sponses of neurons to relatively simple stimuli, informationsponseg$18,19).
theoretic methods have the power to quantify the responses A classical problem suggests that we may succeed even
to arbitrarily complex and even fully natural stimgi,10,  with very weak assumptions. Remember that one needs to
taking account of both the mean response and its variabilithave onlyN~ 23 people in a room before any two of them
in a rigorous way, independent of detailed modeling assumpare reasonably likely to share the same birthday. This is
tions. Measurements of entropy and information in spikemuch less tharkK=365, the number of possible birthdays.
trains also allow us to test directly the hypothesis that thelurning this around, we can estimate the number of possible
neural code adapts to the distribution of sensory inputs, opRirthdays by pollingN people and counting how often we

timizing the rate or efficiency of information transmission find coincidences. OncH is large enough to have observed
[11-15. a few of those, we can get a pretty good estimat& .of his

A problem with such measurements is that entropy and"””_l_uap%e” W;th a significant prob%blhty deNVKéKa
information depend explicitly on the full distribution of neu- € idea of estimating entropy by counting coincidences

. S . : as proposed long ago by M&0] for physical systems in
ral responses, just a limited sample of which is provided b%e microcanonical ensemble where distributions should be

experiments. In particular, we need to know the d|str|but|onuniform at fixed energy. Clearly, if we could generalize the

gf resfponsesl, to feach ?]t_lm(;{lus'l;n our gnls_embtljei)ang the NUNa idea to arbitrary distributions, then we would be able to
er ot samples from this 'S.m ‘4“0” Is limited by the num- explore a much wider variety of questions about information
ber of times the full set of stimuli can be repeated. For natu;,, the neural code. Here we argue that a simple and abstract

ral stimuli with long correlation times the time required to Bayesian prior, introduced in Ref21], comes close to the
present a useful “full set of stimuli” is long, limiting the (piactive. ' '

number of independent samples we can obtain from stable ' is well known that one needd~ K to estimate entropy
neural recordings. Furthermore, natural stimuli generate NeYmiversally with small additive or multiplicative errors

ral responses of high timing precision, and thus the space 9b5 >3 Thus the main question is: does a particular method
meaningful responses itself is very larg%10,16,17. These o0k well only for (possibly irrelevantabstract model prob-
factors make the sampling problem more serious as we MOVgms or can it also be trusted for natural data? Hence our

to more interesting and natural stimuli. goal is neither to search for potential theoretical limitations

A natural response to this problem is to give up the geny ihe approactithese must exist and have been foymbr

erality of a completely model independent information theo-, analyze the neural codghis will be left for the futurg.

retic approach. Some explicit help from models is required tqstead we aim at convincingly showing that the method of

Ref.[21] can generate reliable estimates of entropy well into
a classically undersampled regime for an experimentally rel-
*Electronic address: nemenman@Kkitp.ucsb.edu evant case of neurophysiological recordings.
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*Present address: Department of Physics, Indiana University, 727
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deruyter@indiana.edu probability distribution{p;},S=-=K,p; log,p;, where the in-

1. AN ESTIMATION STRATEGY
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dex i runs overK possibilities(e.g., K possible neural re- d§B'K)
sponsel In an experiment we observe that examples Prnsa(P) = f dg :
each possibilityi occurredn; times. If N>K, we approxi- dg

mate the probabilities by frequencigg~=fi=n;/N, and con- a6 5g:K) is the average entropy of distributions chosen

Ps(p). 3

struct a naive estimate of the entropy, from P, [21,28
K _
K)=é=yp(KB+1) - +1), 4
Snaive: _2 fi |ngfi- (1) Sﬂ ) g $0( B ) lﬁo(,B ) ( )
=1 where ¢i(x)=(d/dx)™? log,I"(x) are the polygamma func-

. tions.

menlslil?é?izc?o?ae)gtrrr#gt]e“E?lgﬂgoissggi]lﬁgg iss'nﬁsggebm?ﬁg Given this prior, we proceed in standard Bayesian fashion.
P 9 Y€ he probability of observing the date={n;} given the dis-

frequencies. Thus we will repla®,,e by SY- in what fol-

lows tribution p is

It is well know thatS"- underestimates the entrogf. K
Ref. [22]). With good samplindN>K), classical arguments P(n|p) = 11 p, (5)
due to Miller [24] show that the ML estimate should be i=1

corrected by a universal ter(i—1)/2N, and several groups

have used this correction in the analysis of neural data. I/"d then

practice, many bins may have truly zero probabi(fiyr ex- 1

ample, as a result of refractoriness; see bgloand the P(p[n) = P(n|p)Pnss(P) - = (6)

samples from the distribution might not be completely inde- P(n)

pendent. Thei®Mt still deviates from the correct answer by a

term «1/N, but the coefficient is no longer knowapriori.

