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Small numerators cancelling small denominators of the high-temperature scaling variables:
A systematic explanation in arbitrary dimensions
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We describe a method to express the susceptibility and higher derivatives of the free energy in terms of the
scaling variablegWegner’s nonlinear scaling fielgdassociated with the high-temperatykT) fixed point of
the Dyson hierarchical model in arbitrary dimensions. We give a closed form solution of the linearized
problem. We check that up to order 7 in the HT expansion, all the ptéesall denominatorsy’that would
naively appear in some positive dimension are canceled by zé&wsll numeratorsj. The requirement of
continuity in the dimension can be used to lift ambiguities which appear in calculations at fixed dimension. We
show that the existence of a HT phase in the infinite volume limit for a continuous set of values of the
dimension, requires that this mechanism works to all orders. On the other hand, most poles at negative values
of the dimensional parametfwhere the free energy density is not well-defined, but renormalization group
(RG) flows can be studigdpersist and reflect the fact that for special negative values of the dimension,
finite-size corrections become leading terms. We show that the inverse problem is also free of small denomi-
nator problems and that the initial values of the scaling variables can be expressed in terms of the infinite
volume limit of the susceptibility and higher derivatives of the free energy. We discuss the existence of an
infinite number of conserved quantiti€RG invariant$ and their relevance for the calculation of universal
ratios of critical amplitudes.

DOI: 10.1103/PhysRevE.69.056108 PACS nun)er05.50:+q, 05.10--a, 11.10-2z, 64.60-i

[. INTRODUCTION in the vicinity of a fixed point, consists in constructing a new
In many problems, one faces the challenge of deriving th ystem of cpordinates where the' equations becom‘? linear.
macroscopic consequences of a microscopic theory. As wgoWwever, this type of procedure is often plagued with the
look at the problem at increasingly large scales, a sequencémall denominator problem” initially encountered by
of effective theories appear and under some appropriate cofoincaré in his study of perturbed integrable Ham_lltonlans.
ditions, an infinite volume limit can be taken. A general In the context of the RG method, these new coordinates are
method that allows us to construct these flows in the space &Rlled the scaling variabler the nonlinear scaling fielgls
theories is the renormalization grogBG) method[1]. The  and were first introduced by Wegnird]. Recently, we have
study of some RG fixed points and of the linearized flowsproposed amb initio calculation of the critical amplitudes in
close to these fixed points has produced a successful pictutee high-temperatureHT) phase of this mode]7]. In this
of the universal behavior in second order phase transitionsialculation, the critical amplitudes are RG invariant made
On the other hand, controlling the RG flows beyond the lin-out of the nonlinear scaling variables associated with Wil-
earized approximation and calculating the related nonuniverson’s nontrivial IR fixed poinandthe nonlinear scaling vari-
sal behavior are more difficult issues. This is unfortunatelyables associated with the HT fixed point. In this approach,
necessary to calculate the critical amplitudes. the two fixed points are in some approximate sense [di@l
As a first step, one can deal with the nonlinear RG flowso each others. The scaling variables associated with Wil-
for simplified models where the RG transformation can beson's fixed point have been extensively discussed, but much
implemented without major technical difficulty. One possi- |ess is known about those associated with the HT fixed point.
bility is to use approximate versions of the exact RG equawe emphasize that being able to use both kind of variables is
tions[2,3] such as the local potential approximatigh. An-  quite convenient for the study of the RG flows in the inter-
other possibility to address nonlinear questi¢is7] is to  mediate region between the two fixed points.
use Dyson’s hierarchical mod¢8,9]. In the following, we At first sight, the construction of the scaling variables
use this lattice model for which the b|0Ck-Spin method Canassociated Wlth the HT fixed point is impossib'e 'Iar;S
be easily implemented. This model is briefly reviewed inand more generally for rational valuesdf because some of
Sec. Il. Other approaches of nonlinear aspects of the R@he denominators are exactly zero. However, a numerical
flows can be found, for instance, in Refa0-13. study inD=3 showed17] that in all of the 36 zero denomi-
In the context of ordinary differential equations, a stan-nators considered, a zero numerator miraculously appears.
dard method14] to go beyond the linearized approximation Thjs strongly indicates the existence of a general mechanism
enabling us to overcome the small denominator problem.
In this paper, we show that such a mechanism exists and
*Also at the Obermann Center for Advanced Study, University ofis closely related to the existence of the infinite volume limit
lowa, lowa City, 1A 52242, USA. of the susceptibility and higher derivatives of the free energy.
Electronic address: yannick-meurice@uiowa.edu In addition, we address the issue that whenever zero numera-
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tor and denominator appear at the same time, the coefficientulations performed using independent methid®. In Sec.

