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Common scaling patterns in intertrade times of U. S. stocks
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We analyze the sequence of time intervals between consecutive stock trades of thirty companies representing
eight sectors of the U.S. economy over a period of 4 yrs. For all companies we find that:~i! the probability
density function of intertrade times may be fit by a Weibull distribution,~ii ! when appropriately rescaled the
probability densities of all companies collapse onto a single curve implying a universal functional form,~iii !
the intertrade times exhibit power-law correlated behavior within a trading day and a consistently greater
degree of correlation over larger time scales, in agreement with the correlation behavior of the absolute price
returns for the corresponding company, and~iv! the magnitude series of intertrade time increments is charac-
terized by long-range power-law correlations suggesting the presence of nonlinear features in the trading
dynamics, while the sign series is anticorrelated at small scales. Our results suggest that independent of
industry sector, market capitalization and average level of trading activity, the series of intertrade times exhibit
possibly universal scaling patterns, which may relate to a common mechanism underlying the trading dynamics
of diverse companies. Further, our observation of long-range power-law correlations and a parallel with the
crossover in the scaling of absolute price returns for each individual stock, support the hypothesis that the
dynamics of transaction times may play a role in the process of price formation.

DOI: 10.1103/PhysRevE.69.056107 PACS number~s!: 89.75.Da, 05.40.Fb, 05.45.Tp, 89.65.Gh
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Investigations of price dynamics of financial assets a
indices have long been the key focus of economic rese
@1–23#. Recent studies, however, have turned to the inform
tion offered by other aspects of the trading process suc
volume of shares traded at each transaction@24,25# or num-
ber of trades in a unit time@27,26#, and their possible relation
to price formation@7,28–31#. Empirical observations sugge
a relationship between price and trading activity~Fig. 1!. In
addition, the impact of a significant price change on the le
of trading activity can persist for much longer than the c
responding effect on the level of price fluctuations@Figs. 1~a!
and 1~b!#. These features suggest that information may
contained in the structure and temporal organization of tr
ing activity, and that a close analysis of trading dynam
may offer quantitative insight into the complex mechani
driving price fluctuations@16,28#.

Recent studies have examined trading activity as m
sured by the average number of trades in a unit time@26,27#.
However, aggregation into uniform time intervals may affe
the analysis, since choosing a short unit time interval m
result in many points with none or very few trades, art
cially altering the heteroskedasticity of the process, wh
using a long unit time interval averages out multiple tra
actions, and the fine timing structure of the data can be
@29#. To understand the dynamics of market activity on
trade-by-trade level, we consider the series of time interv
between consecutive trades, the intertrade times~ITT!. Only
a few empirical studies of ITT have previously been carr
out, examining a single actively traded stock over a period
a few months@29,32–34#, rarely traded nineteenth centur
stocks@35#, or foreign exchange transactions@36,37#.

Here we empirically investigate the statistical and scal
properties of ITT over extended periods of time. In partic
1539-3755/2004/69~5!/056107~7!/$22.50 69 0561
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lar, we hypothesize that trading dynamics may carry featu
independent of individual company characteristics such
industry sector, level of trading activity, and market capita
zation. We examine thirty stocks listed on the New Yo
Stock Exchange~NYSE! from eight sectors of the U.S
economy: technology/communications~4!, pharmaceutical
~6!, retail and food~8!, automotive~2!, oil ~2!, aerospace~1!,
financial ~4!, and chemicals~3!. We study the time intervals
between consecutive stock trades over a period of 4 yr
January 1993 till December 1996—as recorded in the Tra
and Quotes database~NYSE, New York, 1993!. The thirty
companies vary in their average market capitalization a
exhibit different levels of trading activity with different num
bers of trades over this period~Table I!.

We first study the probability density function of ITT. Th
distribution changes as companies with more frequen
traded shares have a higher peak at shorter intertrade ti
while more rarely traded companies have tails extended o
larger intertrade times~Fig. 2!.