Under these conditions one can heuristically verify and ex- P(n) :fdp P(n|p)Pnsa(P). (7)

trapolate the 1IN behavior from subsets of the available data

[4]. Alternatively, still agreeing on the N correction, one K m

can calculate its coefficienfinterpretable as an effective SB\m _

number of bind") for some classes of distributiof@5—27. (S8 = f dp(_z Pi Ingp‘) P(pIn). (8)

All of these approaches, however, work only when the sam-

pling errors are in some sense a small perturbation. Here we need to calculate the first two posterior moments of
If we want to make progress outside of the asymptoticallythe entropy,m=1, 2, in order to have an access to the en-

large N regime we need an estimator that does not have &opy estimate and to its variance as well.

perturbative expansion in W with S, as the zeroth order The Dirichlet priors allow all thgK dimensional inte-

term. The estimator of Ref21] has just this property. Recall grals overp to be done analytically, so that the computation

that Sy, is a limiting case of Bayesian estimation with Di- of S¥SB and of its posterior error reduces to just three nu-

richlet priors. Formally, we consider that the probability dis- merical one-dimensional integrals:

tributions p={p;} are themselves drawn from a distribution

Pg(p) of the form fdg p(g,n)sl”;‘(n)
L Tx K (G5 A — 9
= BDsl > pi-1 2
PoP)= 20550 l_{ o (El b ) 2 fdgp(g,n)
where the delta function enforces normalization of distribu-where
tions p and the partition functiorZ(B;K) normalizes the K
prior P4(p). Maximum likelihood estimation is Bayesian es- (&) = I'[KB()] I I'[ni+ B(&)] (10
timation with this prior in the limit3— 0, while the natural pre IIN+KB(9]iz; TIBE] '

“uniform” prior is 8=1. The key observation of Ref21] is

that while these priors are quite smooth on the spage tife ~ where the one-to-one relation betwegrand ¢ is given by
distributions drawn at random frof; all have very similar  EQ.(4), andSZQ(n) is the expectation value of thth entropy
entropies, with a variance that vanisheskabecomes large. moment at fixeds; the exact expression fon=1, 2 is given
Fundamentally, this is the origin of the sample size depenin Ref. [28].

dent bias in entropy estimation, and one might thus hope to Details of the NSB method can be found in Rdl,29,
correct the bias at its source. The goal then is to construct and the source code of the implementations in either Octave/
prior on the space of probability distributions which gener-C++ or plain C+ + is available from the authors. We draw
ates a nearly uniform distribution of entropies. Because thattention to several points.

entropy of distributions chosen from is sharply defined First, since the analysis is Bayesian, we obtain not only
and monotonically dependent on the paramegerwe can  S¥SE but also itsa posterioristandard deviationgS¥SE—an
come close to this goal by an average oger error bar on our estimate, see K#).
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Second, forN—« and N/K—0 the estimator admits Refractory spikes, 7'= 15 ms, 7= 0.5 ms
asymptotic analysis. The important parameter is the number R . —5 .
of coincidences\=N-K,, whereK; is the number of bins - Egg’ §f§16 .
with nonzero counts. IfA/N—const<1 (many coinci- o ML .
denceg then the standard saddle point evaluation of the in- < ML fit -
tegrals in Eq(4) is possible. Interestingly, the second deriva- g Strue
tive at the saddle iin?2)A to the leading order ih/N. The S N ﬁﬁﬁm—""—"“—_
second asymptotic can be obtained fdor O(N°) (few coin- . o |+ I 4 H MAMM/*‘*M
cidences Then P L
v | A 2
C .t '
SSB~ =X -1 +2 logN - iy(A), (12) ) A A
In2 05 1 15 2 25 3 35 4 45 5
lognV
5858~ {y(d), 12 e

. . L. i . FIG. 1. Entropy estimation for a model problem. Notice that the
whereC, is thg Euler's constant. This is particularly inter- ogtimator reaches the true value within the error bars as soon as
esting S'nC_eSN ® happens to have a finite limit fdk —o, N2 2S at which point coincidences start to occur with high prob-
thus allowing entropy estimation even for infiniter un-  apjlity. Slight overestimation fok > 10° is expectedsee text since

known) cardinalities. this distribution is atypical ifPysg.
Third, both of the above asymptotics show that the esti-

mation procedure relies ah to make its estimates; this is in
the spirit of Ref.[20].

