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The effect of pressureP and temperatureT on the properties of mixing of helium-hydrogensHe-H2d fluid
mixture is studied based on statistical mechanical perturbation theory. The constituent species are considered to
be interacting via a pair potential consisting of short range repulsion and a long range attraction which has been
included through a double Yukawa(DY) potential. He and H2 are the lightest elements; therefore, the quantum
effect is included via first-order quantum correction in the framework of Wigner-Kirkwood expansion. The
dimerization of the H2 molecule is treated as a hard convex body fluid for which the equation of state(EOS)
can be derived from hard sphere system based on scaled particle theory. An advanced and most recent EOS has
been used for our investigation. The use of the DY potential, which can readily be simulated to empirical
potentials, has enabled us to obtain analytical expressions for attractive and quantum energy contributions in
terms of Laplace transforms. With a view to ensure internal consistency of the various thermodynamic func-
tions to extract information on segregation and order in the mixture, different functions, such as compressibility
factor, Gibbs free energy of mixing, entropy of mixing, and concentration fluctuations in the long wavelength
limit, have been calculated as functions of composition of the mixture over an extended region ofP andT. The
results suggest that segregation, heterocoordination, or both may occur in the He-H2 mixture depending upon
its composition, pressure, and temperature.
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I. INTRODUCTION

The problem of mutual solubility as a function of compo-
sition, temperature, and pressure in a mixture is extremely
useful either to design a separation equipment or to synthe-
size a homogeneous phase. Conditions involving extreme
temperatureT and pressureP are also useful to investigate
condensed explosions. At extremeT andP a direct measure-
ment is not feasible due to unfavorable experimental condi-
tions. Therefore, a theoretical approach based on the theory
of mixture is very much needed provided the effects ofT and
P are rightfully incorporated in the formalism. The present
work is an attempt in this direction with an application to
study the solubility of He and H2 at low T and elevatedP.

The helium-hydrogensHe-H2d system derives special at-
tention because the mixture carries enormous significance
[1–3] from both theoretical and cosmological points of view.
The component species are known to exhibit characteristic
phenomena at extremeP andT, whereas the mixture exhibits
fluid-fluid phase separation up to very high pressures. Both
He and H2 have complex attractive and repulsive interactions
[4]. Therefore, the forces between unlike molecules in the
mixture play significant[5,6] roles on its properties. Also,
the masses are light making quantum effects important at
low temperatures.

We consider here the statistical mechanical perturbation
theory [7] of a binary hard sphere mixture with necessary
correction for attractive forces and quantum effects. The ap-
proach is versatile and has been used successfully to con-
struct the phase diagram of a binary mixture of hard core

molecules with square wells. Comparison with Refs.[8,9]
and computer simulation results[10] shows that the scheme
is as good as, or even better than, other mixture theories,
such as the Percus-Yevick theory. One of the foremost ad-
vantages is that the hard sphere diameter can be made de-
pendent on temperature and, hence, the solubility of He-H2
mixture can be investigated over a wide range of temperature
and pressure.

The short range repulsive potential is treated here as the
unperturbed reference system of the hard sphere mixture
which is appropriately improved through a first-order pertur-
bation contribution due to long range attractive potential.
The latter is treated within the framework of the double
Yukawa (DY) potential. There is ample evidence in the lit-
erature[11–13] that the DY potential provides accurate ther-
modynamic properties of fluids. The advantage of using the
DY potential is that it gives analytical expressions for the
Helmholtz free energy and hence for other thermodynamic
functions. We will see that the DY potential can readily be
parametrized to simulate the exponential-6 potential, which
has been used by Ree[5] to perform the Monte Carlo calcu-
lations on He-H2 mixture, yielding a satisfactory result over
extended density and temperatures ranges.

The quantum effect is included via a first-order quantum
correction in the Wigner-Kirkwood expansion[14,15]. The
dimerization of H2 molecule is treated as a hard convex body
(HB) fluid for which an equation of state can be derived
based on scaled particle theory[16,17]. Taking into account
the various contributions, we have been able to suggest an
improved version of the equation of state to study the com-
pressibility factorZ, the excess Gibbs free energyGxs, the
excess entropySxs, and the concentration fluctuationsSccs0d,
in the long wavelength limit. These are used to investigate*Corresponding author: Email address: issam@squ.edu.om
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the effects ofP and T on the thermodynamic properties of
He-H2 mixture over a wide range of densities and composi-
tion. The major thrust is to examine the deviation of the
He-H2 mixture from the ideal mixing conditions to investi-
gate the heterocoordination or segregation(phase separation)
of the mixture.

The equation of state of He-H2 system, duly improved for
long range correlations and quantum effects, is derived in
Sec. II. Yukawa potentials for the component interactions
(H2-H2, He-He, and He-H2) are obtained. The computed val-
ues ofZ in the low and high density regions, the impact ofP
and T, and the role of the radial distribution function are
discussed in Sec. III. Expressions for the Gibbs free energy
are given in Sec. IV. These expressions are used to compute
the excess free energy over a wide range ofP andT. Section
V deals with excess entropy of mixing. Concentration fluc-
tuations and the thermodynamic stability are discussed in
Sec. VI. We then follow with Sec. VII, dealing with sum-
mary and conclusions.

