
Entropy and information in neural spike trains: Progress on the sampling problem

Ilya Nemenman,1,* William Bialek,2,† and Rob de Ruyter van Steveninck3,‡

1Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
2Department of Physics and the Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA

3Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
(Received 11 November 2003; published 24 May 2004)

The major problem in information theoretic analysis of neural responses and other biological data is the
reliable estimation of entropy-like quantities from small samples. We apply a recently introduced Bayesian
entropy estimator to synthetic data inspired by experiments, and to real experimental spike trains. The estima-
tor performs admirably even very deep in the undersampled regime, where other techniques fail. This opens
new possibilities for the information theoretic analysis of experiments, and may be of general interest as an
example of learning from limited data.
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I. INTRODUCTION

There has been considerable progress in using informa-
tion theoretic methods to sharpen and to answer many ques-
tions about the structure of the neural code[1–8]. Where
classical experimental approaches have focused on mean re-
sponses of neurons to relatively simple stimuli, information
theoretic methods have the power to quantify the responses
to arbitrarily complex and even fully natural stimuli[9,10],
taking account of both the mean response and its variability
in a rigorous way, independent of detailed modeling assump-
tions. Measurements of entropy and information in spike
trains also allow us to test directly the hypothesis that the
neural code adapts to the distribution of sensory inputs, op-
timizing the rate or efficiency of information transmission
[11–15].

A problem with such measurements is that entropy and
information depend explicitly on the full distribution of neu-
ral responses, just a limited sample of which is provided by
experiments. In particular, we need to know the distribution
of responses to each stimulus in our ensemble, and the num-
ber of samples from this distribution is limited by the num-
ber of times the full set of stimuli can be repeated. For natu-
ral stimuli with long correlation times the time required to
present a useful “full set of stimuli” is long, limiting the
number of independent samples we can obtain from stable
neural recordings. Furthermore, natural stimuli generate neu-
ral responses of high timing precision, and thus the space of
meaningful responses itself is very large[3,10,16,17]. These
factors make the sampling problem more serious as we move
to more interesting and natural stimuli.

A natural response to this problem is to give up the gen-
erality of a completely model independent information theo-
retic approach. Some explicit help from models is required to

regularize learning of the underlying probability distributions
from the experiments. The question is if we can keep the
generality of our analysis by introducing the gentlest of regu-
larizations for the abstract learning problem, or if we need
stronger assumptions about the structure of the neural code
itself (for example, introducing a metric on the space of re-
sponses[18,19]).

A classical problem suggests that we may succeed even
with very weak assumptions. Remember that one needs to
have onlyN,23 people in a room before any two of them
are reasonably likely to share the same birthday. This is
much less thanK=365, the number of possible birthdays.
Turning this around, we can estimate the number of possible
birthdays by pollingN people and counting how often we
find coincidences. OnceN is large enough to have observed
a few of those, we can get a pretty good estimate ofK. This
will happen with a significant probability forN,ÎK!K.

The idea of estimating entropy by counting coincidences
was proposed long ago by Ma[20] for physical systems in
the microcanonical ensemble where distributions should be
uniform at fixed energy. Clearly, if we could generalize the
Ma idea to arbitrary distributions, then we would be able to
explore a much wider variety of questions about information
in the neural code. Here we argue that a simple and abstract
Bayesian prior, introduced in Ref.[21], comes close to the
objective.

It is well known that one needsN,K to estimate entropy
universally with small additive or multiplicative errors
[22,23]. Thus the main question is: does a particular method
work well only for (possibly irrelevant) abstract model prob-
lems, or can it also be trusted for natural data? Hence our
goal is neither to search for potential theoretical limitations
of the approach(these must exist and have been found), nor
to analyze the neural code(this will be left for the future).
Instead we aim at convincingly showing that the method of
Ref. [21] can generate reliable estimates of entropy well into
a classically undersampled regime for an experimentally rel-
evant case of neurophysiological recordings.

II. AN ESTIMATION STRATEGY

Consider the problem of estimating the entropyS of a
probability distributionhpij ,S=−oi=1

K pi log2pi, where the in-
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dex i runs overK possibilities(e.g., K possible neural re-
sponses). In an experiment we observe that inN examples
each possibilityi occurredni times. If N@K, we approxi-
mate the probabilities by frequencies,pi < f i ;ni /N, and con-
struct a naive estimate of the entropy,

Snaive= − o
i=1

K

f i log2f i . s1d

This is also a maximum likelihood estimator, since the maxi-
mum likelihood estimate of the probabilities is given by the
frequencies. Thus we will replaceSnaive by SML in what fol-
lows.