Finally, S¥SB is unbiased if the distribution being learned
is typical inPg4(p) for someg, that is, its rank ordereipf)
plot is of the form

main purpose of this paper is to show that the NSB proce-
dure applied to natural and nature—inspired synthetic signals
comes close to this ideal over a wide rangeNskK, and
evenN< 25, The procedure thus is a viable tool for experi-
mental analysis.

BB(BKB-B(K-1)i [MKFP
g~1- K , (13
I1l. AMODEL PROBLEM
. It is important to test our techniques on a problem which
_ _ 1/B
q = [ﬂB(B’ KE-pIK=i+ 1)} , (14) captures some aspects of real world data yet is sufficiently
K well defined that we know the correct answer. We con-

. . . . structed synthetic spike trains where intervals between suc-
lais that are 100 Shotto long. then the estimator shoid CSSSIVe SPIes were independent and chosen from an expo-
over (undej estimate. While unaerestimation may be severenem'al distribution with a dead time or refra.ctory perloq of
(though always strict.ly smaller than that fé¥l), overesti- g=1.8 ms; the mean spike rate wes0.26 spikes/ms. This
9 s ) e . _corresponds to a rate of=r/(1-rg)=0.49 spikes/ms for the
mation is very mild, if present at all, in the most interesting f the sianal wh iKina | t prohibited by refrac-
regime 1< A <N. S¥SBis also unbiased for distributions that fart oft _erh3|gna W eretsp| Ing tls no Iprfothl Ihe' h y r.E ract
are typical in some weighted combinations7of for differ- oriness. . esef;z:rame ers art?[ dyplca Od bel '9 Sr‘l).' ﬁ rate,
ent B8's, in particular inPygg itself. However, the typical noISy regions of the experiment disCussed below, which pro-

Zipf plots in this case are more complicated and will bev'dlg;lm)ew?rr]ea:ﬁztggﬁ;ﬁr&gngirnggtri?]pé;fit'mv\?é'oenx-amine
detailed elsewhere. 9 4,

Before proceeding it is worth asking what we hope to::r;gt;z'ktﬁetrzg 'gngénsv?gsaogrggr?éfgjﬁl; (r)n; 2]nsd g'es
accomplish. Any reasonable estimator will converge to the P ' '

right answer in the limit of largé\. In particular, this is true cause of the re_fractory period each bin of sizean co_ntam_
for SSB, which is aconsistenBayesian estimatd5]. The at most one spike, and hence the neural response is a binary
central problem of entropy estimation is systematic biasWord with T/7=30 letters. The space of responses Kas

L 30 S i
which will cause us t@perhaps significanthyunder- or over- _2. . 10° possibilties. Of course, most of these have prob
estimate the information content of spike trains or the eﬁi_abll|ty exactly zero because of refractoriness, and the number

ciency of the neural code. The bias, which vanishesNor 82u$1(:jsesol|btl)e r;%iolngsesAncgns'rsot;maxw tc:kyk?e Ztr)]?rs;ralr:)tf IS
— oo, Will manifest itself as a systematic drift in plots of the y- ' PP Py

estimated value versus the sample size. A successful estim(‘i’g-is distribution is given by an appropriate correction to Eq.
tor would remove this bias as much as possible. Ideally w 2 Of_ Ref. [9], the entropy of a nonrefractory Poisson
thus hope to see an estimate which for all valuesNois process:

within its error bars from the correct answer. Nsncreases T B ror €707 _

the error bars should narrow, with relatively little variation of S= 5|~ In(1- e + 1- otor | = 1357 bits. (15)

the (mean estimate itself. When data are such that no reli-

able estimation is possible, the estimator should remain un- In Fig. 1 we show the results of entropy estimation for
certain, that is, the posterior variance should be large. Ththis model problem. As expected, the naive esting@lfe
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FIG. 2. Data from a fly motion sensitive neuron in a natural © NSB -
stimulus setting. Top: a 500 ms section of a 10 s angular velocity -
trace that was repeated 196 times. Bottom: raster plot showing the T 1
response to 30 consecutive trials; each dot marks the occurrence of - e
a spike. 2 e | ,
ST N T i
\% l:lh\E i
reaches its asymptotic behavior only whidn- 25, thus the Dol T o
1/N extrapolation becomes successfulNat 10* (the “ML T
fit” line on the ploy. In contrast, we see th&'S8 gives the o L . . . .
right answer within errors dtl~ 100. We can improve con- 0 004 008 012 016 02
vergence by providing the estimator with the “hint” that the (W) /N

number of possible respons&sis much smaller than the
upper limit of 2° but even without this hint we have excel-
lent entropy estimates alreadyNit- (25)Y/2. This is in accord
with expectations from Ma'‘s analysis @Mmicrocanonical
entropy estimatiori20]. However, here we achieve these re-
sults for a nonuniform distribution.