We find that the individual probability distributions for a
thirty companies are well fit by a generalized homogene
form—the Weibull distribution

P~x,t!5
d

t S x

t D d21

expF2S x

t D dG , ~1!

whered is the stretched exponent~or shape parameter! andt
is the characteristic time scale@Fig. 2~a!# @38#. Studies of
short ITT sequences—IBM stock trades during Novem
1990 to January 1991@29# and GE stock trades during Oc
tober 1999@34#—suggest stretched exponential behavior
the tails of the probability distributions, in agreement wi
Eq. ~1! @39#. The power-law prefactor in the Weibull form
©2004 The American Physical Society07-1
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TABLE I. Descriptive statistics of the thirty U. S. stocks studied over the period 4 January 199
December 1996. We include only intertrade times occurring during NYSE trading hours from 9.30 am
4 pm EST, excluding public holidays and weekends. The period considered covers 1010 trading days^M.C.&
represents average market capitalization over the period in billions of U.S. dollars.^ITT& is the average
intertrade interval over the period.a1 and a2 indicate the values of the scaling exponent characteriz
power-law correlations in ITT anduDITTu over small and large times scales.a1 is computed in the scaling
range 131025 to 531024 for the first seventeen companies which have substantially less than 106 trades,
and from 431026 to 231024 for the remaining companies.a2 is computed in the scaling range 331023 to
1021 for all companies@Figs. 3~b! and 3~c!#.

^M.C.& Number ^ITT& a1 a2 a1 a2

Company Symbol ($109) of trades ~sec! ITT ITT uDITTu uDITTu

Sprint Corp. FON 12.4 362851 64 0.64 0.95 0.72 0.94
Union Carbide Corp. UK 4.4 387273 60 0.65 0.96 0.72 0.95
Morgan JP & Co. JPM 13.7 401213 58 0.61 0.89 0.68 0.88
Dow Chemical Co. DOW 18.4 411258 57 0.62 0.94 0.69 0.94
Chase Manhattan Corp. CMB 7.3 448801 52 0.66 0.94 0.71 0.9
3M MMM 24.8 449462 52 0.62 0.85 0.68 0.85
Texaco TX 18.4 457081 51 0.62 0.88 0.68 0.87
Archer Daniels Midland ADM 9.0 468148 50 0.63 0.98 0.68 0.97
Eli Lilly & Co. LLY 22.4 514899 45 0.65 0.94 0.68 0.94
Sara Lee Corp. SLE 13.4 527814 44 0.62 0.94 0.66 0.9
Du Pont DD 39.0 543724 43 0.62 0.88 0.66 0.88
Fed. Natl. Mort. Assoc. FNM 26.5 627313 37 0.64 0.89 0.67 0.8
Citicorp CCI 22.6 677484 34 0.66 0.92 0.69 0.92
Pfizer PFE 29.7 689705 34 0.64 0.89 0.67 0.89
Abbott Laboratories ABT 28.2 691877 34 0.64 0.88 0.67 0.87
Boeing BA 19.9 728779 32 0.65 0.94 0.67 0.94
Exxon XON 87.5 750298 31 0.63 0.88 0.65 0.86
Johnson & Johnson JNJ 41.6 1001549 23 0.63 0.92 0.71 0.9
Home Depot HD 20.7 1103037 21 0.62 1.03 0.68 1.04
Bristol Myers Squibb BMY 35.1 1121714 21 0.62 0.91 0.68 0.90
General Motors Corp. GM 35.6 1130452 21 0.64 0.95 0.69 0.9
Chrysler Corp. C 18.4 1231979 19 0.65 0.95 0.70 0.95
Coca Cola KO 77.0 1244660 19 0.63 0.99 0.68 0.98
General Electric GE 101.7 1374682 17 0.61 0.90 0.66 0.9
Philip Morris MO 60.2 1527659 15 0.64 1.06 0.66 1.06
IBM IBM 45.4 1677319 14 0.65 0.94 0.67 0.94
AT&T T 82.1 1689767 14 0.64 1.04 0.66 1.04
Wal Mart WMT 58.2 1794160 13 0.66 1.01 0.68 1.01
Merck & Co. MRK 56.9 2055443 11 0.65 0.94 0.66 0.94
Motorola MOT 30.4 2204059 11 0.65 1.04 0.66 1.04
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accounts for the steeper~relative to the stretched expone
tial! trend in the distribution at small ITT values. This fun
tional form is markedly different to the power-law form o
the distribution of number of stock trades in a unit tim
reported previously@27#.