II. PAIRWISE INTERACTIONS AND EQUATION
OF STATE OF He-H2 MIXTURE

A. Potentials for the He-H2 system

The equation of state(EOS) of the He-H2 mixture, which
will be obtained here on the basis of statistical mechanical
perturbation theory, is at the center of our investigation. Our
major improvement in writing the EOS concerns the inclu-
sion of long range correlations and quantum correction for
the energy, which, in turn, depend on the interaction potential
and the distribution functions. The constituent elements are
assumed to be interacting via a pair potentialuijsrd consisting
of short range repulsionuij

HSsrd (usually the hard sphere po-
tential) and a long range attractionuij

t srd,

uijsrd = uij
HSsrd + uij

t srd. s1d

uij
HSsrd is treated as the unperturbed reference system on

which uij
t srd acts as a perturbation. The long range attrac-

tion forces have been included through the DY potential,
given by

uij
DYsrd = ei jAij

si j
0

r HexpF− li jS r

si j
0 − 1DG

− expF− ni jS r

si j
0 − 1DGJ . s2d

ei j represent the strengths of potential minima andsi j
0 the

value of r at which the potential is effectively zero.Aij , li j ,
and ni j are controlling parameters of the potential. The ad-
vantage of using the DY potential is that the related integral
equation of the Helmholtz free energy and, hence, the com-
pressibility factor can be solved analytically. The parameters
can be chosen to reproduce the various available empirical
potentials which are often used in simulation work.

Ree [5] performed Monte Carlo simulations on the
He-H2 mixture with exponential-6(exp-6) potential and
found it satisfactory over an extended range of density and
temperature, where the other conventional model is physi-

cally less appropriate.Ab initio quantum mechanical calcu-
lations and the analysis of data on He and H2 conform to the
choice of the exp-6 potential. We have, therefore, simulated
our DY potential to Ree’s[5] exp-6 potential. The emerging
parameters for DY potential are given in Table I.

The intermolecular or interatomic force is a fundamental
issue to study the properties of matter. It has always been a
subject of great interest to determine the forces between un-
like molecules from the knowledge of the forces between the
like molecules. In the absence of reference potentials, the
parametersei j , Aij , li j , ni j , and si j

0 are considered additive
[e12=Îe11e22; A12=sA11+A22d /2; l12=sl11+l22d /2; n12

=sn11+n22d /2; s12
0 =ss11

0 +s22
0 d /2] as per the Lorentz-

Berthelot rule of mixing. However, with reference to Ree’s
[5] exp-6 potentials, we observe that these parameters are
close to the additive rule, bute12 deviates considerably. The
nonadditive energy parametere12 is described in terms of the
factor a, i.e.,

e12 = aÎe11e22. s3d

a signifies the relative strength of the unlike pairwise inter-
actions in the mixture. The data of Table I suggest thata
=0.79. Therole of a in probing phase separation and com-
pound formation in binary mixtures, in general, has been
discussed at length by Osman and Singhf18,19g.

B. Equation of state

The elemental components, He and H2, are treated as
monomers and dimers, respectively. The complexities of the
intermolecular interactions and the geometrical shapes of
dimers make it difficult to use theoretical models to investi-
gate the properties of mixing of monomer-dimer binary mix-
tures. There are many real monomer-dimer systems, includ-
ing He-H2 mixtures, which are of considerable significance
for practical applications. Good progress has been made in
recent years to develop a realistic equation of state EOS for
nonspherical hard body fluids such as hard convex body HB
fluids [16,17].

The major limitation to the EOS of HB fluids is that it
does not incorporate the contribution from the long range
correlations and the quantum effects of energy which are
important for systems such as He-H2. Taking into account
the quantum term and the contribution to the EOS from long
range correlations, the compressibility factorZ (=P/rkT, r is

TABLE I. DY potential parameters for He-He, H2-H2, and
He-H2 pairwise interactions. Exp-6 potentials(Ree[5]) have been
used to fit the DY parameters.

He-He H2-H2 He-H2

i , j 1,1 2,2 1,2

si j
0 sÅd 2.63 2.98 2.97

ei j /k sKd 10.57 36.4 15.5

Aij 2.548 3.179 2.801

li j 12.204 9.083 10.954

ni j 3.336 3.211 3.386
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density andk is Boltzmann constant) can be expressed, to
first-order statistical mechanical perturbation theory, as

Z = Z HB + Z t + Z Q. s4d

Z HB is the compressibility factor of HBshard bodyd fluid
mixture, Z t arises due to long range correlations, andZ Q

incorporates the first-order quantum correction, which is
quite significant in the lower temperature region. An ex-
pression forZ HB has been developed based on the scaled
particle theoryf16,17g. It can be expressed in terms of the
EOS of hard sphere mixturesHSd through the nonspheric-
ity parameteramix,