of the nonlinear expansion appear to be undeterm(rge\.d X, we discuss the existence of an infinite number of con-
We show that this indeterminacy can be lifted by a proceduraserved quantities and their relevance for the calculation of
similar to the dimensional regularizatidi8] used for the universal ratios of critical amplitudes.

evaluation of Feynman diagrams. It should however be em-

phasized that it is not used here to take care of a UV prob-

lem, since we will be working with a lattice model. We will Il. DYSON'S HIERARCHICAL MODEL

consider the construction of the HT scaling field in arbitrary i , ) ) ,
dimensions. In our construction, the zero denominators ap- !N this section, we remind some basic facts about Dyson’s

pear as po'es at particu'ar dimensions and one can Study tﬁ\]ﬁrarchiC§| mOdel that W|” be needed in the fO”OWing. For

mechanism of cancellation close to a pole but not exactly afhore details, the reader may consult R¢£0,21. We con-

the pole. sider fields located at"@ax sites labeled withn,,,, indices
For Dyson’s hierarchical model, the dimensibrappears X, _....,X;, €ach being 0 or 1. We divide thé2xsites into

in a continuous parameter21~2P introduced explicitly in  two blocks, each containing'®<! sites. Ifx, =0, the site

Sec. Il. The infinite volume limit is well defined for s in the first box, ifx, =1, the site is in the second box and

0<c<2, or in other word >0. The linear variables asso- g4 on. The nonlocal part of the energy reads

ciated with the HT fixed point are introduced in Sec. Ill. A

closed form expression for the linear transformation which n

diagonalizes the linear RG transformation is given in arbi- H :_}§X<E)n D

trary dimensions. The restriction to the firdgt,, of these nl 2.5 \4/)

variables can be interpreted as a HT expansion. In Sec. 1V,

we expand the linear variables in terms of the scaling vari- . .

ables. We show that up to order 7 in the HT expansion, thérhe partition function for a constant sourde(or external

poles corresponding to zero denominators in positive dimenTagnetic field reads

sions (0<c<2) are exactly canceled by a zero at the nu-

merator. The coefficients of the expansion are then unam- - f -

biguously defined rational functions afwith no poles for 2 1:[ d¢XW(¢X)eXp( BH“'+J§ d)y)' @

0<c<2. Their poles appear only at negative values of the

dimension where the statistical mechanics model does naj/e call W(¢,)d¢, the local measure. The most common

have a well defined infinite volume limit. examples are the Ising measut(¢)=8(¢?-1) or the

The linear variables are linear combinations of the avery andau-Ginzburg measurd(¢)=exg-A¢>~B4%). The
age values of the total fieltly &,. In Sec. V, we use this fact g transformation consists in integrating over the fields

to reexpress the connected parts of the average values of t Eeping their sum constant in increasingly large boxes.

total field divided by the volume, or in other words, the afier each integration the fields are rescaled by a factor
susceptibility and the higher derivatives of the free energy

SR ; 1 \c/4 in order to keep the form dfi, identical, and the RG
density, in terms of the scaling variables. We show that up tq 5 nsformation generates a flow in the space of local mea-
order 7, the linear contribution is tlamly leading term in the

S C ; . sures.
infinite volume limit. In Sec. V1, we explain _why th'.s should Note that for a constant configuration where all the fields
happen to all orders. In Sec. VIl we explain why it guaran- —

tees the cancellations discussed in Sec. |V to all orders. take the same valug, the nonlocal part of the energy takes

Having showed that it is possible to construct a solutionthe value
of the RG flows in the HT phase, we then need to calculate

Nmay " 7N+L A8

the initial values of the scaling variables in terms of the local — o —21nmax c\"
measurgfor instance, a Ising measure or a Landau-Ginzburg Hpi(¢) = = 2"max ) > E > (3)

measurg used to specify the statistical mechanics model.
This amounts to inverting the previous expansions. In Sec. e -
VIII, we construct the scaling variables in terms of the Iinearm the infinite volume I|m|t(nme}x—>oc), the sum CONVETges
variables and show that the coefficients are free of poles foPn!Y for ¢/ <2. Proofs of the existence of the thermodynami-
0<c<2. We also show that, up to numerical constants, the&@! limit for a Ising measurg22,23 require that the energy
initial values of the scaling variables are the infinite volumedoes not scale faster tha_n the number of sites. This means
limit of the susceptibility and higher order derivatives of the €l <2 for the model considered here. _ ,
free energy density. This concludes our construction of a In the follqwmg,_we will make_ a change of varlables_m
complete solution of the RG flows in the HT phase. To be2rder to getrid off in front of Hy, in Eq. (2) and reabsorb it

precise, we have shown that various expansions can be cofft the chal measure. Ogr main objec_t of study Wi." be the
structed order by order without encountering any small dedenerating function(obtained by Fourier transforming the

nominator problems and that it is possible to study empiri/ocal measurg

cally the convergence of these series. In Sec. I1X, we show

with an example how everything we have done can be used Ra(K) =1 +apn 1k +a, k*+ -+, (4)
to calculate the HT expansion at finite volume. We also

check explicitly that it yields results in agreement with cal- with
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1 In P J .
By = (- B)'EG) ( Y ¢x)2' : (5) %801 = Midn, (10
’ 2"sites with
The RG transformation can be summarized in terms of the , < c\if 1\ (2
recursion formula Mi=2rp= 2(1) (' 5) @

1P H (VEk)T ©) for i<j and zero otherwise.
> .