It is well know thatSML underestimates the entropy(cf.
Ref. [22]). With good samplingsN@Kd, classical arguments
due to Miller [24] show that the ML estimate should be
corrected by a universal termsK−1d /2N, and several groups
have used this correction in the analysis of neural data. In
practice, many bins may have truly zero probability(for ex-
ample, as a result of refractoriness; see below), and the
samples from the distribution might not be completely inde-
pendent. ThenSML still deviates from the correct answer by a
term ~1/N, but the coefficient is no longer knowna priori.
Under these conditions one can heuristically verify and ex-
trapolate the 1/N behavior from subsets of the available data
[4]. Alternatively, still agreeing on the 1/N correction, one
can calculate its coefficient(interpretable as an effective
number of binsK*) for some classes of distributions[25–27].
All of these approaches, however, work only when the sam-
pling errors are in some sense a small perturbation.

If we want to make progress outside of the asymptotically
large N regime we need an estimator that does not have a
perturbative expansion in 1/N with SML as the zeroth order
term. The estimator of Ref.[21] has just this property. Recall
that SML is a limiting case of Bayesian estimation with Di-
richlet priors. Formally, we consider that the probability dis-
tributions p;hpij are themselves drawn from a distribution
Pbspd of the form

Pbspd =
1

Zsb;KdFp
i=1

K

pi
sb−1dGdSo

i=1

K

pi − 1D , s2d

where the delta function enforces normalization of distribu-
tions p and the partition functionZsb ;Kd normalizes the
prior Pbspd. Maximum likelihood estimation is Bayesian es-
timation with this prior in the limitb→0, while the natural
“uniform” prior is b=1. The key observation of Ref.[21] is
that while these priors are quite smooth on the space ofp, the
distributions drawn at random fromPb all have very similar
entropies, with a variance that vanishes asK becomes large.
Fundamentally, this is the origin of the sample size depen-
dent bias in entropy estimation, and one might thus hope to
correct the bias at its source. The goal then is to construct a
prior on the space of probability distributions which gener-
ates a nearly uniform distribution of entropies. Because the
entropy of distributions chosen fromPb is sharply defined
and monotonically dependent on the parameterb, we can
come close to this goal by an average overb,

PNSBspd ~ E db
dS̄sb;Kd

db
Pbspd. s3d

Here Ssb ;Kd is the average entropy of distributions chosen
from Pb [21,28],

Ssb;Kd ; j = c0sKb + 1d − c0sb + 1d, s4d

wherecmsxd=sd/dxdm+1 log2G sxd are the polygamma func-
tions.

Given this prior, we proceed in standard Bayesian fashion.
The probability of observing the datan;hnij given the dis-
tribution p is

Psnupd ~ p
i=1

K

pi
ni , s5d

and then

Pspund = PsnupdPNSBspd ·
1

Psnd
, s6d

Psnd =E dp PsnupdPNSBspd, s7d

sSNSBdm =E dpS− o
i=1

K

pi log2piDm

Pspund. s8d

Here we need to calculate the first two posterior moments of
the entropy,m=1, 2, in order to have an access to the en-
tropy estimate and to its variance as well.

The Dirichlet priors allow all the(K dimensional) inte-
grals overp to be done analytically, so that the computation
of SNSB and of its posterior error reduces to just three nu-
merical one-dimensional integrals:

sSNSBdm =
E dj rsj,ndSb

msnd

E dj rsj,nd
, s9d

where

rsj,nd =
GfKbsjdg

GfN + Kbsjdgpi=1

K
Gfni + bsjdg

Gfbsjdg
, s10d

where the one-to-one relation betweenb and j is given by
Eq. (4), andSb

msnd is the expectation value of themth entropy
moment at fixedb; the exact expression form=1, 2 is given
in Ref. [28].

Details of the NSB method can be found in Refs.[21,29],
and the source code of the implementations in either Octave/
C11 or plain C11 is available from the authors. We draw
attention to several points.