Z HB = 1 +amixsZ HS + Z nonadd− 1d, s5d

whereZ HS is the compressibility factor of an additive HS
system. The correction term,Z nonadd, arisesf7g due to non-
additivity. Boublik f20g and Mansooriet al. [21] (denoted
here by BMCSL) have suggested an improved version of the
EOS for additive HS. Barrio and Solana[22] used the con-
sistency conditions to improve the contact values of the pair
correlation function and suggested a correction termZ BS to
the EOS of BMCSL. This satisfies the thermodynamic con-
sistency conditions vis-à-vis standardized fourth and fifth
virial coefficients. With these improvements,Z HS can be ex-
pressed as

Z HS = Z BMCSL + Z BS, s6d

with

Z BMCSL =
1

s1 − h3d
+

3h1h2

h0s1 − h3d2 +
h2

3s3 − h3d
h0s1 − h3d3 s7d

and

Z BS =
h1h2sh4z1 + h0z2d

s1 − h3d2 . s8d

hi andzi stand for

hi =
p

6
rsc1s11

i + c2s22
i d,

z1 = 2c1c2s11s22Ss11 − s22

s11 + s22
D , s9d

z2 = c1c2s11s22
3 ss11

2 − s22
2 d.

ci s=ri /rd are mole fractions andsii are hard sphere diam-
eters of the componenti. For a one-component system(pure
fluid), s11=s22=s, Z BS→0, and Z HS reduces to the
Carnahan-Starling(CS) [23] EOS,

Z HS = Z CS=
1 + h + h2 − h3

s1 − hd3 , s10d

whereh=prs3/6 is the packing fraction.
amix in Eq. (5) is the nonsphericity parameter for the scal-

ing theory[24],

amix =
1

Vmix
o
i j

cicjVij
efaij

ef, s11d

with

Vmix = o
i j

cicjVij
ef. s12d

The parametersVij
ef and aij

ef are related to the average mo-
lecular volume and the shape factor of a mixture dimer
molecule, respectively,

Vij
ef =

p

6
sii

3V̄ij , s13d

aij
ef =

1

3p

sVij
efd8sVij

efd9
Vij

ef , s14d

where

V̄ij = 1 + sni − 1dF3

2
S1 +

s j j
2

sii
2 DLi −

1

2
Li

3 − 3Hijui jSs j j

sii
D2G .

s15d

V̄ij is the volume factor for the average molecular volume,ni
is the number of elemental spheressni =2 for H2d, each with
diametersii and center to center diameterl i in the molecule
f17g, and

Hij =
1

2sii
fssii + s j jd2 − l i

2g1/2,

ui j = sin−1F l i
sii + s j j

G ,

Li =
l i

sii
. s16d

s8d and s9d in Eq. (14) refer to the first and second deriva-
tives, respectively, with respect tosi j , i.e.,

sVij
efd8 = S ] Vij

ef

] sii
D

s j j

+ S ] Vij
ef

] s j j
D

sii

, s17d

sVij
efd9 = S ]2Vij

ef

] sii
2 D

s j j

+ 2
]2Vij

ef

] sii ] s j j
+ S ]2Vij

ef

] s j j
2 D

sii

. s18d

For monomerssn→1d, Vef=V=ps3/6 and amix=1, hence,
the compressibility factor in Eq.s5d reduces to that of
hard spheressZ HB→Z HSd.

Z nonadd in Eq. (5) is the correction term arising due to
nonadditivity fss11+s22d /2Þs12g of the hard sphere diam-
eters. Leonardet al. [7] have used the first-order statistical
mechanical perturbation theory to obtain an expression for
the Helmholtz free energyF nonadd[see Sec. IV, Eq.(43)] due
to nonadditivity. We have used it to obtain an expression for
Z nonaddthrough the thermodynamic relation
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Z = rS ] bF

] r
D

c,T
, s19d

whereb=1/kT. This gives

Z nonadd= − 4prc1c2s̄12
2 Ds12Fg12

HSss12d − rS ] g12
HSss12d
] r

D
c
G ,

s20d

with

s̄12 =
s11 + s22

2
and Ds12 = s̄12 − s12. s21d

si j have been calculated using the integral equationf7g

si j =E
0

si j
0

h1 − expf− buijsrdgjdr. s22d

Equations22d relatessi j to the pairwise interaction potential
uijsrd for which we useuij

DYsrd in Eq. s2d. We may recall
that si j determine the static structure factors and, there-
fore, a suitable link between structure and forces has been
established. Further, Eq.s22d allows si j to be temperature
dependent, which is desirable on a more realistic basis to
examine the mixing and demixing of mixtures as func-
tions of T. Osman and Singhf19g have discussed at length
the T dependence ofsi j emerging from Eq.s22d for a
Lennard-Jones system.

g12
HSss12d in Eq. (20) refers to the radial distribution func-

tion (RDF) at r =s12, the contact point. It has been empha-
sized [25,26] that the inclusion of contact values improves
the performance of the RDF and yields exact asymptotic ex-
pressions for the thermodynamic properties. Based on the
consistency conditions of these properties, Barrio and Solana
[22] improved the existing BMCSL expression as

g12
HSss12d = g12

BMCSLss12d + g12
BSss12d, s23d

with

g12
BMCSLss12d =

1

1 − h3
+

3Dh2

s1 − h3d2 +
2D2h2

2

s1 − h3d3 ,

g12
BSss12d =

s11s22
3 ss11 − s22d

4s12
2

h1h2

s1 − h3d2 ,

D =
s11s22

2s̄12

. s24d

D is the reduced collision parameter. The derivative,
]g12

HSss12d /]r, can readily be obtained from the above rela-
tions.

