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Improved extremal optimization for the Ising spin glass
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A version of the extremal optimizatioiO) algorithm introduced by Boettcher and Percus is tested on two-
and three-dimensional spin glasses with Gaussian disorder. EO preferentially flips spins that are locally “unfit”;
the variant introduced here reduces the probability of flipping previously selected spins. Relative to EO, this
adaptive algorithm finds exact ground states with a speedup of orfi¢L @) for 16> (8%-)spin samples. This
speedup increases rapidly with system size, making this heuristic a useful tool in the study of materials with
guenched disorder.
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INTRODUCTION glass samples. As exact ground states are needed for studies

Exploring the low-temperature behavior of disordered©f _excitations and scaling, the_ algorith_m_is, for the most part,
materials, such as spin glasses and other random magné&§ingently tested by demanding that it find the ground states
[1], is quite challenging due to the very phenomena, glass§omputed by exact methods. Both EO and JEO take a time
dynamics and multiple metastable states, that are importag&ponential in the system size to find the exact ground state,
in such materials. Scaling argumenig-4] indicate that but the rate of growth is slower for JEO. Although JEO in-
many properties of the glassy state, including the scaling ofroduces an extra parameter, large improvements are
the energy of excitations and correlation functions, can b&chieved with only modest tuning.
found by studying the ground state and its response to per-
turbations. Significant effort has been invested in identifying
models whose ground states can be computed in a time poly-

nomial in the system sizg5]. Where no polynomial-time A principle motivation for applying EO is to explore the
algorithm is known, exact and heuristic methods that takgnergy landscape near the trial configuration by uncondition-
time exponential in system size are used. This enterprise iy modifying “unfit” variables. Preferentiallybut not ex-
intimately connected with concepts developed in computegysjyely) changing variables with low fitness tends to raise
science, especially the distinction between P- and NP-harghe expected fitness while maintaining large fluctuations. The
optimization problemg6]. , algorithm differs somewhat from traditional Monte Carlo al-

_ The Ising spin glassiSG) is a prototypical example of @ gqrithms that conditionally select variables according to the
disordered magnet. NP-hard problems such as the thregypected improvement. In EO, the potential moves are se-
dimensional(3D) ISG are, of course, particularly challeng- |octeq according to their rank by fitness, rather than a
ing. Exact methods for the 3D ISG with Gaussian bondggjtzmann distribution by weight.
weights can solve £2spin samples with open boundary con- A correspondence can be defined between fitness and the
ditions [7]. Such sizes have not proven to be sufficiently y5miltonian for the Ising spin glagd0]. The Hamiltonian

large to decide between alternate pictures for the lowso gpinss, indexed by position, in ad-dimensional ISG of
temperature behavior. Heuristic genetic methods mix confpear sizel is

figurations and can therefore generate large scale “moves”:
such methods are used for samples witR &gins for 4J H =_23ij915j, (1)
couplings[8]. Heuristics with local moves generally have Gj)
gglﬁg:tg/sllndlng_ the exact ground state, du_e to the Iarge}/\/i}ereJij are random bond strengths each chosen with prob-
parating metastable states. Techniques such as flat P ) . i

histogram method9] can partially lower free energy barri- ability P(J;)=e™%/y2m for nearest neighbor spins with
ers between metastable states. 1<i,j<N=L% Whend=2, algorithms with running times

In this Rapid Communication, | study a modified versionPolynomial in N are available[11] to find the ground
of extremal optimization(EO) [10]. EO is a local search State. Whend=3, finding the ground state energy is NP
algorithm that preferentially flips spins with low “fitness.” hard, so that finding ground states for the worst-case
The version presented here, “jaded” extremal optimizatiorfhoice ofJj is expected to take a time exponentiaNnIn
(JEO, increases the fitness of a spin by an amount proporthe context of EO, one choice for the fitness variahje
tional to the number of times it has been flipped. The goal ofor @ spin variables; is
this adjustment is to reduce the repetition in exploring paths 0_
in configuration space, so that more possibilities can be N=N =3<,E Jijsi)* (2)
quickly explored. Empirically, this simple change dramati- Jeb
cally increases the effectiveness of the EO algorithm fowhereU; are the set of unsatisfied bon@gJ;;s;<0) contain-
finding ground states of two- and three-dimensional spiring s. (Allowing for site-dependent constant shift§— \?

I. EXTREMAL OPTIMIZATION AND
EXTENDED ALGORITHM
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+k; as in Ref[12] did not affect the comparisons herghe  This structure is a tree that is relatively cheap to maintain
configuration energy is related to the fitness By —% Sin? [O(log N) total cost to select a spin and update the Jtree
+Eij|Jij|. Any increase in the fitness decreases the total enEach spin has a pare(#xcept for the rogtand at most two
ergy. children. Each child is more fit than its parent and the root of
Given the fitness variableg’, there are a variety of strat- the tree contains the least fit spin. This structure does not
egies one could employ to attempt to improve the total fit-guarantee any other interlevel sorting, so that a spivat is
ness. The simplest version of EO takes “greedy” steps: thdeeper in the tree than, but not a direct descendant of, a given
algorithm repeatedly flips the least fit variable until a staticspini’, may have a lower fitness. The heap structure does
state is achieved. The greedy method converges quite rapiaintain a useful approximate sorting, though. To select a
idly, but in a spin glass the convergence is to a local mini-spin to flip, a level is selected with probability proportional
mum that is generally quite far from the optimal solution, to 27" 9¢ and then a random spin within levélis chosen.
both in configuration of thés} and often in energy per de- The spin at this site is then inverted. The fitness of the neigh-
gree of freedonH/N. Similar greedy approaches for deci- boring spins is adjusted and the heap is updated using stan-
sion problems such as the satisfiability of sets of logical condard method$17].
straints (SAT), which seeks truth assignments for Boolean EO does not take advantage of the special structure of the
formulas so that all clauses contain a true value, can be quitgD problem: it is not necessary or even expected that it will
successful for given ensembles of problefhs]. find the solution in a time polynomial in the system size.
An improved methodr~EO [10], sorts the spins by; and ~ Polynomial-time solvable problems have been used to study
chooses thenth spin in the list with probability proportional algorithms, for example, for hard mean-field proble[h8].
to m™". This favors the choice of spins with low fitness, but For some classes of problems, heuristics can find solutions in
allows for the occasional choice of sites with very high fit- polynomial time[13,19. In the 2D ISG, large low-energy
ness. Fluctuations arising from the stochastic choice amongxcitations may make local algorithms especially inefficient.
spins with low fitness and the ranking of spins by the total
weight of broken bonds, rather than energy improvement,
allow the search to escape metastable states. It is afdg0gd
that for large systems the optimal choice oapproaches In this section, | compare the performance of the extended
=1. EO algorithm, JEO, with—EO as applied to Ising spin
The extension considered in this pagdEO) adjusts the glasses with Gaussian disorder. When feasible, comparisons
fitness by an amount proportional to the number of titkes with ground states found using exact methods provide a pre-
that a sitel has been previously chosen, that is, cise and direct test for convergence.