Since different companies have different average in
trade intervalŝ ITT& ~Table I!, they are also characterized b
a different parametert. A function P(x,t) is a generalized
homogeneous function if there exist two numbersr and s,
termed scaling parameters, such that, for all positive va
of the parameterl,

P~l rx,lst!5lP~x,t!. ~2!

Generalized homogenous functions are defined as solu
of this functional equation.P(x,t) satisfies Eq.~2! with r
05610
r-
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521 ands521. Data collapsing is an important proper
of generalized homogeneous functions: instead of data
P(x,t) falling on a family of curves, one for each value oft,
data points collapse onto a single curve given by the sca
function

P̃~ x̃![ P̃S x

t
,1D5tP~x,t!, ~3!

where the number of independent variables is reduced
defining the scaled variablex̃[x/t.

To test the hypothesis that there is a possibly unive
structure to the intertrade time dynamics of diverse com
nies, we rescale the distributions. We find that for all co
panies, data conform to a single scaled plot—‘‘data collap
7-2



d
sa

T
ia
n

iv
by
la
ve
in
e

es

a
re
t

th

er
d
t

ion

ly
n
he
ice
e
pe
.

de
ts

an
f
b

nt

r

he
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@Fig. 2~c!# @41#. Such behavior is a hallmark of scaling, an
is typical of a wide class of physical systems with univer
scaling properties@42#.

Next, we investigate the temporal organization of IT
Empirical observations show that like many other financ
time series, the ITT data exhibit nonstationary behavior a
complex variability with a superposed pattern of daily act
ity ~Fig. 1!. Patches of inactive trading are often followed
patches of more active trading within a trading day. Simi
patterns can be observed on a daily, weekly, and e
monthly basis, independent of the average level of trad
activity for a company. Such observations suggest that th
may be a self-similar, fractal organization in the sequence
ITT over a broad range of time scales. To test this hypoth
we apply the detrended fluctuation analysis~DFA! method
@43,44#. The DFA method can accurately quantify fractal fe
tures in ITT, as it permits the detection of long-range cor
lations embedded in nonstationary time series, and avoids
spurious detection of apparent long-range correlations
are an artifact of trends in the data@45#.