The expressions forZ t andZ Q are obtained fromF t and
F Q [see Eqs.(45) and (47), Sec. IV] through Eq.(19). The
resulting expressions are

Z t =
2pr*

T* fc1
2sk11 + r*k118 d + 2c1c2aÎēḡsk12 + r*k128 d

+ c2
2ēgsk22 + r*k228 dg, s25d

Z Q =
pQr*

6T* Fc1
2sL11 + r*L118 d +

2c1c2aÎē

ḡD̄
sL12 + r*L128 d

+
c2

2ē

gD
sL22 + r*L228 dG , s26d

with

r* = rs11
03, g =

s22
0

s11
0 , ḡ =

s12
0

s11
0 , T* =

kT

e11
, ē =

e22

e11
,

D =
m22

m11
, D̄ =

m12

m11
, m12 = c1m1 + c2m2,

and

Q =
NAh2

4p2e11
0 m11s11

02. s27d

h is Planck’s constant,NA is Avogadro’s number, andmij are
the atomic masses. The coefficientskij , kij8 , Lij , andLij8 in Eqs.
(25) and(26) involve the Laplace transforms of the RDF and
are defined as

kij = V̄ijAijfeli jGijsl̄i jd − eni jGijsn̄i jdg,

kij8 = V̄ijAijFeli j
] Gijsl̄i jd

] r
− eni j

] Gijsn̄i jd
] r

G ,

Lij = V̄ijAijfli j
2eli jGijsl̄i jd − ni j

2eni jGijsn̄i jdg,

Lij8 = V̄ijAijFli j
2eli j

] Gijsl̄i jd
] r

− ni j
2eni j

] Gijsn̄i jd
] r

G , s28d

where

l̄11 = l11, n̄11 = n11, l̄22 =
l22

g
, n̄22 =

n22

g
,

l̄12 =
l12

ḡ
, n̄12 =

n12

ḡ
. s29d

The values of the Yukawa potential parametersAij , li j , ni j ,

andei j for the He-H2 system are listed in Table I.Gijsl̄i jd are
the Laplace transforms of the RDF,
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Gijsl̄i jd =E
si j

`

rgij
HSsrdexps− l̄i j rddr. s30d

Similar expressions exist forGijsn̄i jd. Following the work of

Tang and Luf27g, the expressions forGijsl̄i jd can be found
analytically.

III. COMPRESSIBILITY FACTOR

It is evident from the preceding section that densityr
plays a vital role in the evaluation of compressibility factor
Z. At low densitiesZ tends to its ideal value of 1. For ex-
ample, asr→0 thenZ t→0, Z Q→0, Z nonadd→0, Z HB→1
and, therefore, from Eq.(4) one hasZ→1. On the other
hand, at very high densities,Z increases sharply withr. All
terms(Z HB, Z Q, Z t, andZ nonadd) tend to infinity asr→`.

The variation of the various terms ofZ for He-H2 mixture
at equiatomic compositionscHe=cH2

=0.5d with respect to re-
duced densityr* at 15 K and 100 K is shown in Figs. 1(a)

and 1(b), respectively. The required inputs are taken from
Table I. The various components ofZ, as well as its gradient
]Z/]r* , depend strongly on density in the lower temperature
rangesT,15 Kd. Z HB and Z Q are positive at all densities
with Z Q being the most significant contribution at low tem-
perature. For densitiesr* ø1.1, Z t contributes negatively
and then rises sharply to positive values as density increases.
The contribution of the nonadditive hard sphere termZ nonadd

is negligible forr* ,1.0, in comparison with other contribu-
tions, but decreases sharply as density increases. AtT
=100 K, however, the main contribution toZ arises from
Z HB. The impact of all other contributions(Z Q, Z t, and
Z nonadd) is small [Fig. 1(b)] in comparison toZ HS.

With regard to the impact of the distribution function
gij

HSsrd, it enters directly into the expressions ofZ t andZ Q,
through energy equation[see Eqs.(44) and(46)] and, hence,
affectsZ. From the viewpoint of mathematical simplicity, it
is often preferred to perform the integral equations of the free
energy analytically in the dilute limit,gijsr ,si j ,rd→1. This
simplifies Z t and Z Q considerably, at the cost of a realistic
gsrd. We found thatZ calculated from hard sphere values of
gij

HSsrd is larger than that calculated from the condition
gijsrd=1. At low temperaturesT,15 Kd, gsrd influencesZ
considerably, being maximum towards the high density re-
gion. The impact of realisticgsrd on Z at high temperature
sT=100 Kd is quite minimal. It can be inferred thatgsrd=1
for He-H2 system can be appropriate only at high tempera-
tures.