First, since the analysis is Bayesian, we obtain not only
SNSB but also itsa posterioristandard deviation,dSNSB—an
error bar on our estimate, see Eq.(9).
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Second, forN→` and N/K→0 the estimator admits
asymptotic analysis. The important parameter is the number
of coincidencesD=N−K1, whereK1 is the number of bins
with nonzero counts. IfD /N→const,1 (many coinci-
dences), then the standard saddle point evaluation of the in-
tegrals in Eq.(4) is possible. Interestingly, the second deriva-
tive at the saddle issln22dD to the leading order inD /N. The
second asymptotic can be obtained forD,OsN0d (few coin-
cidences). Then

SNSB <
Cg

ln2
− 1 + 2 log2N − c0sDd, s11d

dSNSB < Îc1sDd, s12d

whereCg is the Euler‘s constant. This is particularly inter-
esting sinceSNSB happens to have a finite limit forK→`,
thus allowing entropy estimation even for infinite(or un-
known) cardinalities.

Third, both of the above asymptotics show that the esti-
mation procedure relies onD to make its estimates; this is in
the spirit of Ref.[20].

Finally, SNSB is unbiased if the distribution being learned
is typical inPbspd for someb, that is, its rank ordered(Zipf)
plot is of the form

qi < 1 −FbBsb,Kb − bdsK − 1d i

K
G1/sKb−bd

, s13d

qi < FbBsb,Kb − bdsK − i + 1d
K

G1/b

, s14d

for i /K→0 and i /K→1, respectively. If the Zipf plot has
tails that are too short(too long), then the estimator should
over (under) estimate. While underestimation may be severe
(though always strictly smaller than that forSML), overesti-
mation is very mild, if present at all, in the most interesting
regime 1! D !N. SNSB is also unbiased for distributions that
are typical in some weighted combinations ofPb for differ-
ent b ’ s, in particular inPNSB itself. However, the typical
Zipf plots in this case are more complicated and will be
detailed elsewhere.

Before proceeding it is worth asking what we hope to
accomplish. Any reasonable estimator will converge to the
right answer in the limit of largeN. In particular, this is true
for SNSB, which is aconsistentBayesian estimator[35]. The
central problem of entropy estimation is systematic bias,
which will cause us to(perhaps significantly) under- or over-
estimate the information content of spike trains or the effi-
ciency of the neural code. The bias, which vanishes forN
→`, will manifest itself as a systematic drift in plots of the
estimated value versus the sample size. A successful estima-
tor would remove this bias as much as possible. Ideally we
thus hope to see an estimate which for all values ofN is
within its error bars from the correct answer. AsN increases
the error bars should narrow, with relatively little variation of
the (mean) estimate itself. When data are such that no reli-
able estimation is possible, the estimator should remain un-
certain, that is, the posterior variance should be large. The

main purpose of this paper is to show that the NSB proce-
dure applied to natural and nature–inspired synthetic signals
comes close to this ideal over a wide range ofN!K, and
evenN!2S. The procedure thus is a viable tool for experi-
mental analysis.

III. A MODEL PROBLEM

It is important to test our techniques on a problem which
captures some aspects of real world data yet is sufficiently
well defined that we know the correct answer. We con-
structed synthetic spike trains where intervals between suc-
cessive spikes were independent and chosen from an expo-
nential distribution with a dead time or refractory period of
g=1.8 ms; the mean spike rate wasr =0.26 spikes/ms. This
corresponds to a rate ofr0=r / s1−rgd=0.49 spikes/ms for the
part of the signal where spiking is not prohibited by refrac-
toriness. These parameters are typical of the high spike rate,
noisy regions of the experiment discussed below, which pro-
vide the greatest challenge for entropy estimation.

Following the scheme outlined in Ref.[4], we examine
the spike train in windows of durationT=15 ms and dis-
cretize the response with a time resolutiont=0.5 ms. Be-
cause of the refractory period each bin of sizet can contain
at most one spike, and hence the neural response is a binary
word with T/t=30 letters. The space of responses hasK
=230<109 possibilities. Of course, most of these have prob-
ability exactly zero because of refractoriness, and the number
of possible responses consistent with this constraint is
bounded by,216<105. An approximation to the entropy of
this distribution is given by an appropriate correction to Eq.
(3.21) of Ref. [9], the entropy of a nonrefractory Poisson
process:

S=
rT

ln2
F− lns1 − e−r0td +

r0t e−r0t

1 − e−r0tG = 13.57 bits. s15d

In Fig. 1 we show the results of entropy estimation for
this model problem. As expected, the naive estimateSML

FIG. 1. Entropy estimation for a model problem. Notice that the
estimator reaches the true value within the error bars as soon as
N2,2S, at which point coincidences start to occur with high prob-
ability. Slight overestimation forN.103 is expected(see text) since
this distribution is atypical inPNSB.
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reaches its asymptotic behavior only whenN.2S, thus the
1/N extrapolation becomes successful atN,104 (the “ML
fit” line on the plot). In contrast, we see thatSNSB gives the
right answer within errors atN,100. We can improve con-
vergence by providing the estimator with the “hint” that the
number of possible responsesK is much smaller than the
upper limit of 230, but even without this hint we have excel-
lent entropy estimates already atN,s2Sd1/2. This is in accord
with expectations from Ma‘s analysis of(microcanonical)
entropy estimation[20]. However, here we achieve these re-
sults for a nonuniform distribution.

IV. ANALYZING REAL DATA

For a test on real neurophysiological data, we use record-
ings from a wide field motion sensitive neuron(H1) in the
visual system of the blowflyCalliphora vicina.While action
potentials from H1 were recorded, the fly rotated on a step-
per motor outside among the bushes, with time dependent
angular velocity representative of natural flight. Figure 2 pre-
sents a sample of raw data from such an experiment(see Ref.
[10] for details).

Following Ref. [4], the information content of a spike
train is the difference between its total entropy and the en-
tropy of neural responses to repeated presentations of the
same stimulus[36]. The latter is substantially more difficult
to estimate. It is called the noise entropySn since it measures
response variations that are uncorrelated with the sensory
input. The noise in neurons depends on the stimulus itself—
there are, for example, stimuli which generate with certainty
zero spikes in a given window of time—and so we writeSnut
to mark the dependence on the timet at which we take a slice
through the raster of responses. In this experiment the full
stimulus was repeated 196 times, which actually is a rela-
tively large number by the standards of neurophysiology. The
fly makes behavioral decisions based on,10−30 ms win-
dows of its visual input[30], and under natural conditions
the time resolution of the neural responses is of order 1 ms or
even less[10], so that a meaningful analysis of neural re-
sponses must deal with binary words of length 10–30 or

more. Refractoriness limits the number of these words which
can occur with nonzero probability(as in our model prob-
lem), but nonetheless we easily reach the limit where the
number of samples is substantially smaller than the number
of possible responses.

Let us start by looking at a single moment in time,t
=1800 ms from the start of the repeated stimulus, as in Fig.
2. If we consider a window of durationT=16 ms at time
resolution t=2 ms [37], we obtain the entropy estimates
shown in the first panel of Fig. 3. Notice that in this case we
actually have a total number of samples which is comparable
to or larger than 2Snut, and so the maximum likelihood esti-
mate of the entropy is converging with the expected 1/N
behavior. The NSB estimate agrees with this extrapolation.
The crucial result is that the NSB estimate is correct within
error bars across the whole range ofN; there is a slight
variation in the mean estimate, but the main effect as we add
samples is that the error bars narrow around the correct an-
swer. In this case our estimation procedure has removed es-
sentially all of the sample size dependent bias.

As we open our window toT=30 ms, the number of
possible responses(even considering refractoriness) is vastly
larger than the number of samples. As we see in the second
panel of Fig. 3, any attempt to extrapolate the ML estimate of
entropy now requires some wishful thinking. Nonetheless, in
parallel with our results for the model problem, we find that

FIG. 2. Data from a fly motion sensitive neuron in a natural
stimulus setting. Top: a 500 ms section of a 10 s angular velocity
trace that was repeated 196 times. Bottom: raster plot showing the
response to 30 consecutive trials; each dot marks the occurrence of
a spike.

FIG. 3. Slice entropy vs sample size. Dashed line on both plots
is drawn at the value ofSNSBuN=Nmax

to show that the estimator is
stable within its error bars even for very lowN. Triangle corre-
sponds to the value ofSML extrapolated toN→` from the four
largest values ofN. First and second panels show examples of word
lengths for whichSML can or cannot be reliably extrapolated.SNSB

is stable in both cases, shows noN dependent drift, and agrees with
SML where the latter is reliable.
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the NSB estimate is stable within error bars across the full
range of availableN.