FIG. 1. ~a! Price of AT&T stock over three weeks in Septemb
1995 (5.23104 trades!. On 20 September 1995, AT&T announce
their intent to restructure into three separate companies, leading
jump in the stock price. The price fluctuations exhibit a relaxat
time of less than a day following this event.~b! Intertrade times
~ITT! of AT&T stock over the same period. Data exhibits high
heterogeneous structure with most of the trades concentrated i
third week. The relaxation time of the ITT response following t
price jump is much longer than the relaxation time of the pr
fluctuations.~c! ITT data over the week beginning 7 Septemb
1995—trading days typically have short intertrade times at the o
and close of business, with longer intertrade times in between~d!
Magnitude series of the incrementsDITT of consecutive intertrade
times. Patches of more ‘‘volatile’’ increments with large magnitu
~shaded area! are followed by patches of less volatile incremen
with small magnitude, suggesting persistent behavior, in accord
with our finding @Fig. 5~a!#. ~e! Sign series of the increments o
consecutive intertrade times. The apparent strong alternation
tween11 and21 is consistent with our finding of antipersiste
behavior at small scales@Fig. 5~b!#.
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FIG. 2. ~a! Probability density functions with Weibull fits
~solid lines! of intertrade times~ITT! over the period January
1993–December 1996 for two company stocks: Boeing~BA! fit
with parametersd50.73, t527, and AT&T ~T! fit with d50.70,
t511 @Eq. ~1!#. We use 4 sec bins, where ITT values in@2,6! are
centered at 4 sec, values in@6,10! are centered at 8 sec, etc.~b!
Probability density functions of ITT for thirty U.S. stocks ove
the same period as in~a! with increasing number of trades from
top to bottom~Table I!. ~c! Same probability distributions as in~b!
after rescalingP~ITT! by ^ITT& and ITT by 1/̂ITT&. This rescaling
is equivalent to that described in Eq.~3! as P(ITT)[P(x,t) and
t;^ITT&. Data points collapse onto a single scaled curve. T
solid line represents a Weibull fit to the data points withd50.72,
t50.94.
7-3
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FIG. 3. ~a! Root mean square fluctuation,F(n), for intertrade times~ITT! for companies Boeing~BA! and AT&T ~T! obtained using
DFA-2 analysis. Here,n indicates the time scale in trade number. Both series exhibit long-range power-law correlations with a pron
crossover to larger exponent at scales above one trading day. The average daily number of trades for each company is marked b
line. As expected, the scaling properties of the ITT series remain unchanged after the Fourier-phase randomization, while the sh
series is characterized by exponenta50.5 as for uncorrelated~white! noise. Curves are vertically offset for clarity.F(n) for the ITT series
of ~b! the first group of 15 companies and~c! the second 15 companies as ordered in Table I. Curves are vertically shifted with approxim
equal spacing and the crossovers are aligned by rescaling the time scalen by the total number of trades for each company in the perio
January 1993–31 December 1996. All companies show a remarkably common scaling behavior.~d! F(n) for the time series of absolute
logarithmic price returns computed per minute for Boeing and AT&T. Here,n indicates the time scale in minutes. The vertical dashed
marks a crossover at'390 minutes—a typical trading day. Both companies exhibit scaling behavior similar to that observed fo
respective ITT series, with a greater degree of correlation over scales above one trading day.
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The DFA method consists of the following steps. We fi
integrate the ITT series to construct the profileY(k)
5( i 51

k (ITT i2^ITT&) where^ITT& is the series mean. Nex
we partition the profileY(k) into nonoverlapping segment
of lengthn ~number of consecutive intertrade intervals! and
fit the local trend in each segment with a least-squares p
nomial fit. We then detrend the profileY(k) by subtracting
the local polynomial trend in each segment of lengthn, and
we calculate the root mean square fluctuationF(n) for the
detrended profile. For order-l DFA ~DFA-1 if l 51, DFA-2 if
l 52, etc.! a polynomial function of orderl is applied for the
fitting of the local trend in each segment of the profileY(k).
This procedure is repeated for different scalesn. A power-
law relationF(n);na indicates the presence of scaling
the ITT series. Thus the fluctuations in the ITT can be ch
acterized by scaling exponenta, a self-similarity paramete
that quantifies the fractal power-law correlation properties
05610
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the signal. The scaling or correlation exponenta is related
to the autocorrelation function exponentg „C(n);n2g

when 0,g,1… and to the power spectrum exponentb
„S( f );1/f b

… by a512g/25~b11!/2 @43,46#. A value of
a50.5 indicates that there are no correlations and the sig
is uncorrelated~white noise!. If a,0.5 the signal is said to
be anticorrelated, meaning that large values are more like
to be followed by small values. Ifa.0.5 the signal is corre-
lated and exhibits persistent behavior, meaning that large
ues are more likely to be followed by large values and sm
values by small values. The higher the value ofa, the stron-
ger the correlations in the signal.

Before performing the DFA analysis we preprocess
data by excluding all outliers in the ITT series exceeding
times the standard deviation above zero. This naturally
cludes large ITT values caused by unusual closures insi
trading day, as well as data entry errors. This procedure
7-4
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sults in the removal of less than 0.06% of all data points
addition, the split transactions that arise when the volume
an order must be matched by several opposing orders o
results in a number of transactions having an execution t
separated by less than a second. Given the one-second
lution of the recordings, these transactions result in betw
4% and 16% zero intertrade intervals for individual compa
datasets, with a mean value of 7.3% for the whole datab
Removal of all outliers and all zero intertrade times does
significantly affect the results of the DFA analysis for po
tively correlated signals@47#.