We have compared in Table II our theoretical values of
the pressure and the excess internal energy to the Monte
Carlo simulation results[5] of He-H2 mixture at different
compositions and temperatures. Ree[5] performed Monte
Carlo (MC) simulations on the He-H2 mixture as a van der
Waals one-fluid model for exp-6 potential. The stiffness of
the intermolecular repulsion of the different constituent spe-
cies was included. The MC results were recommended to be
“exact” and quite appropriate for the thermodynamic inves-
tigations for extended regions ofT andP. Theoretical values
of P have been obtained from the respective compressibility
factor contributions, i.e.,P=rkTsZ HB+Z t+Z Qd. The com-

FIG. 1. Various terms of the compressibility factors(Z HB,
Z nonadd, Z t, andZ Q) vs r* s=rs11

3 d for equiatomicscHe=cH2
=0.5d

He-H2 mixture: (a) T=15 K, (b) T=100 K.

TABLE II. Comparison of pressureP and excess internal energyExs from this study to MC results[5], PMC andEMC
xs , for He-H2 mixture

at different temperaturesT and He compositionscHe. The corresponding reduced densityr* and packing fractionh are also listed.

T

cHe r* h

PMC [5] P (this study) EMC
xs [5] Exs (this study)

(K) (GPa) (GPa) skJ mol−1d skJ mol−1d

50 0.50 0.550 0.265 0.0473 0.0491 −0.755 −0.593

100 0.50 0.786 0.346 0.3380 0.2570 −0.354 −0.466

300 0.25 1.101 0.433 2.3090 1.9664 2.790 2.741

300 0.50 1.101 0.400 1.8560 1.5729 3.490 2.166

300 0.75 1.101 0.367 1.4240 1.3160 2.008 1.737

1000 0.25 1.223 0.363 5.2250 4.8622 8.860 10.416

1000 0.50 1.223 0.335 4.5100 4.1094 10.88 8.315

1000 0.75 1.223 0.307 3.7150 3.5904 6.790 6.474

4000 0.50 1.376 0.247 12.4300 12.1014 25.120 24.871

4000 0.50 1.572 0.282 16.3300 16.4720 31.400 32.832
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puted values are in reasonable agreement with MC results
over a wide range ofT andP. This suggests that our formal-
ism of equation of state for He-H2 mixture is quite good and
can be used to derive and investigate other thermodynamic
functions, such as Gibbs free energy of mixing, entropy of
mixing, and concentration fluctuations in the long wave-
length limit as functions of compositionsc, T, andP, which
we obtain in the following sections.

IV. GIBBS FREE ENERGY OF MIXING

Gibbs energy of mixing,GM, plays a vital role in deter-
mining the thermodynamic stability of the phases in a binary
mixture. It is convenient to describe the thermodynamic be-
havior in terms of the excess free energy of mixing,Gxs,
defined as

Gxs = GM − NkTo
i

ci ln ci , s31d

with

GM = G − o
i

ciGi
0. s32d

G is the Gibbs free energy of the mixture andGi
0=Gsci

→1d are the free energies of the constituent species. An
explicit expression forG can be written in terms of the
Helmholtz free energyF and the pressureP,

G

NkT
=

F

NkT
+

P

rkT
. s33d

Having defined the compressibility factorZ in Eq. (4), it
is now possible to obtain an analytical expression for the
Helmholtz free energyF from the integral equation

F xs

NkT
=E

0

r

sZ − 1d
dr

r
. s34d

F xs stands for the excess Helmholtz free energy. In con-
formity with Eq. s4d, F for the mixture can be written as

F

N
= F id + F HB + F t + F Q. s35d

The subscripts carry the same meaning as in Eq.s4d. The
extra termF id arises due to the ideal gas mixture term, i.e.,

bF id =
3

2
lnS h2

2pkTm11
c1m22

c2
D + ln r + o

i

ci ln ci − 1.

s36d

The Helmholtz free energyF HB for hard convex body be-
comes

bF HB = amixbsF HS + F nonaddd, s37d

whereamix is defined in Eq.s11d. Equationss6d and s34d
yield

bF HS =
h3ff1 + s2 − h3df2g

s1 − h3d
+

h3f3

s1 − h3d2

+ sf3 + 2f2 − 1dlns1 − h3d, s38d

with

f1 =
3y1y2

y0y3
, s39d

f2 =
y1y2

y3
2 sy4z1 + y0z2d, s40d

f3 =
y2

3

y0y3
3 , s41d

yi =
hi

r
=

p

6
sc1s11

i + c2s22
i d. s42d

The contributionF nonadd, which arises by the virtue of non-
additivity of the hard sphere diameters, is the first-order
perturbation correctionf7g,

bF nonadd= − 4prc1c2s̄12
2 Ds12g12

HSss12d. s43d

s̄12 and Ds12 are defined in Eq.s21d. The expression for
the radial distribution functiong12

HSss12d is given in Eq.
s23d.