R+1(kK) = Cn+1eXP{‘ e The diagonalization of\ is not too difficult because of
its upper triangular form. The spectrum is given by the diag-

We fix the normalization constai®, so thatR,(0)=1. Note ~ Onal elements:

that compared to Eq2.5) of Ref.[21], there is no factoB in N = 2(cl4) (12)
the argument of the exponential becaygdas been reab- © '
sorbed ink and thea,,; according to Eq(5). in agreement with Ref5]. We need to constru@®, a matrix

It is important to remember that in the notatiap,, the  of right eigenvectors, such that
first index refers to the number of RG steps and the second to i ,
the powers of the total field. Sometimes, the number of RG MRi =N\ R 13

stepsn will be omitted, sometimes the vector indewill be with no summation over). For convenience, the columns

replaced by boldface notations. We use the parametrizatio R are ordered as the eigenvaluess€<4 being as-

c¢=2172P gych that a free massless field scales in the Samg, od. We will then introduce the linear coordinates
way as in a usuadD-dimensional theory. For reference, Dys- defineci by i

on's parametrizatiorj8] was c=22"¢ The logarithm ofR
generates the connected zero-momentum Green’s functions an, :erhm, (14)
at finite volume. We emphasize that in the following, the
temperature dependence has been absorbed in the initi@nd which transform as
Ro(K). For instance, in the case of an Ising meastgk) ho ~xoh (15)
=cogVpBk). nelr = Aol
In the HT phase, polynomial truncations of ordgg,in  in the linear approximation. The matriR! and its inverse
k* provide rapidly converging approximatiori§,20. The  are also upper triangular. This implies tihgj is of orders',
RG flows can be expressed in terms of a quadratic map in st asa,, is. We will fix the normalization of the right
| max dimensional space eigenvectors irk in such way that all the diagonal elements
are 1. This guarantees thaf,=a,+O(8'"*Y).
= Unt Before entering into the technical details of the construc-
Ani1) ’ (7) ; i i
Un 0 tion of R, an important consequence of the upper triangular
. form of M should be noticed. The eigenvectors and eigen-
with values of M are independent of a possible truncation. In
o other words, the fact thakR is upper triangular means that
Uno =170 80,1, ®)  the polynomial truncations oR to orderk?mamentioned in
Sec. Il are indeed a projection in the subspace spun by the
first |2 €igenvectors oM.
- urv=o | We now construcR. We first notice that fof >1i,
T = (C/4)u+y( 1/2) [2(n+v)]! ) !

(u+v-0)!(20)! R{ _ (L)HP{', 16

for u+v= 0 and zero otherwise. We use “relativistic” nota- 4-c

tions. The greek indiceg and » go from 0 t0lyqa, While ith Pl c-independent For indices no larger than 7, the en-
latin indicesi, j go from 1 tol,,. Repeated indices mean tries of P are

summation unless specified differently. With the normaliza-

and

tion of Eq. (7), a,,0=1 for anyn and is not a dynamical 1 6 45 420 4725 62370 945945

variable. Note that a truncation to ordky,, is always im- 0 1 15 210 3150 51975 9459

plicit in the following. However, for reasons that will be

explained in the following section, there is no explicit depen- 00 1 28 630 13860 31531

dence inlyax 0 0 0O 1 45 1485 45045].
00 0 O 1 66 3003

Ill. THE LINEAR RG TRANSFORMATION 00 O O 0 1 91

00 0 O 0 0 1

In this section we discuss the linearized RG transforma-

tion near the HT fixed poing=0 for all i=1. For small  The matrix? has remarkable properties
departure from the HT fixed poirda,; the linear RG trans-

formation reads PiHpii2=ppi*2 (173

056108-3



Y. MEURICE PHYSICAL REVIEW E 69, 056108(2004)

PP+ PR =PIEEPS (ar Yot = MY 9

and higher order ones that as we will see are related to thehe matching conditions can be expressed as:
very simple form of the inverse matrix. We can condense

