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Common scaling patterns in intertrade times of U. S. stocks
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We analyze the sequence of time intervals between consecutive stock trades of thirty companies representing
eight sectors of the U.S. economy over a period of 4 yrs. For all companies we findittae probability
density function of intertrade times may be fit by a Weibull distributior), when appropriately rescaled the
probability densities of all companies collapse onto a single curve implying a universal functionaliform,
the intertrade times exhibit power-law correlated behavior within a trading day and a consistently greater
degree of correlation over larger time scales, in agreement with the correlation behavior of the absolute price
returns for the corresponding company, divd the magnitude series of intertrade time increments is charac-
terized by long-range power-law correlations suggesting the presence of nonlinear features in the trading
dynamics, while the sign series is anticorrelated at small scales. Our results suggest that independent of
industry sector, market capitalization and average level of trading activity, the series of intertrade times exhibit
possibly universal scaling patterns, which may relate to a common mechanism underlying the trading dynamics
of diverse companies. Further, our observation of long-range power-law correlations and a parallel with the
crossover in the scaling of absolute price returns for each individual stock, support the hypothesis that the
dynamics of transaction times may play a role in the process of price formation.
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Investigations of price dynamics of financial assets andar, we hypothesize that trading dynamics may carry features
indices have long been the key focus of economic researdindependent of individual company characteristics such as
[1-23. Recent studies, however, have turned to the informaindustry sector, level of trading activity, and market capitali-
tion offered by other aspects of the trading process such aation. We examine thirty stocks listed on the New York
volume of shares traded at each transac®h25 or num- ~ Stock Exchange(NYSE) from eight sectors of the U.S.
ber of trades in a unit timg27,26), and their possible relation €conomy: technology/communicatiord), pharmaceutical
to price formatior{ 7,28—31. Empirical observations suggest (6), retail and food8), automotive(2), oil (2), aerospaceél),

a relationship between price and trading activigg. 1). In ~ financial(4), and chemical$3). We study the time intervals
addition, the impact of a significant price change on the levePetween consecutive stock trades over a period of 4 yrs—
of trading activity can persist for much longer than the cor-January 1993 till December 1996—as recorded in the Trades
responding effect on the level of price fluctuatigfigs. a)  and Quotes databasdlYSE, New York, 1993 The thirty

and 1b)]. These features suggest that information may b&ompanies vary in their average market capitalization and
contained in the structure and temporal organization of tradexhibit different levels of trading activity with different num-
ing activity, and that a close analysis of trading dynamicgPers of trades over this periddable ). _

may offer quantitative insight into the complex mechanism  We first study the probability density function of ITT. The
driving price fluctuation§16,28. distribution changes as companies with more frequently

Recent studies have examined trading activity as medraded shares have a higher peak at shorter intertrade times,
sured by the average number of trades in a unit {i26e27. while more rarely traded companies have tails extended over
However, aggregation into uniform time intervals may affectlarger intertrade timegFig. 2). S
the ana|ysisl since Choosing a short unit time interval may .We find that the |nd|V|dU.a| probablllty dl.strlbutlons for all
result in many points with none or very few trades, artifi- thirty companies are well fit by a generalized homogeneous
cially altering the heteroskedasticity of the process, whileform—the Weibull distribution
using a long unit time interval averages out multiple trans- 51
actions, and the fine timing structure of the data can be lost P(x,7)= f(f) ex;{ _
[29]. To understand the dynamics of market activity on a ' T
trade-by-trade level, we consider the series of time intervals
between consecutive trades, the intertrade tithEE). Only ~ wheredis the stretched expone(dr shape parameteand 7
a few empirical studies of ITT have previously been carriedis the characteristic time scal€ig. 2(a)] [38]. Studies of
out, examining a single actively traded stock over a period oshort ITT sequences—IBM stock trades during November
a few monthg[29,32—34, rarely traded nineteenth century 1990 to January 199f29] and GE stock trades during Oc-
stocks[35], or foreign exchange transactiof6,37]. tober 1999 34]—suggest stretched exponential behavior for