We find that the ITT series for all companies exhibit lon
range power-law correlations over a broad range of ti
scales from several trades to hundreds of thousands of tr
characterized by a correlation exponenta.0.5 ~Fig. 3, Table
I!. This is consistent with the empirical observation that lo
segments of high trading activity~small values of ITT! may
follow long segments of less active trading~large values of
ITT! @Fig. 1~b!#. We find that this scaling behavior is inde
pendent of the specific company and its market capital
tion, the average level of trading activity and the indus
sector. To confirm the presence of such strong persisten
havior we shuffle the data and obtain white noise beha
with exponenta50.5, significantly different from the behav
ior of the original ITT series@Fig. 3~a!#.

For all companies we observe two scaling regimes, on
short time scales ranging from several trades to a few th
sand trades within a trading day, followed by a second
gime ranging from thousands to hundreds of thousand
trades corresponding to time scales from days to almo
year @Figs. 3~a!–3~c!#. These two scaling regimes are sep
rated by a bump in the scaling curveF(n) due to the periodic
daily pattern in trading activity~Figs. 1 and 3!. Such periodic
trends superposed on power-law correlated signals do
affect the value of the DFA scaling exponent@45#.

Since different companies exhibit daily patterns in the I
series characterized by a different number of trades per
we align the scaling regimes for all companies by norma
ing the scalen by the total number of trades in each ser
@Figs. 3~b! and 3~c!#. Remarkably we find that all companie
have common scaling behavior characterized by a correla
exponenta150.6460.02 ~group mean6std. dev.! at time
scales within a trading day, and by correlation exponenta2
50.9460.05 at time scales larger than a trading day~Fig. 4!.
Furthermore, we find that a higher value ofa1 for a given
company is usually accompanied by a higher value ofa2,
resulting in a systematic difference between the scaling
ponents ofa22a150.3060.05 ~group mean6std. dev.!.

This correlation behavior of the ITT series is also surpr
ingly reminiscent of the scaling features of the absolute p
return series@48#. For each company both series show~i! two
scaling regimes separated by a crossover at time scales
responding to one trading day,~ii ! positive correlations
within a trading day (a1

price50.5960.01, group mean6std.
dev.!, and even stronger correlations (a2

price50.7760.06),
over larger time scales, and~iii ! very similar values of the
DFA correlation exponents in the respective scaling regim
@Figs. 3~a! and 3~d!#. Such parallels in the scaling of ITT an
absolute returns at both short and long time scales sugge
05610
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intrinsic relation between trading activity and stock price fo
mation on an individual company basis.

To better understand the temporal organization of trad
dynamics and the nature of the observed power-law scal
we decompose the ITT series into a magnitude and sign
ries of the incrementsDITT in the consecutive intertrade
intervals. Since underlying market interactions determine
magnitude~uDITTu! and direction„sign~DITT!… of the ITT
fluctuations, we separately analyze the correlations in
magnitude and sign series. Previous work has demonstr
that signals with identical long-range power-law correlatio
can exhibit different time ordering for the magnitude a
sign series@50#.

We find that for all companies the magnitude series
hibits long-range persistent behavior@Fig. 5~a!# with practi-
cally identical correlation exponents to the original IT
series—a1

mag50.6860.02~group mean6std. dev.! over short
time scales within a trading day anda2

mag50.9460.06 over
large time scales. Correlation in the magnitude series in
cates that an increment with large magnitude is more lik
to be followed by an increment with large magnitude@Fig.
1~d!#. In contrast we find that the sign series for all comp
nies is strongly anticorrelated over short time scales w
a1

sign50.0460.02 ~group mean6std. dev.! and is uncorre-
lated over large time scales witha2

sign50.5060.01 @Fig.
5~b!#. Thus our results suggest an empirical ‘‘rule’’ for th
temporal organization of ITT fluctuations: a large positi
increment in intertrade interval is followed by a large neg
tive increment, and this holds over a range of time scale