these relations into the more compact recursion P [hn(Y) ] =y (N Yn 1A oYn 2, - - ). (29
i T m+ . and yield the conditions
Amppa . Uppma ag Y
_ Ny
This implies the closed form expression S, = D_II (25
(YT @ i
= |- —= 19 with
P ( 2) @)1 (-1 19
= — APAg . im 2 A RO
Using Egs.(16) and (19), it is easy to check that, as a Nij _.Ei( A"Sp,Sak +S4111;[)‘(m>2A0 SP*)
consequence of the binomial formula, we have provided an . _
exact solution of Eq(13) with the required normalization + 2 SI,jH K{Pﬂ)quySp,kSq,r- (26)
(ones on the diagonglSimilarly, one can show that the in- jrktr=i m
verse has the very simple form
. o and
(RHI=(-D7R]. (20 .
Dii=Ap-1IND. 27
This equation does not hold for an arbitrary upper triangular L= 20 1;[ (m) 27

matrix. It implies the identitie$17) and many others.
For a given set of indicels we introduce the notation

IV. EXPRESSION OF THE LINEAR VARIABLES IN TERMS Iq(i) = E i ymd. (29
OF THE SCALING VARIABLES m

In this section, we express the linear variallies) terms  One sees thal, is the degree of the associated product of
of the (nonlineay scaling variabley, for which the approxi- scaling variables and, its order in the HT expansiofsince
mate multiplicative transformation of E¢15) becomes ex- vy, is also of order'). Given that all the indices are positive
act. If we useln(y,) as our new coordinates, the RG flows and that at least one index is not zero, one can see that if
become parallel straight lines. All the dynamics is then con-+k =i thenZ(j) <Z4(i) andZy(k) <Zy(i). Consequently, Eq.
tained in the mapping that we now proceed to construct. (26) yields a solution order by order iy, or in Z; (since the

We first rewrite the RG transformation in thwg coordi-  right-hand side is always contaisg of lower order inZ, or
nates. Starting with the basic K@), we replaceay by 1 and  7;) provided that none of the denominatdds; are exactly
a by Rfh,. This yields zero. The main goal of this paper is to investigate what hap-

) Ao +A|pqhn,phn,q o Egr; when some of the denominators happen to be exactly
M1+ 20, o+ AR, g Using the explicit expression of the eigenvalues @),
we can rewrite the denominators as

with coefficients calculable from Eq9). For instance
[ 7,0)
A —n'd Cc SfCc\t
API=(R7Y TR PR R, D= 2(Z> - 220(0(2) : (29)
In general, upper roman indices transform wighand the
lower ones with(R)™. By construction, the linear transfor-
mation is diagonal.

Using the parametrization=21"2P, the zero denominators
appear when

We then introduce the expansion D —1(D +2) = DZy(i) - (D + 2)Z,(i). (30)
_ i1
hi=y +i .E Stigip YIYZ -+ (22) Given thatZ, are integers, this can only occur at some ratio-
Lig...

nal values ofD. Ignoring temporarily this set of values, we
where the sums overs run from 0O to infinity in each vari- can say that for generic values ofthe denominator is not
able with at least two nonzero indices. In the following, we zero. Following the basic idea of dimensional regularization,
use the notationfor (iy,i,,...). More generally, vectors will we will then perform, order by order ifi;, the construction

be represented by boldface characters. The unknown coeffof s ; for a generic value o€ and discuss the limit where
cientss; in Eq. (22) are obtained by matching two expres- takes some special value at the end of the calculation.
sions ofhy.1), one obtained from the RG transformation of ~ We now determine the range of valuesZgfandZ; rel-

the h, given in Eq.(21), the other obtained by evolving the evant for our problem. In Eq22), we have assumed that
scaling variables according to the exact multiplicative transh,=y, for sufficiently small values of the scaling variables.
formation The linear problem is completely solved and we may assume
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TABLE I. Values ofQ, (c),Cc. and T, j(c) defined in the text.

I Iy Q0 Cerit. -Ti(0)

1 y12 2+c/-2+c 2 -2+C

1 y.2 -(4-20c+c?) /2 (-2+c)? 2 —4+¢?

1 Y1 Y2 -3 (-40+c?) /-8+c? 2.2 —8+c2

1 v, -120+156c-18c?+c? /2 (-2+¢)* 2 -8+¢

1 V12 Vo 3(-11520-640c+1184c%+288¢c3+40c*-26 c° 2 21/3 -16+c®
+3 ¢ /(-2+c)(-8+c?)(-16+c?)

1 V2 1536/ -32+c® 2 22/3 -32+c3

1 Y13 15 2 /3 -32+¢8

2 y.® 6+c/2 (-2+c) 1 1+c

2 Y1 Ys 14+c/-2+c 2 -2+C

2 yit —(-44-28c+c?) /4 (-2+¢)? 2 -2+c?