Here we empirically investigate the statistical and scalinghe tails of the probability distributions, in agreement with
properties of ITT over extended periods of time. In particu-Eq. (1) [39]. The power-law prefactor in the Weibull form
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TABLE |. Descriptive statistics of the thirty U. S. stocks studied over the period 4 January 1993-31
December 1996. We include only intertrade times occurring during NYSE trading hours from 9.30 am until

4 pm EST, excluding public holidays and weekends. The period considered covers 1010 tradidiyl dzys.
represents average market capitalization over the period in billions of U.S. ddllEfs. is the average
intertrade interval over the period; and «, indicate the values of the scaling exponent characterizing
power-law correlations in ITT anfATT| over small and large times scales, is computed in the scaling
range 1X 10 ° to 5x 10 * for the first seventeen companies which have substantially less tfamaties,

and from 4x 10 ® to 2x 10~ “ for the remaining companies;, is computed in the scaling range<a0 2 to

10" ? for all companiegFigs. 3b) and 3c¢)].

(M.C.)

Number

(ITT) ay ay a; as
Company Symbol ($19 oftrades (se9 ITT ITT  |AITT| |AITT]
Sprint Corp. FON 12.4 362851 64 0.64 0.95 0.72 0.94
Union Carbide Corp. UK 4.4 387273 60 0.65 0.96 0.72 0.95
Morgan JP & Co. JPM 13.7 401213 58 0.61 0.89 0.68 0.88
Dow Chemical Co. DOW 18.4 411258 57 0.62 0.94 0.69 0.94
Chase Manhattan Corp. CMB 7.3 448801 52 0.66 0.94 0.71 0.94
3M MMM 24.8 449462 52 0.62 0.85 0.68 0.85
Texaco TX 18.4 457081 51 0.62 0.88 0.68 0.87
Archer Daniels Midland ADM 9.0 468148 50 0.63 0.98 0.68 0.97
Eli Lilly & Co. LLY 224 514899 45 0.65 0.94 0.68 0.94
Sara Lee Corp. SLE 13.4 527814 44 0.62 094 0.66 0.93
Du Pont DD 39.0 543724 43 0.62 0.88 0.66 0.88
Fed. Natl. Mort. Assoc. FNM 26.5 627313 37 0.64 0.89 0.67 0.88
Citicorp CClI 22.6 677484 34 0.66 0.92 0.69 0.92
Pfizer PFE 29.7 689705 34 0.64 0.89 0.67 0.89
Abbott Laboratories ABT 28.2 691877 34 0.64 0.88 0.67 0.87
Boeing BA 19.9 728779 32 0.65 0.94 0.67 0.94
Exxon XON 87.5 750298 31 0.63 0.88 0.65 0.86
Johnson & Johnson JINJ 41.6 1001549 23 0.63 0.92 0.71 0.92
Home Depot HD 20.7 1103037 21 0.62 1.03 0.68 1.04
Bristol Myers Squibb BMY 35.1 1121714 21 0.62 0091 0.68 0.90
General Motors Corp. GM 35.6 1130452 21 0.64 0.95 0.69 0.95
Chrysler Corp. C 18.4 1231979 19 0.65 0.95 0.70 0.95
Coca Cola KO 77.0 1244660 19 0.63 0.99 0.68 0.98
General Electric GE 101.7 1374682 17 0.61 0.90 0.66 0.91
Philip Morris MO 60.2 1527659 15 0.64 1.06 0.66 1.06
IBM IBM 454 1677319 14 0.65 0.94 0.67 0.94
AT&T T 82.1 1689767 14 0.64 1.04 0.66 1.04
Wal Mart WMT 58.2 1794160 13 0.66 1.01 0.68 1.01
Merck & Co. MRK 56.9 2055443 11 0.65 0.94 0.66 0.94
Motorola MOT 30.4 2204059 11 0.65 1.04 0.66 1.04
accounts for the steepérelative to the stretched exponen- =—1 ands=—1. Data collapsing is an important property

tial) trend in the distribution at small ITT values. This func- of generalized homogeneous functions: instead of data for

tional form is markedly different to the power-law form of P(x,7) falling on a family of curves, one for each value ©f

the distribution of number of stock trades in a unit time data points collapse onto a single curve given by the scaling

reported previously27]. function
Since different companies have different average inter-

trade intervalgITT) (Table I), they are also characterized by

a different parameter. A function P(x,7) is a generalized

homogeneous function if there exist two numberand s,

termed scaling parameters, such that, for all positive value\§vhere the number of independent variables is reduced by
of the parametex,

defining the scaled variabfe=x/r.