We next demonstrate that the scaling features of the m
nitude and sign series are independent of those of the
series. We perform a Fourier transform on the ITT series,
preserve the Fourier amplitudes but randomize the Fou
phases. Then we take the inverse Fourier transform to cr
a surrogate signal. This procedure eliminates nonlinearit
preserving only the linear features~i.e., power spectrum! of
the original ITT series@51#. The surrogate~linearized! signal
has thesametwo-point correlations as the original ITT serie
with practically identical correlation exponentsa1 and a2
indicating long-range correlations@Fig. 3~a!#. We find that
the sign series derived from the surrogate signal shows s

FIG. 4. Values of the DFA correlation exponents for a diver
group of companies~Table I!. The ITT series of all companies
exhibit systematically weaker correlations over time scales less
a trading day~small values for the scaling exponenta1), and stron-
ger correlations over time scales above one trading day~larger val-
ues fora2). Group averages and standard deviations are show
the right of the panel.
7-5
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FIG. 5. ~a! Root mean square fluctuation,F(n), for the magni-
tude series of the incrementsDITT for companies Boeing~BA! and
AT&T ~T! obtained using DFA-2 analysis. Both series exhibit sim
lar scaling behavior to that found for the ITT series@Fig. 3~a!#, with
a crossover from lower to higher correlation exponent centere
the average daily number of trades for each company~vertical
dashed line!. In contrast, the magnitude series of the surrogate
nal obtained by Fourier-phase randomization of the ITT serie
uncorrelated with exponenta50.5 as observed for the shuffled IT
series. This change in the scaling~after Fourier-phase randomiza
tion! suggests that the magnitude series carries information a
the nonlinear properties of the ITT@49#. Curves are vertically
shifted for clarity.~b! Scaling of the sign series ofDITT. Strongly
anticorrelated behavior at short time scales is followed by unco
lated behavior over larger time scales. This scaling behavior
mains unchanged after Fourier-phase randomization of the
suggesting that the sign series relates to the linear properties o
ITT series. We take sign~DITT50!50, and we integrate the sign
series before DFA analysis to accurately quantify strong antico
lations @45,47#. To account for this integration we measure t
slope ofF(n)/n.
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ing behavior virtually identical to that of the sign series d
rived from the original ITT series@Fig. 5~b!#. However, the
magnitude series derived from the surrogate~linearized! sig-
nal exhibits uncorrelated behavior—a significant chang
from the strongly correlated behavior we find for the origin
magnitude series@Fig. 5~a!#. Thus the increments in the su
rogate signal exhibit different time ordering for the mag
tude, and do not follow the empirical rule observed for t
increments of the ITT series, although the surrogate sig
follows a scaling law identical to the original ITT serie
Further, our results suggest that the ITT series has nonli
properties encoded in the Fourier phases and represente
the long-range correlations in the magnitude series. In c
trast, the sign series relates to the linear properties of IT

In summary, we present an empirical study of intertra
time dynamics for a diverse group of stocks listed on
NYSE. Our findings suggest that a single, possibly univer
functional form defines the probability density of the inte
trade times of each company. Further, we find a comm
scaling behavior in the temporal organization of tradin
characterized by long-range power-law correlations withi
trading day and by a crossover to even stronger correlat
over scales of days, months, and years. These scaling
d
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terns appear independent of level of trading activity, mar
capitalization, or industry sector, and thus may be inheren
the trading process. The two scaling regimes in the ITT a
uDITTu series may be a consequence of the time scales
which news is absorbed@28#. Since trading activity is influ-
enced by information, there will be less coherence betw
intraday trading as information takes time to dissemina
thus leading to a lower value of the correlation exponenta.
Over time scales greater than a day more information
available to investors, resulting in a transition to more coh
ent and thus more persistent behavior with a higher value
a. The universality of this behavior and our observation o
parallel with the crossover in the scaling of price fluctuatio
for each individual stock support the hypothesis that the
namics of transaction times may play a role in the proces
price formation, and may have implications for financ
modeling based on continuous time random walks@40,52–
54#, stochastic subordinated processes@37,55–58# and agent-
based modeling@59–62# of market behavior.
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in @3# V. Akgiray, G.G. Booth, and O. Loistl, Allg. Stat. Arch73, 115
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