For smallT we can compare the results of our Bayesian
estimation with an extrapolation of the ML estimate; each
moment in time relative to the repeated stimulus provides an
example. We have found that the results in the first panel of
Fig. 3 are typical: in the regime where extrapolation of the
ML estimator is reliable, our estimator agrees within error
bars over a broad range of sample sizes. More precisely, if
we take the extrapolated ML estimate as the correct answer,
and measure the deviation ofSNSB from this answer in units
of the predicted error bar, we find that the mean square value
of this normalized error is of order 1. This is as expected if
our estimation errors are random rather than systematic.

For largerT we do not have a calibration against the(ex-
trapolated) SML, but we can still ask if the estimator is stable,
within error bars, over a wide range ofN. To check this
stability we treat the value ofSNSB at N=Nmax=196 as our
best guess for the entropy and compute the normalized de-
viation of the estimates at smaller values ofN from this
guess,«=fSNSBsNd−SNSBsNmaxdg /dSNSBsNd. Again, each mo-
ment in time is an example. Figure 4 shows the distribution
of these normalized deviations conditional on the entropy
estimate withN=75; this analysis is done fort=0.75 ms,
with T in the range between 1.5 and 22.5 ms. Since the

different time slices span a range of entropies, over some
range we haveN.2S, and in this regime the entropy esti-
mate must be accurate(as in the analysis of smallT above).
Throughout this range, the normalized deviations fall in a
narrow band with mean close to zero and a variance of order
1, as expected if the only variations with the sample size
were random. Remarkably this pattern continues for larger
entropies,S. log2N=6.2 bits, demonstrating that our estima-
tor is stable even deep into the undersampled regime. This is
consistent with the results obtained in our model problem,
but here we find the same answer for the real data.

Note that Fig. 4 illustrates results withN less than one-
half the total number of samples, so we really are testing for
stability over a large range inN. This emphasizes that our
estimation procedure moves smoothly from the well sampled
into the undersampled regime without accumulating any
clear signs of systematic error. The procedure collapses only
when the entropy is so large that the probability of observing
the same response more than once(a coincidence) becomes
negligible.

V. DISCUSSION

The estimator we have explored here is constructed from
a prior that has a nearly uniform distribution of entropies. It
is plausible that such a uniform prior would largely remove
the sample size dependent bias in entropy estimation, but it is
crucial to test this experimentally. In particular, there are
infinitely many priors which are approximately(and even
exactly) uniform in entropy, and it is not clear which of them
will allow successful estimation in real world problems. We
have found that the NSB prior almost completely removed
the bias in the model problem(Fig. 1). Further, for real data
in a regime where undersampling can be beaten down by
data the bias is removed to yield agreement with the extrapo-
lated ML estimator even at very small sample sizes(Fig. 3,
first panel). Finally and most crucially, the NSB estimation
procedure continues to perform smoothly and stably past the
nominal sampling limit ofN,2S, all the way to the Ma
cutoff N2,2S (Fig. 4). This opens the opportunity for rigor-
ous analysis of entropy and information in spike trains under
a much wider set of experimental conditions.
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FIG. 4. Distribution of the normalized entropy error conditional
on SNSBsNmaxd for N=75 andt=0.75 ms. Darker patches corre-
spond to higher probability. The band in the right part of the plot is
the normal distribution around zero with the standard deviation of 1
(the standard deviation of plotted conditional distributions averaged
overSNSB is about 0.7, which indicates a non-Gaussian form of the
posterior for small number of coincidences[29]). For values of
SNSB up to about 12 bits the estimator performs remarkably well.
For yet larger entropies, where the number of coincidence is just a
few, the discrete nature of the estimated values is evident, and this
puts a bound on reliability ofSNSB.
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[6,10,34]. For the current amount of data, discretization oft
!1 ms and large enoughT will push the limits of all estima-
tion methods, including ours, that do not make explicit as-
sumptions about properties of the spike trains. Thus, to have
enough statistics to convincingly show validity of the NSB
approach, in this paper we chooset=0.75̄ 2 ms, which is
still much shorter than other methods can handle. We leave
open the possibility that more information is contained in tim-
ing precision at finer scales.
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