To test the hypothesis that there is a possibly universal
structure to the intertrade time dynamics of diverse compa-
Generalized homogenous functions are defined as solutiomges, we rescale the distributions. We find that for all com-
of this functional equationP(x,7) satisfies Eq(2) with r panies, data conform to a single scaled plot—“data collapse”

=1P(x,7),

-~ =[X
P(X)EP(;,l (3

P(N"X,N357)=NP(X,7). (2)
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FIG. 1. (a) Price of AT&T stock over three weeks in September 10_3 u
1995 (5. 10* trades. On 20 September 1995, AT&T announced =
their intent to restructure into three separate companies, leadingtoa =
jump in the stock price. The price fluctuations exhibit a relaxation x
time of less than a day following this everth) Intertrade times 10‘5 -
(ITT) of AT&T stock over the same period. Data exhibits highly
heterogeneous structure with most of the trades concentrated in the
third week. The relaxation time of the ITT response following the
price jump is much longer than the relaxation time of the price 10‘7 e 5
fluctuations.(c) ITT data over the week beginning 7 September 10 10 10
1995—trading days typically have short intertrade times at the open ITT[sec]
and close of business, with longer intertrade times in betw@Bn.
Magnitude series of the incrememi$TT of consecutive intertrade 10° Boogea.
times. Patches of more “volatile” increments with large magnitude
(shaded areaare followed by patches of less volatile increments
with small magnitude, suggesting persistent behavior, in accordance -
with our finding [Fig. 5@]. (e) Sign series of the increments of — 10‘2
consecutive intertrade times. The apparent strong alternation be- E’
tween +1 and —1 is consistent with our finding of antipersistent A
behavior at small scald§ig. 5b)]. l: D
v 10
[Fig. 2(c)] [41]. Such behavior is a hallmark of scaling, and
is typical of a wide class of physical systems with universal :
scaling propertie$42]. I T EIEUTTITIT.

10° 10’

ITT/<ITT>

Next, we investigate the temporal organization of ITT. 10”7
Empirical observations show that like many other financial
time series, the ITT data exhibit nonstationary behavior and
complex variability with a superposed pattern of daily activ-
ity (Fig. 1. Patches of inactive trading are often followed by

patches of more active trading within a trading day. Similar

patterns can be observed on a daily, weekly, and evefl,, " roterss=0.73, r=27, and AT&T (T) fit with 5=0.70
monthly basis, independent of the average level of trading_; [Eq. (1)]. We use 4 sec bins. where ITT values[h6) are
activity for a company. Such obser'vati.ons. suggest that therg,iored at 4 sec, values [i6,10 are centered at 8 sec, elt)
may be a self-similar, fractal organization in the sequence Opopapility density functions of ITT for thirty U.S. stocks over
ITT over a broad range of time scales. To test this hypothesige same period as ife) with increasing number of trades from
we apply the detrended fluctuation analyf¥A) method  top to bottom(Table |). (c) Same probability distributions as ib)
[43,44. The DFA method can accurately quantify fractal fea- after rescaling®(ITT) by (ITT) and ITT by 1{ITT). This rescaling
tures in ITT, as it permits the detection of long-range corre4s equivalent to that described in E@) as P(ITT)=P(x,7) and
lations embedded in nonstationary time series, and avoids the-(ITT). Data points collapse onto a single scaled curve. The
spurious detection of apparent long-range correlations thafolid line represents a Weibull fit to the data points wW#k0.72,
are an artifact of trends in the ddi5]. 7=0.94.