2 V12 Vo -2 (256+304c-112c¢2-14 c3+c%) /(-2+c)? (-8+¢) 2 -4+¢2

2 Y52 -3 (-104+c?) /-8+c? 22 -8+c2

2 Vi Y3 240/ -8+c? 2.2 -8+¢2

3 yit 10+c/6 (-2+c) 1/2 -(1/2)+c

3 yi? Y2 18+c/-2+c 1 ~1+c

3 Y2 16/-2+c 2 -2+C

3 Y1V 22+¢c/-2+c 2 —-2+C

To(i)>1. In addition, since both, andy, are of order3', we Cerit, = 4 X 2 ToOITL0-1] (35)

need Z,(i)=I. At lowest nontrivial order inB, we have

Z,(i)=I, and One should always keep in mind thai;; is a function of

both | andi. Inspection of Eqs(9) and (16) shows that the
numerator has a facta’V)(c—-4)'"710), Consequently

|
Dl,i = (3) (2 - Zzo(i)).

c \Ti-
In this special case, the only possible poles are=d1. How- ST <CT4> Q@) (36)
ever, the factofc/4)' at the denominator is exactly canceled

by the same factor appearing in t&¢% in Eq. (21). More ~ where Q,;(c) is a rational function ofc with no poles or
precisely zeroes at 0 or 4. We do not have a compact formula for these
| rational functions, however it is easy to calculate them using

_(cC N symbolic manipulation programs.
ey = (Z> <2hn,| + +2=| hn,phn'q) +O(B™. (&Y g Naively, we E/)vould ex%ec?t thad, ;(c) has a factofl, ;(c) at
P the denominator and other poles inherited from #heof

Using this, it is not difficult to prove by induction that if lower orders. The values @, ;(c) up to orders* are shown

() =l, in Table I. The naive expectations concerning the poles are
only observed in 9 cases out of the 17 considered. In the 8
1 other cases, some cancellations occur. For instance, there is
Si= lr_n[ m (32 no (c+2) at the denominator o, (3 o). More importantly,

wheneverc,;; <2, we observe a cancellation of all the fac-
It is thus clear that at the lowest nontrivial order, the coeffi-tors appearing inT,;(c). This occurs, for instance, for

cients have no singularities. Q230,..)» Where the factors—1 cancel. If we do the calcu-
We now discuss the cagg(i) >1. We have in general lations explicitly using Eq(26), we obtain five terms at the
| numerator:
c e
D= 2(:1) (Cerit) 20T, (33 ~ 113 363 3
N2 30, )= T ar_ to _
. 64 8(-4+c) 4(-4+c)(-2+c¢)
with
.\ 15¢* .\ c?
T = (co ' =), (34) 64-4+c) 8(-4+0)(-2+c)’
and while the denominator reads
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c? We define the finite volume susceptibility and their analog
Dy30.)= E(C‘ 1) for the higher order derivatives of the free enefggro mo-
mentum renormalized couplings
After reduction and factorization, the numerator becomes

(-1+c) 2 (6+0) @ <<22n5ites¢x)q>c

T16(-4+0) (-2+0) Xn = on ' (42)

N23.0,..)

canceling thgn—l at E{he dgn;)mugjator. \(\ée hzvte;]pulr%ed th%e restrict our considerations to the set of initial values such
same procedure up o ordgr and considered the POS™ ihat the infinite volume limit ofx(z') exists and is finite for

. ] n
sible terms. In 50 cases, we hag <2. In eac_h of these 50 every positivel. This means that we are not at another criti-
cases, we observed a complete cancellationT,gfc). It

th ble t oct ) h | cal point or more generally not on a critical hypersurface at
seems thus reasonable 1o conjecture Q]@(tc as No poies g boundary of the HT phase. We emphasize that the exis-
for |c|< 2. If this conjecture is correct, dimensional regular-

ot id ; ; ion for th tence of the infinite volume limit requires<0c<2. For
Ization provides a unique continuous expression for the Coz~. 5 ' the energy of a constant field configuration scales

efficients for anyc with [c| <2 and the model is "solvable”  ;qior than the number of sites and the model has no interest
using the recursion for the coefficients given by ER6). from a statistical mechanics point of view.