FIG. 3. Slice entropy vs sample size. Dashed line on both plots
is drawn at the value o8">%y_y _ to show that the estimator is
stable within its error bars even for very loW. Triangle corre-
sponds to the value 8- extrapolated taN— o from the four
largest values ol. First and second panels show examples of word
lengths for whichSy, can or cannot be reliably extrapolateg)'SB
is stable in both cases, shows Nalependent drift, and agrees with
IV. ANALYZING REAL DATA ML where the latter is reliable.

For a test on real neurophysiological data, we use recordmore. Refractoriness limits the number of these words which
ings from a wide field motion sensitive neur@Hl) in the  can occur with nonzero probabilitsas in our model prob-
visual system of the blowflgZalliphora vicina.While action  lem), but nonetheless we easily reach the limit where the
potentials from H1 were recorded, the fly rotated on a stepnumber of samples is substantially smaller than the number
per motor outside among the bushes, with time dependenif possible responses.
angular velocity representative of natural flight. Figure 2 pre- Let us start by looking at a single moment in tinte,
sents a sample of raw data from such an experirgs=e Ref. =1800 ms from the start of the repeated stimulus, as in Fig.
[10] for details. 2. If we consider a window of duratiom=16 ms at time

Following Ref. [4], the information content of a spike resolution 7=2 ms [37], we obtain the entropy estimates
train is the difference between its total entropy and the enshown in the first panel of Fig. 3. Notice that in this case we
tropy of neural responses to repeated presentations of thgtually have a total number of samples which is comparable
same stimulug36]. The latter is substantially more difficult to or larger than $it, and so the maximum likelihood esti-
to estimate. It is called the noise entrofysince it measures mate of the entropy is converging with the expectedN 1/
response variations that are uncorrelated with the sensotyehavior. The NSB estimate agrees with this extrapolation.
input. The noise in neurons depends on the stimulus itself—The crucial result is that the NSB estimate is correct within
there are, for example, stimuli which generate with certaintyerror bars across the whole range Mf there is a slight
zero spikes in a given window of time—and so we wig  variation in the mean estimate, but the main effect as we add
to mark the dependence on the titregt which we take a slice samples is that the error bars narrow around the correct an-
through the raster of responses. In this experiment the fubwer. In this case our estimation procedure has removed es-
stimulus was repeated 196 times, which actually is a relasentially all of the sample size dependent bias.
tively large number by the standards of neurophysiology. The As we open our window toT=30 ms, the number of
fly makes behavioral decisions based -©40-30 ms win-  possible responsésven considering refractoringss vastly
dows of its visual inpuff30], and under natural conditions larger than the number of samples. As we see in the second
the time resolution of the neural responses is of order 1 ms qsanel of Fig. 3, any attempt to extrapolate the ML estimate of
even lesg10], so that a meaningful analysis of neural re- entropy now requires some wishful thinking. Nonetheless, in
sponses must deal with binary words of length 10-30 olparallel with our results for the model problem, we find that

056111-4



ENTROPY AND INFORMATION IN NEURAL SPIKE.. PHYSICAL REVIEW E 69, 056111(2004)

N=175 different time slices span a range of entropies, over some
range we haveN>2S, and in this regime the entropy esti-
3 mate must be accuratas in the analysis of small above.
Throughout this range, the normalized deviations fall in a
2 narrow band with mean close to zero and a variance of order
INE 1, as expected if the only variations with the sample size
1 were random. Remarkably this pattern continues for larger
entropies S>1og,N=6.2 bits, demonstrating that our estima-
tor is stable even deep into the undersampled regime. This is
] consistent with the results obtained in our model problem,
but here we find the same answer for the real data.
) Note that Fig. 4 illustrates results witk less than one-
half the total number of samples, so we really are testing for
3 stability over a large range iN. This emphasizes that our
estimation procedure moves smoothly from the well sampled
0 5 nsg 10 15 into the undersampled regime without accumulating any
S clear signs of systematic error. The procedure collapses only
when the entropy is so large that the probability of observing
on SNSE(N,,) for N=75 and7=0.75 ms. Darker patches corre- the same response more than of@e&oincidencgbecomes

spond to higher probability. The band in the right part of the plot isneg“g'ble'
the normal distribution around zero with the standard deviation of 1