F t, in Eq. (35), which is the first-order perturbation con-
tribution due to long range attractions, is of considerable
significance. We have used the statistical mechanical theory
to evaluateF t from the integral equations containing the
distribution functionsgijsrd anduijsrd, i.e.,

bF t = b
r

2o
i j

cicjE
si j

0

`

uij
DYsrdgij

HSsr,si j ,rd4pr2V̄ij dr.

s44d

The integral above has been obtained analytically foruijsrd
given in Eq. s2d using the BMCSLf20,21g expression for
gij

HSsrd; we obtain

bF t =
2pr*

T* fc1
2k11 + 2c1c2k12aÎēḡ + c2

2k22gēg. s45d

r* andT* are defined in Eq.s27d and the coefficientskij in
Eq. s28d.

The last term,F Q, in Eq. (35) is the first-order quantum
correction to the free energy. The Wigner-Kirkwood[14,15]
expansion for a one-component fluid can be conveniently
generalized to a binary mixture as

bF Q =
h2b2Nr*

96p2 o
i j

cicj

mij
E

si j

`

¹2uijsrdgij
HSsrd4pr2V̄ij dr.

s46d

On using the double Yukawa potential from Eq.s2d for uijsrd
and carrying out the Laplacian operator one gets
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bF Q =
pQr*

6T*2 Fc1
2L11 +

2c1c2aÎē

ḡD̄
L12 +

c2
2ē

gD
L22G . s47d

The various terms have the same meaning as defined in Eq.
s28d.

In view of the energy, Eq.(35), one can readily obtain the
equation for pressure, i.e.,

P = Pid + PHB + Pt + PQ. s48d

The equations for the different contributions to pressure can
be straightforwardly obtained from the respective free energy
as

bP

r
= r

]

] r
S F

NkT
D . s49d

We have used the inputs of Table I in these relations to
computeGxs for He-H2 mixture as a function of He compo-
sition cHe, T, and P. The effect of temperature onGxs is
depicted in Fig. 2 for a given pressureP=0.5 GPa.Gxs is
quite asymmetric aroundcHe=0.5, which is more pro-
nounced at low temperatures. For example, atT=10K, Gxs is
positive towards the H2-rich side. As the composition of He
in the mixture increases,Gxs becomes negative implying or-
der and greater thermodynamic stability. The role of tem-
perature onGxs is more dominant towards the He-rich side.
Gxs of the mixture increases considerably with increasingT
for rich compositions of He.

The pressure effect onGxs is shown in Figs. 3(a) and 3(b)
for T=15 K and in Figs. 4(a) and 4(b) for T=100 K. The
computed values ofGxs in the megapascal range(1.0 MPa,
5.0 MPa, and 10.0 MPa) and in the gigapascal range
(0.1 GPa, 0.5 GPa, 1.0 GPa, and 2.0 GPa) of pressures are
displayed. In the MPa range of pressuressT=15 Kd, Gxs is
positive and increases with increasingP. However, in the
GPa range of pressures,Gxs decreases with increasing pres-
sures.Gxs also exhibits a crossover from positive values at

H2-rich end to large negative values towards He-rich end for
larger pressures of GPa range. The general trend of the effect
of pressure atT=100 K is also similar, but the magnitude of
Gxs at 100 K is much smaller than that at 15 K.

V. EXCESS ENTROPY OF MIXING

It is quite evident from the previous discussion thatGxs of
the He-H2 mixture depends strongly on temperature and,
therefore, we have investigated the excess entropy which is a
derivative ofGxs with respect toT. The excess entropy of
mixing, Sxs, can be obtained from

Sxs = S− sc1S1 + c2S2d + Nko ci ln ci . s50d

The various entropy terms on the right-hand side of the
above equation are obtained by taking the temperature de-
rivative of the different Gibbs free energy terms as they ap-
pear in Eq.s31d,

FIG. 2. Effect of temperature(T=10 K, 30 K, 50 K, and 100 K)
on excess Gibbs free energysGxs/NkTd at P=0.5 GPa for He-H2
mixture as a function of helium concentrationcHe.

FIG. 3. Effect of pressure onGxs/NkT at 15 K for He-H2 mix-
ture as a function ofcHe: (a) gigapascal(GPa) range of pressures,
(b) megapascal(MPa) range of pressures.

FIG. 4. Gxs/NkTas a function ofcHe atT=100 K: (a) GPa range
of pressures,(b) MPa range of pressures.
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S= − S ] G

] T
D

P

= −
]

] T
sF id + F HB + F t + F QdP +

P

r2S ] r

] T
D

P

.

s51d

We may recall that the variousF’s and P’s are functions
of si j , which in our scheme areT dependent[see Eq.(22)],
and hence contribute to entropy. The temperature effect on
Sxs is shown in Fig. 5 for a givenP=0.5 GPa.Sxs is quite
asymmetric and attains a lowest value towards the He-rich
side.Sxs increases with increasingT. The impact of pressure
on Sxs is shown in Fig. 6 forT=15 K and in Fig. 7 forT
=100 K. The impact of MPa and GPa pressures onSxs is
quite different. As pressure increases from 1.0 MPa to
10.0 MPasT=15 Kd the asymmetry inSxs shifts from the
H2-rich side to the He-rich side and, in addition,Sxs de-
creases with increasing pressure. AtT=100 K, however,Sxs
is small and positive in the MPa region and increases with
increasing pressure. In the GPa range of pressures,Sxs exhib-

its strong asymmetry and changes from positive to negative
values as the concentration of He increases.