FIG. 2. (a) Probability density functions with Weibull fits
(solid lineg of intertrade times(ITT) over the period January
1993-December 1996 for two company stocks: BoegiBg) fit
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FIG. 3. (a) Root mean square fluctuatioR(n), for intertrade time<ITT) for companies BoeingBA) and AT&T (T) obtained using
DFA-2 analysis. Heren indicates the time scale in trade number. Both series exhibit long-range power-law correlations with a pronounced
crossover to larger exponent at scales above one trading day. The average daily number of trades for each company is marked by a dashec
line. As expected, the scaling properties of the ITT series remain unchanged after the Fourier-phase randomization, while the shuffled ITT
series is characterized by exponent 0.5 as for uncorrelate@vhite) noise. Curves are vertically offset for clarify(n) for the ITT series
of (b) the first group of 15 companies afg) the second 15 companies as ordered in Table I. Curves are vertically shifted with approximately
equal spacing and the crossovers are aligned by rescaling the timendmalke total number of trades for each company in the period 4
January 1993-31 December 1996. All companies show a remarkably common scaling bétia#on) for the time series of absolute
logarithmic price returns computed per minute for Boeing and AT&T. Heiiedicates the time scale in minutes. The vertical dashed line
marks a crossover at 390 minutes—a typical trading day. Both companies exhibit scaling behavior similar to that observed for their
respective ITT series, with a greater degree of correlation over scales above one trading day.

The DFA method consists of the following steps. We firstthe signal. The scaling or correlation exponents related
integrate the ITT series to construct the profigk) to the autocorrelation function exponent (C(n)~n~"?
=3, (ITT;—(ITT)) where(ITT) is the series mean. Next, when 0<y<1) and to the power spectrum exponeft
we partition the profileY (k) into nonoverlapping segments (S(f)~1/f#) by a=1—/2=(8+1)/2 [43,46. A value of
of lengthn (number of consecutive intertrade interyadsid  «=0.5 indicates that there are no correlations and the signal
fit the local trend in each segment with a least-squares polyis uncorrelatedwhite noise. If «<0.5 the signal is said to
nomial fit. We then detrend the profi(k) by subtracting be anticorrelated meaning that large values are more likely
the local polynomial trend in each segment of lengttand  to be followed by small values. k>0.5 the signal is corre-
we calculate the root mean square fluctuatigm) for the  lated and exhibits persistent behavior, meaning that large val-
detrended profile. For ordé®FA (DFA-1 if =1, DFA-2 if  ues are more likely to be followed by large values and small
=2, etc) a polynomial function of ordekris applied for the values by small values. The higher the valuexpthe stron-
fitting of the local trend in each segment of the profilgk). ger the correlations in the signal.

This procedure is repeated for different scate#\ power- Before performing the DFA analysis we preprocess the
law relation F(n)~n? indicates the presence of scaling in data by excluding all outliers in the ITT series exceeding ten
the ITT series. Thus the fluctuations in the ITT can be chariimes the standard deviation above zero. This naturally ex-
acterized by scaling exponent a self-similarity parameter cludes large ITT values caused by unusual closures inside a
that quantifies the fractal power-law correlation properties otrading day, as well as data entry errors. This procedure re-
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sults in the removal of less than 0.06% of all data points. In &'
addition, the split transactions that arise when the volume of&
an order must be matched by several opposing orders ofte £
results in a number of transactions having an execution time&
separated by less than a second. Given the one-second resg 0.85
lution of the recordings, these transactions result in betweerg 075
4% and 16% zero intertrade intervals for individual company-% 0.65
datasets, with a mean value of 7.3% for the whole databases
Removal of all outliers and all zero intertrade times does notg
significantly affect the results of the DFA analysis for posi-
tively correlated signalf47]. . .
We find that the ITT series for all companies exhibit long- FIG. 4. Values_of the DFA correlation exponents for a dlv_erse

range power-law correlations over a broad range of time ouP of Compa.meﬂable ). The ITT series Qf all companies

exhibit systematically weaker correlations over time scales less than
scales from several trades to hundreds of thousands of trad

. . . gslfrading day(small values for the scaling exponent), and stron-
characterized by a correlation exponent0.5 (Fig. 3, Table ger correlations over time scales above one trading(lager val-