FIG. 4. Distribution of the normalized entropy error conditional

(the standard deviation of plotted conditional distributions averaged V. DISCUSSION
over S¥SB s about 0.7, which indicates a non-Gaussian form of the , ,
posterior for small number of coincidencéa9]). For values of The estimator we have explored here is constructed from

S¥SB up to about 12 bits the estimator performs remarkably well.2 Prior that has a nearly uniform distribution of entropies. It
For yet larger entropies, where the number of coincidence is just & Plausible that such a uniform prior would largely remove
few, the discrete nature of the estimated values is evident, and thi§e sample size dependent bias in entropy estimation, but it is
puts a bound on reliability oEVSE, crucial to test this experimentally. In particular, there are
infinitely many priors which are approximateljand even
the NSB estimate is stable within error bars across the fulexactly) uniform in entropy, and it is not clear which of them
range of availableN. will allow successful estimation in real world problems. We
For smallT we can compare the results of our Bayesianhave found that the NSB prior almost completely removed
estimation with an extrapolation of the ML estimate; eachthe bias in the model problefFig. 1). Further, for real data
moment in time relative to the repeated stimulus provides ain a regime where undersampling can be beaten down by
example. We have found that the results in the first panel oflata the bias is removed to yield agreement with the extrapo-
Fig. 3 are typical: in the regime where extrapolation of thelated ML estimator even at very small sample sideig. 3,
ML estimator is reliable, our estimator agrees within errorfirst panej. Finally and most crucially, the NSB estimation
bars over a broad range of sample sizes. More precisely, ffrocedure continues to perform smoothly and stably past the
we take the extrapolated ML estimate as the correct answenominal sampling limit ofN~25, all the way to the Ma
and measure the deviation 81 from this answer in units  cutoff N2~ 25 (Fig. 4). This opens the opportunity for rigor-
of the predicted error bar, we find that the mean square valueus analysis of entropy and information in spike trains under
of this normalized error is of order 1. This is as expected ifa much wider set of experimental conditions.
our estimation errors are random rather than systematic.
For largerT we do not have a calibration against ffex-
trapolategl S, but we can still ask if the estimator is stable,
within error bars, over a wide range ®f. To check this We thank J. Miller for important discussions, G. D. Le-
stability we treat the value o8B at N=N,,,,=196 as our wen for his help with the experiments, which were supported
best guess for the entropy and compute the normalized déy the NEC Research Institute, and the organizers of the
viation of the estimates at smaller values Mffrom this  NIC’03 workshop for providing a venue for a preliminary
guessg =[SVSB(N) - SVSB(N,,.,0 1/ SVSB(N). Again, each mo- presentation of this work. I.N. was supported by NSF Grant
ment in time is an example. Figure 4 shows the distributiolNo. PHY99-07949 to the Kavli Institute for Theoretical
of these normalized deviations conditional on the entropyPhysics. I.N. is also very thankful to the developers of the
estimate withN=75; this analysis is done for=0.75 ms, following Open Source software: GNU Emacs, GNU Oc-
with T in the range between 1.5 and 22.5 ms. Since théave, GNUplot, and teTEX.
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that, asN grows, the posterior probability concentrates around
unknown parameters of the true model that generated the data.
For finite parameter models, such as the one considered here,
only technical assumptions like positivity of the prior for all
parameter values, soundnégdsfferent parameters always cor-
respond to different distributiong31], and a few others are
needed for consistency. For nonparametric models, the situa-
tion is more complicated. There one also needs ultraviolet con-
vergence of the functional integrals defined by the prior
[32,33.

[36] It may happen that information is a small difference between

two large entropies. Then, due to statistical errors, methods
that estimate information directly will have an advantage over
NSB, which estimates entropies first. In our case, this is not a
problem since the information is roughly a half of the total
available entropy4].

[37] For our and many other neural systems, the spike timing can

be more accurate than the refractory period of roughly 2 ms
[6,10,34. For the current amount of data, discretizationrof
<1 ms and large enough will push the limits of all estima-
tion methods, including ours, that do not make explicit as-
sumptions about properties of the spike trains. Thus, to have
enough statistics to convincingly show validity of the NSB
approach, in this paper we choose0.75--2 ms, which is

still much shorter than other methods can handle. We leave
open the possibility that more information is contained in tim-
ing precision at finer scales.