Note that for values ot real and positive, the correspon- : o
L . ’ e following, we assume that the initial valugg are
dence c=2"2P implies that the interval &.c<2 corre- g ’

such that
sponds to 8D < +«, The conjecture implies that for any
value ofc in this interval, we can construct analytical expres- lim +(@ = (@ (43)
sion ofa, (which contains all the thermodynamical quanti- ,HwX” X
ties) in terms ofay; (which depends on the initial energy
density: is finite. From Eq.(40), it is then clear that fom large
_ enough, we have the leading scaling
a1 = (R7YNY1(a0) \3y2(@p), - - ]. (37)

I'[n
The |n|t|_al values ofy(ay) have a simple interpretation dis o, o 2(_) =\D. (42)
cussed in Sec. VIII. 4

V. THE CONNECTED PARTS It is thus tempting to find a simple relationship betwegn

) , andy, . Indeed, such relation can be found at lowest non-
The generating function of the connected parts of the avijyial order from Eq.(32) which implies that

erage values of the total field reads

IN[R(K)] = aZ K2 +aS K4+ +++ (38) a’ =y, + 0", (45)

with This can be seen either by using the Mobius inversion for-
aim mula[24]
an = 2 ()OI - [ (39) ,

T4 ()= m yi= D (= D01 [74(0) - 1]!
We repeat that we are working exclusively in the HT phase Ha 0= _
and that we do not need to subtract powers of the magneti- 11 yJFJ 'm 1
zation. Using Eq(14) and the construction discussed in the x 11 > 0 —— (46)
previous section, we can then calculafg(y,). In addition, m \rn=m T Im!
we have

n or more simply by noticing that
c _ | l(c 21\ ¢
&= (- p) 5(;) << > ¢X> > . (40 ) §
) 2"sites ezl:l yik? = 2 kZ’[l(r)H )_/J_] (47)

|
with the connected part of the average val()égdefined in r i Ty

the usual way. For instance _ . N .
Similar formulas are used in multiparticle scattering theory

1/c\> Ac [25,26.
2= 82" (1/2)a§,1: (- 'B)ZZ<Z) <(22”sites¢x) > Equation(45) means that there are no nonlinear contribu-
tions of orderg to af. For instance, there are r;é or y1Ys
with terms ina3. This is expected because the nonlinear terms of
D a\c_ > a4\ D 2\ 2 order ' scale faster thag, (assuming @:c; 2). We we say
( ¢X> - ( ¢X> 3 ( d’X) : that a term “scale faster,” we mean that it goes to zero at a
2sites 2sites 2sites slower rate whem becomes large. In general, at each RG

(41)  step, a terndl,, yi,;," of order 8" is multiplied by
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7 ! _[c) obtain cancellations. The HT fixed poiRt=1 corresponds
200~ >Ny =2 to a local measur@/(¢) o« 8(¢) for which the correlations are
zero. It is intuitively clear that by taking measures narrowly
The strict inequality comes from the fact that for the nonlin-peaked at zero, one can avoid long range correlations. This
ear termsZy(i)>1. It is thus clear that nonlinear terms of continuity argument can probably be made rigorous by using
order ' would spoil the HT scaling of Eq44) and contra-  Banach spaces as in Ref6,22. We conclude that the coef-
dict the existence of a infinite volume limit. ficients t;; in Eq. (48) of the terms with G<cgy (1,i)<2
For higher order terms, the sign of the denominddr  must vanish identically.
introduced in Eq(27) tells us whether or not the term scales
faster or slower than the linear term. With our sign conven-
tion, c> it (I,i), meansD, ;<0 and the term spoils the HT
scaling Eq.(44). Since the coefficients are rational functions  We are now in position to show that the small denomina-
of ¢, they cannot vanish suddenly whenbecomes larger tor problem can be evaded for anysuch that 6<c<2 and
than cgt (1,i). Consequently if 8<cgy; (1,i) <2, the coeffi-  that the solution of the RG flows problem suggested in Eq.
cient of the corresponding term is expected to vanish identi¢37) can be constructed safely order by order. In Sec. V, we
cally. have constructed thaf in terms of the previously calculated
We have checked that this argument is consistent with oug,. However we could have proceeded directly, writag, |
previous explicit calculations. We have used E@9) and  in terms of theaﬁ,ﬂ
(14) and the already calculated coefficients in E22) to

VII. THE ABSENCE OF POLES FOR 0 <c<2

calculate aﬁ+1,|:M:(aﬁ,k+ > v:‘qaﬁ'kaﬁ,q+-~~ . (49)
. k+g=1
af=y+ X2 Liyivz..., (48) . ‘ ,
iZy()> The coefficientsy;® and the higher order ones can be ob-

tained by using the expansion of E&8) in the logarithm of

Eq. (6) and expanding order by order &f. The series does
not terminate. The linear transformation is the same as before
becausey’ anda only differ by nonlinear terms. Using

up to order 7. For all the 50 terms with<Oc;; <2, we
found that the correspondirtg; are identically zero.