1). This is consistent with the empirical observation that 10nges fora,). Group averages and standard deviations are shown to
segments of high trading activitgmall values of ITY may  the right of the panel.

follow long segments of less active tradifigrge values of
ITT) [Fig. 1(b)]. We find that this scaling behavior is inde- intrinsic relation between trading activity and stock price for-
pendent of the specific company and its market capitalizamation on an individual company basis.
tion, the average level of trading activity and the industry To better understand the temporal organization of trading
sector. To confirm the presence of such strong persistent belynamics and the nature of the observed power-law scaling,
havior we shuffle the data and obtain white noise behaviowe decompose the ITT series into a magnitude and sign se-
with exponenta=0.5, significantly different from the behav- ries of the incrementQlTT in the consecutive intertrade
ior of the original ITT seriegFig. 3a)]. intervals. Since underlying market interactions determine the
For all companies we observe two scaling regimes, one anagnitude(JAITT|) and direction(sign(AITT)) of the ITT
short time scales ranging from several trades to a few thoufluctuations, we separately analyze the correlations in the
sand trades within a trading day, followed by a second remagnitude and sign series. Previous work has demonstrated
gime ranging from thousands to hundreds of thousands dhat signals with identical long-range power-law correlations
trades corresponding to time scales from days to almost @ean exhibit different time ordering for the magnitude and
year[Figs. 3a)—3(c)]. These two scaling regimes are sepa-sign serieg50].
rated by a bump in the scaling curi€n) due to the periodic We find that for all companies the magnitude series ex-
daily pattern in trading activityFigs. 1 and ® Such periodic  hibits long-range persistent behaviétig. 5a)] with practi-
trends superposed on power-law correlated signals do nally identical correlation exponents to the original ITT
affect the value of the DFA scaling expong#st|. series—e'9=0.68+0.02(group meartstd. dev) over short
Since different companies exhibit daily patterns in the ITTtime scales within a trading day and'®%=0.94+ 0.06 over
series characterized by a different number of trades per dajarge time scales. Correlation in the magnitude series indi-
we align the scaling regimes for all companies by normalizcates that an increment with large magnitude is more likely
ing the scalen by the total number of trades in each seriesto be followed by an increment with large magnitudeg.
[Figs. 3b) and 3c)]. Remarkably we find that all companies 1(d)]. In contrast we find that the sign series for all compa-
have common scaling behavior characterized by a correlationies is strongly anticorrelated over short time scales with
exponenta; =0.64+0.02 (group meartstd. dew at time  45'9"=0.04=0.02 (group meartstd. dev and is uncorre-
scales within a trading day, and by correlation exponent |ated over large time scales with$'9"=0.50+0.01 [Fig.
=0.94+0.05 at time scales larger than a trading déig. 4. 5(p)]. Thus our results suggest an empirical “rule” for the
Furthermore, we find that a higher value @f for a given  temporal organization of ITT fluctuations: a large positive
company is usually accompanied by a higher valuexgf  increment in intertrade interval is followed by a large nega-
resulting in a systematic difference between the scaling exijve increment, and this holds over a range of time scales.
ponents ofap — a;=0.30+0.05 (group meartstd. dev. We next demonstrate that the scaling features of the mag-
This correlation behavior of the ITT series is also surpris-nitude and sign series are independent of those of the ITT
ingly reminiscent of the scaling features of the absolute pric&eries. We perform a Fourier transform on the ITT series, and
return serie¢48]. For each company both series ShGWMwO  preserve the Fourier amplitudes but randomize the Fourier
scaling regimes separated by a crossover at time scales c@jhases. Then we take the inverse Fourier transform to create
responding to one trading dayii) positive correlations 4 surrogate signal. This procedure eliminates nonlinearities,
within a trading day &}"“°=0.59+0.01, group meanstd.  preserving only the linear featuréise., power spectrumof
dev), and even stronger correlationa('°®=0.77+0.06),  the original ITT serie$51]. The surrogatélinearized signal
over larger time scales, arndi) very similar values of the has thesametwo-point correlations as the original ITT series
DFA correlation exponents in the respective scaling regimesith practically identical correlation exponents, and a,
[Figs. 3a) and 3d)]. Such parallels in the scaling of ITT and indicating long-range correlatior{§ig. 3(@)]. We find that
absolute returns at both short and long time scales suggest é&te sign series derived from the surrogate signal shows scal-