VI. CONCENTRATION FLUCTUATIONS AND
THERMODYNAMIC STABILITY

The long wavelength limit fqs=2p /ld→0g of the
concentration-concentration structure factor[28] Sccs0d pro-
vides valuable insight of the binary mixture at the atomic
level (see, for example, Ref.[29]). Sccs0d is defined as

Sccs0d = NksDcd2l, s52d

whereksDcd2l represents the mean square fluctuations in the
concentration. These can be derived from statistical mechan-
ics in terms of the Gibbs free energy,

Sccs0d = NkTS ]2G

] c1
2D

T,P,N

−1

. s53d

For an ideal mixturesG=oiciGi
0+NkToici ln cid one simply

obtains

Scc
id = c1c2. s54d

Any deviation of Sccs0d from the ideal values is of great
interest to visualize the degree of order and the thermody-
namic stability of the mixture. The significance ofSccs0d
emerges due to the curvatures]2G/]c1

2dT,P,N, which under-
goes a distinct transition at the extreme physicochemical
conditions of the mixture. If, at a given composition,Sccs0d
@Scc

id s0d then there is a tendency of segregationslike at-
oms tend to pair as nearest neighborsd, or phase separa-
tion. On the other hand,Sccs0d!Scc

id s0d is an indication of
heterocoordinationsunlike atoms tend to pair as nearest
neighborsd. In the limiting cases,Sccs0d→` for phase
separationsdemixingd and Scc→0 for complete heteroco-
ordination.

Sccs0d is directly related to the excess stability function
Exs originally introduced by Darken[30] to study the ther-
modynamic stability of mixtures,

FIG. 5. Excess entropy of mixingsSxs/Nkd for He-H2 mixture as
function of helium concentrationcHe at 0.5 GPa for different tem-
peratures,T=10 K, 30 K, 50 K, and 100 K.

FIG. 6. Sxs/Nk as a function ofcHe at T=15 K: (a) GPa range of
pressures,(b) MPa range of pressures.

FIG. 7. Sxs/Nk as a function ofcHe at T=100 K: (a) GPa range
of pressures,(b) MPa range of pressures.
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Exs = RTS 1

Sccs0d
−

1

c1c2
D . s55d

For a binary ideal mixture,Exs
id =0.

One can also estimate fromSccs0d the Warren-Cowley
[31,32] short range order parametera1, which helps to quan-
tify the degree of segregation or heterocoordination. Phase
separation is an extreme condition of segregation. By virtue
of the basic thermodynamic relations, and taking the proba-
bilistic approach, Bhatia and Singh[33] showed that the lim-
iting values ofa1 lie in the range −c1/c2øa1ø1 for c1,0.5
and −c2/c1øa1ø1 for c1ù0.5. Obviously, for equiatomic
sc1=0.5d binary mixture the limiting values tend to −1øa1

ø1. For heterocoordination in the mixture,a1,0, with the
minimum value of −1 rendering complete order of unlike
pairs as nearest neighbors. For segregation,a1 varies from 0
to +1, wherea1smaxd=1 suggests total segregation, or phase
separation.

For a mixture where size effects are relatively small, there
exists (see Refs.[34,35]) an exact relation betweenSccs0d
andal for different shells,

Sccs0d
Scc

id = 1 +o
l

zlal , s56d

wherezl and al are the coordination number and the short
range ordersSROd parameter for thelth shell sl varies from
first neighbor shell to higher shellsd. For the nearest neighbor
shell sl =1d, Eq. s56d simplifies considerably to

a1 =
Scc

* s0d − 1

sz− 1dScc
* s0d + 1

, s57d

where

Scc
* s0d =

Sccs0d
Scc

id s0d
. s58d

As stated earlier, one of the basic advantages of the
present approach is that it allows us to study the effect of
temperature and pressure onScc

* s0d, and, hence, on SRO pa-
rametera1. The nature of nearest neighbor pairs in the mix-
ture, such as H2-H2, He-He, and He-H2, can be readily in-
ferred. The effect ofT on Scc

* s0d is depicted in Fig. 8 atP
=0.5 GPa. At low temperaturesT=10 Kd the mixture exhib-
its two important regions:(i) segregated[Scc

* s0d.1, i.e.,
a1.0] region in the composition range 0øcHeø0.2, where
like atoms(H2-H2 and He-He) tend to be preferred as nearest
neighbors and(ii ) heterocoordinated[Scc

* s0d,1, i.e.,a1,0]
region in the composition range 0.2øcHeø1, where unlike
atomssHe-H2d tend to pair as nearest neighbors. With de-
creasingT, Scc

* s0d increases in the segregated region whereas
it decreases in the heterocoordinated region. In the ordered
phase of the mixtureScc

* s0d exhibits flat minima over a wide
range of composition atT,10 K.