VI. THE HT PHASE

Cc I”C
In the preceding section, we have arguatd checked an) =Rihn, (50)
explicitly up to order 7 that terms that scale faster than thewe obtain
linear term forcg;; <c<2 have a zero coefficient. In this
section, we discuss more carefully some aspects of the argu- ¢ c GC C
ment and explain that having such terms nonzero would re- Py = Moyhny + k;q; w g+ - (51)

sult in serious inconsistency.
First of all, the existence of a HT phase is well estab-\ye then introduce the expansion

lished. The existence of a infinite volume lini22] and the

absence of spontaneous magnetization for sufficiently high he=y + > SlC_Hyim (52)

temperaturg8] can be shown rigorously for9c<2 and a = o>l m

Ising measure. Bounds on the free energy deri&8}, can

be established for €c<2 and measures with a compact and obtain

support. The argument should also apply to measures that

can be well approximated by measures with a compact sup- c _ N

port {see Eq.(3) and the argumenf27] that for Landau- S = D, (53
Ginzburg measures, the restriction|t < ¢, l€ads to ex- ’
ponentially controllable errofs with Nf; given by a formula similar to E(26), except that it

It is thus reasonable to assume that there exists somdoes not terminate. A detailed analysis shows that the two
neighborhood of the HT fixed point where the infinite vol- formulas have in common that the numerator depends only
ume limit of the susceptibility and higher order derivativeson coefficients of strictly lower orders i, and Eq.(53) can
[see Eq(43)] exist. Terms scaling faster than the linear termbe used order by order to construct Etﬁpfor generic values
seem to contradict the existence of these infinite volume limof c.
its. However, we should exclude the possibility that several SinceR™! is upper triangular, we see from EO) that
terms(scaling identically cancel each others. The existencehf is equal toa}” plus terms which go to zero faster. Conse-
of universal ratio of amplitudes means that we cannot inquently, for largen, the leading scaling is
general pick arbitrary initial values for the scaling variables.

However, such constraints apply for large values of the HT hf,yl o )\ﬂ). (59
scaling variables. On the other hand, for arbitrarily small

values of the HT scaling variables, one should be able td-ollowing reasonings used before, this implies that terms in
make independent variations of each variable while stayinghe expansion Eq(52) that scale faster thay, for any

in the HT phase. This prevents the fine tuning required td< c< 2 should have a vanishing coefficient. In other words:
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0 < cgit(li) <20 s7;=0. Ni+s,;+X,;=0,

Given the specific form of the, given in Eq.(53), the ht with X;; linear in s and multilinear inr of stric_tly lower
have no poles for & c< 2. Theaf being linear combmaﬂons order. One can then construgf order by order without ever
of h® and thea, being linear combinations of products ff, creating a pole in the range<Oc< 2. At lowest nontrivial
we conclude that the expansion of thein terms of the Order, we have

scaling variables have also no poles fox0<2, in agree-

ment with the conjecture stated in Sec. VI. = > (=120 Y7y0) - 1]! H ym +0O(B8"Y).
Again we see that there exists a unique continuous defi- lIl(|> I m Im!
nition of the scaling variables that can be used at particular (59)

values ofc where the denominator is exactly zero. From a ) ) )

practical point of view, the calculation at fixedof thesf; is A more detailed analysis shows that for higher orders
easier than the calculation of tisg, because no limit needs c \Z-

to be taken explicitly. Thes’; being rational function ot ri= (—) Y;i(c), (60
they cannot be zero everywhere except at isolated values. c-4

Consequently, we can set to zero #ighavingceit(1.1) <2 with Y,;(c) having poles only for Zc<4. The values of
even at values of whereD,;=0. Y,i(c) up to order 4 are given in Table II.

VIIl. THE INITIAL VALUE PROBLEM IX. THE HT EXPANSION

We now return to Eq(37). In order to complete our so-
lution of the problem, namely, expressiagin terms of their
initial valuesa,y, we need to calculatg(a).

Before doing this, we want to show that the initial values
Yo have a very simple interpretation. We have learned in the
preceding sections that,, is the only leading term ofam
whenn becomes large. If at a given<0c<2, a nonlinear

A simple application of the method presented here is the
calculation of the high-temperature expansion at finite vol-
ume. As a simple example, we consider the first order cor-
rection to the susceptibility for a Ising measufBy(k)

=cog/BK)]. Using the results found in the preceding sec-
tions, we obtain

terms scales exactly likg,, then by increasing slightly @ c no_ -2 2 5
(but keepingc< 2), we can make this term dominant in con- Xn = ?an 1 ﬂ Yoat 5o ( Yo,)
tradiction with the existence of the infinite volume limit.
Consequently, 6¢ n

A Y +4—C< )y02]+(’)/32)

lim\/ aﬂ —I|m)\ Wl =VYo,- (55)
R = 1+ by + O(B). (61)
From Eq.(40), we see that Using a 1=—p/2 anday ,= /24, we obtain
e __B_ Bt  Br2+0
Yoi= (=) EX (56) You= =5 " 44 -0 44-0)2-0
This means that the infinite volume limit of the susceptibility B?
and of the higher derivatives of the free energy density com- Yo2=~ 12’
pletely determine the RG flows in the HT phase. This also
means that the calculation gf, given ay, is nontrivial far ~ and consequently
away from the HT fixed point. However, we can take advan- 5 n n
tage of the fact that by, = c _C (E) + L(E) (62
(4-c)(2-c) 2-c\2 4-c\4
-n _
AiyYni = You (57) This is in agreement with results obtaingd®] using graphi-

. . . . . . cal methods.
to estimateyy using expansions valid at intermediate values
of n.