1.05
0.95

056107-5



IVANOV et al. PHYSICAL REVIEW E 69, 056107 (2004

Fror LR L | Ty ¥ ¢ rory rrrony 3
5 [(a) |AITT
10 E_( ) | | (szag=0'94
10° E 3 FIG. 5. (a) Root mean square fluctuatioR(n), for the magni-
< a,™=0.67 : tude series of the incrementsTT for companies BoeingBA) and
Loye® L AT&T (T) obtained using DFA-2 analysis. Both series exhibit simi-
lar scaling behavior to that found for the ITT serj€sy. 3(a)], with
o [ | a crossover from lower to higher correlation exponent centered at
107 g I oT 3 the average daily number of trades for each compéamytical
| T phase-rand 3 dashed ling In contrast, the magnitude series of the surrogate sig-
100 L ol = Tshuffled = nal obtained by Fourier-phase randomization of the ITT series is
10 102 2 10* 10° uncorrelated with exponemt=0.5 as observed for the shuffled ITT

series. This change in the scalif@fter Fourier-phase randomiza-
tion) suggests that the magnitude series carries information about
the nonlinear properties of the ITT49]. Curves are vertically
shifted for clarity.(b) Scaling of the sign series &ITT. Strongly
anticorrelated behavior at short time scales is followed by uncorre-
lated behavior over larger time scales. This scaling behavior re-
mains unchanged after Fourier-phase randomization of the ITT,
suggesting that the sign series relates to the linear properties of the
ITT series. We take sigAITT=0)=0, and we integrate the sign
series before DFA analysis to accurately quantify strong anticorre-
lations [45,47). To account for this integration we measure the
slope ofF(n)/n.

F(n)/n

oT
¢ T phase-rand |
e T shuffled

10°  10*  10°
n

ing behavior virtually identical to that of the sign series de-terns appear independent of level of trading activity, market
rived from the original ITT seriefFig. 5b)]. However, the capitalization, or industry sector, and thus may be inherent to
magnitude series derived from the surrogéditecarized sig-  the trading process. The two scaling regimes in the ITT and
nal exhibits uncorrelated behavior—a significant change |AITT| series may be a consequence of the time scales over
from the strongly correlated behavior we find for the originalwhich news is absorbel®8]. Since trading activity is influ-
magnitude seriefFig. 5a)]. Thus the increments in the sur- €nced by information, there will be less coherence between
rogate signal exhibit different time ordering for the magni-intraday trading as information takes time to disseminate,
tude, and do not follow the empirical rule observed for thethus leading to a lower value of the correlation exponent

increments of the ITT series, although the surrogate signdPVer time scales greater than a day more information is
follows a scaling law identical to the original ITT series. available to investors, resulting in a transition to more coher-

Further, our results suggest that the ITT series has nonline&Mt and thus more persistent behavior with a higher value of

propertes encoded n the Fourer phases and epresente fiy 6 ISy of s betair an ot obsenitor of
the long-range correlations in the magnitude series. In con: golp

trast, the sign series relates to the linear properties of ITT. o each individual stock support the hypothesis that the dy-
' o ; . namics of transaction times may play a role in the process of
_In summary, we present an empirical study of intertrade, ice formation, and may have implications for financial
time dynamics for a diverse group of stocks listed on themodeling based on continuous time random w4H®,52—
NYSE. Our findings suggest that a single, possibly universal54], stochastic subordinated procesg#55-58 and agent-
functional form defines the probability density of the inter- pocqq modelin§59—62 of market behavior.
trade times of each company. Further, we find a common
scaling behavior in the temporal organization of trading, We thank K. Hu, T. Lim and S. White for stimulating
characterized by long-range power-law correlations within adiscussions. A.Y. thanks the Department of Engineering,
trading day and by a crossover to even stronger correlationSambridge University and King's College, Cambridge for
over scales of days, months, and years. These scaling pdinancial support.
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