The impact of pressure in the MPa range(1.0 MPa,
5.0 MPa, and 10.0 MPa) and GPa range(0.1 GPa, 0.5 GPa,
and 1.0 GPa) at T=15 K is shown in Figs. 9(a) and 9(b),
respectively. The effect of MPa and GPa pressures onScc

* s0d

in the segregation region is quite distinct. Even at low tem-
peraturesT,15 Kd the mixture exhibits a good deal of seg-
regation over an extended region of composition for the MPa
pressures. For the GPa pressures, however, the ordered phase
dominates as the He concentration increases in the mixture.
The results forT=100 K are shown in Fig. 10(a) for the MPa
pressures and Fig. 10(b) for the GPa pressures. For the MPa
pressures,Scc

* s0d.1sa1.0d, i.e., segregation, at all compo-
sitions, which increases with increasing pressure from
1.0 MPa to 10.0 MPa. But, in the GPa range of pressures, the
mixture transforms from segregation to ordered phase with
increasing pressure.

VII. SUMMARY AND CONCLUSIONS

A theory of mixtures is developed on the basis of statisti-
cal mechanical perturbation scheme to study the compress-

FIG. 8. Effect of temperature(T=10 K,30 K, 50 K, and 100 K)
on concentration fluctuations in the long wavelength limitfScc

* s0d
=Sccs0d /Scc

id s0dg for He-H2 mixture as a function of helium compo-
sition cHe at P=0.5 GPa.

FIG. 9. Scc
* s0d for He-H2 mixture as a function ofcHe at T

=15 K: (a) MPa range of pressures,(b) GPa range of pressures.
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ibility factor Z, excess free energy of mixingGxs, excess
entropySxs of mixing, and the long wavelength limit of the
concentration fluctuationsfSccs0dg of He-H2 mixture over a
wide range of pressure and temperature. He-H2 mixtures en-
joy special significance due to their cosmological relevance
and the challenge they pose due to the complex nature of
interactions among the constituent species. The long range
correlations among the mixture species have been included
through the double Yukawa potential, which acts as a pertur-
bation to the hard sphere reference mixture. The dimerization
of the H2 molecule is accounted for as a hard sphere convex
body fluid for which an equation of state can be derived
based on the scaled particle theory.

Taking into account the quantum energy term and the con-
tributions from long range correlations, an analytical expres-
sion for the equation of state of He-H2 system is presented.
This, in turn, is used to obtain the Helmholtz free energy,
entropy, andSccs0d. At a givenT, the equation of state has
been solved numerically to give density as a function of
pressure enabling us to expressZ, Gxs, Sxs, and Sccs0d as
functions of pressure. As a result, internal consistency of the
various thermodynamic functions has been ensured.

The values ofZ, Gxs, Sxs, and Sccs0d computed for He
-H2 as functions of composition at differentP and T are

given. The parameters of the double Yukawa potential are
simulated to the exp-6 potential, which conforms satisfacto-
rily to the ab initio quantum mechanical calculations of He
and H2 energy data. The role of the various components ofZ
and its dependence on the radial distribution function at low
and high density regions have been critically examined. The
characteristic behaviors ofGxs, Sxs, and Sccs0d have been
studied both in the MPa and GPa ranges of pressures with a
view to investigate the segregation and heterocoordination
for thermodynamic stability in the mixture. Some of the im-
portant conclusions of the present work are as follows.

(a) The contributions from the long range correlations
Z t and the quantum correction termZ Q to the compressibil-
ity factor Z are quite dominant at low temperatures. Simi-
larly, the impact of the distribution function onZ is quite
substantial at low temperatures. The dilute limitfgsrd=1g is
only valid at high temperatures.

(b) The computed values of pressure agree very well
with computer simulation results over an extended
region of temperature s50 K–4000 Kd and pressure
s0.05 GPa–16 GPad.

(c) Segregation, heterocoordination, or both may oc-
cur in the He-H2 mixture depending upon its composition,
temperature, and pressure.

(d) Though the results from all the three thermody-
namic functions[Gxs, Sxs, andSccs0d] are consistent,Sccs0d is
most useful and sensitive to study the phase separation or
chemical order in the mixture.

At low temperature,T=15 K, segregation occurs for
the MPa pressures(1.0 MPa, 5.0 MPa, and 10.0 MPa),
which increases with increasing pressures. For the GPa range
(0.1 GPa, 0.5 GPa, 1.0 GPa, and 2.0 GPa), heterocoordina-
tion (order) prevails, which increases as the composition of
He increases. AtT=100 K, however, there is a noticeable
increase of segregation with increasing MPa pressures. As
the pressure tends to the GPa range, a reversal of the trend is
observed. The mixture transforms from segregation to or-
dered phase with increasing GPa pressures.
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