We now discuss the inversion question. We need to deter- X. RG INVARIANTS

mine the coefficients,; of the expansion o o .
In Hamiltonian mechanics, integrable systems vgjtte-

— . im grees of freedom hawg constants of motions arglperiodic
y|—h|+2 r"'H - (58) variables with independent periods depending on the con-
stants of motion. In the present case, time is discrete and
This can be done by replacing thieappearing in the expan- exponential decays replace the quasiperiodic behavior. For a
sion ofh; in Eq. (22) by Eq.(58). This yields an equation of truncation of dimension,,,, it is nevertheless possible to
the form constructl ,o,— 1 constants of motion:
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TABLE II. Values of Y, j(c), andT, ;(c) defined in the text.

| Iy, by Y,i(0) -T(c)
1 hy? -(_22;%) » —2+c
3 160-224c+44c+4C3H+C A2
1 hy T are
1 hlhz 3(—40+¢?) —8+¢2
-8 2
1 h.4 _(—229376+638976—364544t2—16076&3+10905®4+1164&5+Igﬁ4:6—5952:7+392:5+148:9+6c1°+011) —8+c3
! (_2+C)3(_8+02)(_§2+§)(_]é6+c3) v) 5 6. 74908409
1 hy?h, -6(24576-53246-1945@°+10496°+306&+800c5-57605-40cT+2¢%+%) —16+c3
(—2+c)(—8+c2)i—32+c3)(—16+c3)
L hy? 2% ~32+¢3
1 hihg -15 -32+c8
3 6tc _
2 hl —2+C 1+c
2 hih, —(%) -2+C
2 hl4 ~(608-1504+356c2+36c%+3c?) —24+¢2
2(—2+C)2(—8+gz) 3
2 hy?h, ~2(-704+1216-316-20c%*) —4+c2
(-2+0)%(-81c?)
2 hy2 3(-1044c?) —8+c2
By 2
2 hlh3 —8+4¢2 _8 +C
3 hy* —(10+c/-2+c) —(%)+C
3 h12h2 2(18+c) —1+c
“2+c
3 hy? 52 -2+c
3 hahg -(£9) -2+c
Yn, 2m
G=-2)! — =5 (63 w= . 67)
! (= 2y, ) TDOR2H In A, (

These quantities ara independent and we call them RG
invariants. We can calculate them mt 0. Using Eq.(56),
we obtain

If the oscillatory terms are very small, as noticed in Refs.
[16,28,29, we have the approximate universal ratios

A Gi(U) = A, 68
GI = (_ 1)|+1()((2))“_1)('3/2)+I ) (64) I( ) AI,O ( )
These constants can be calculated in an intermediate region

We can also calculate them at large enough values of ; s . . i
where the HT expansion works well. The minus sign haswhere the expansions in both scaling variables are Vy&lid

been introduced in order to hat >0 for D=3.

We now concentrate on the unstable direction of Wilson’s
fixed point. We set the relevant scaling variable associated
with this fixed point to a valuel which becomes our coor- ) ) )
dinate along the unstable direction and we set all the irrel- We have shown that the scaling variables corresponding

evant ones to zero. We cal(u) the corresponding value of to the HT fixed point of Dyso.n’s hierarchical mo_del can be
the ratio. Given that is a scaling variable and th&; is RG constructed order by order without small denominator prob-
invariant. we have lems. The ambiguity noticed befof&7] for calculations at

fixed values ofc can be raised by requiring the continuity in
c¢. Practical calculations at finite are most easily done by
following the explicit construction sketched in Sec. VIl for

. . . .__the connected part where no complicated limit is required.
with A, the eigenvalue corresponding to the unstable dlrec-l-he remaining poles for 2c=<4 reflect the degeneracy of

tion of Wilson's fixed point. Consequently, we have the FOU-y,e |inear spectrum at=4 or the fact that some finite size
rier expansion. corrections become leading effects for some value of 2
<c<4 (where the infinite volume limit does not exist
Gi(u) = > Aly,u‘“", (66) We have solved the linear problem in compact form but at
r this point no compact form is available for the nonlinear
problem. Even though we have “constants of motigthie
with RG invariant3, we do not have simple expressions for them

Xl. CONCLUSIONS

Gi(Aw) = Gy(w), (65)
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