Il. PERFORMANCE OF THE ALGORITHM

A=A =2\0+Tk, ©) N .
Two-dimensional spin glass
wherel is a site-independent “aging” parameter. The vari- The 2D ISG models are on a square lattice withspins
ables are sorted b)y,F and then selected by rank as#EO.  and open boundary conditions. To determine the 2D ground
The -EO algorithm corresponds to the choice 0. Setting  state, each sample is mappgtl] to a general weighted
I'# 0 reduces the probability of selecting moves that havematching problem. The matching problem for a graph is to
been flipped many times before. For configurations ear find a set of edges with minimal total weight such that each
in) the ground state, it is favorable feomespins to have vertex belongs to exactly one edge. The weighted graph for a
low fitness, in order that a number of other spins can maxi2D ISG sample has edges dual to the lattice bonds, with
mize their fithess. Whei'=0, these spins, which are actu- weight |J;| for an edge that crosses a bond with weight
ally in their ground state orientation relative to the otherand extra edges of weight zero that ensure that the frustration
spins, will be flipped in futility. Shifting the\; during the of each plaguette is maintained: unfrustratgcustrated
algorithm also breaks the finite set of offsets between fit-plaquettes give an eveiwdd) number of bonds dual to the
nesses of distinct spins that existlat0 (due to the finite  edges of the plaquette in the matching. To find the minimum
number of bond configurations at each kit€his adaptive weight matching and hence the ground state energy for a 2D
scheme has similarities to a variety of methods for solvingdSG sample, | used thBLossoMm Iv algorithm developed by
problems such as the SAT that disfavor repeated selectioBook and Rohg20].
of the same move, such a®VELTY [14] and variants of The exact ground state energy of each 2D ISG sample
WALKSAT and GSAT [15,14. In contrast with these other was input to ther-EO and JEO codes. When the heuristic
schemes, the selection process in JEO is combined with theodes found this energy, the codes terminated. The primary
power law distribution for selecting ranked moves. Spinresults from these computations were the distributions of the
glasses with continuous disorder differ from SAT problemsrunning times, measured in number of spin flips, to find the
as they have less local degeneracy but also possess a glolrale ground state. The time to solution is a function of both
up-down symmetry, so that distinct methods may be approthe seed used to generate the sample and an independent
priate. “algorithm seed” used to generate the random initial configu-
In order to select spins quickly, | used the approximateration and to select spin flips. In a given sample, the distri-
selection method described in REE2]. The spins are stored bution of times to find a ground state was roughly Poisso-
in a heap structurg¢l7] according to their current fitness. nian. This suggests that restarting the algorithm with
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FIG. 1. Plot oft,, the sample mean of the median time to find FIG. 3. Plot of the sample_average of the medign running ti.mes
the ground state, measured in spin flips, usigO (squares and for ~EO (squa_re;s apd JEO(cche_s) for the_Gaussnan Ism_g spin
JEO(circles, for the 2D ISG with optimalr and, for JEOT. The glgs_s on a cubic Iattlcg. The algorithm terminated when eight of the
triangles indicate the same measure of time to find the ground staf8inimal record energies agreed among ten parallel samples. The
energy to within 1% accuracy. The line shows, for comparison, £arameterr was fixed for JEO at a near-optima# 1.7 and near-
running time exponential i, t,,=15x 2, consistent with the re- °Ptimal values of’=0.1,0.1,0.05 foL. =4,6,8,respectively, were

sults for JEO. The uncertainties are comparable to the symbol siz&S€d- The gain for JEO ovefEQ is approximately a factor of 100
atL=8. The line shows,,=0.05x 234, for a rough comparison.

different initial configurations or seeds for selecting flips , .

does not significantly decrease the mean running time. Thifr JEO- ForL=16, JEO is of the order of fQimes faster
conclusion was consistent with empirical trials of restartingth@n 7-EO. Extrapolation suggests that the advantage of JEO
the algorithm: the algorithm does not get stuck in history-increases significantly with. For comparison, an exponen-
dependent traps. Given a sampiethe mediantﬁq of the tial dependen_cen:15>< 2'-_ is shown in Fig. 1. This function
running time was estimated from the solution time for 100d0€s a good job of describing the JEO datalfer4 through

algorithm seeds. The results reported here aretforthe ~L=32. In separate runs, for comparison, the heuristic algo-
sample mean of<. The T=0 data are in agreement with rithm was terminated when the energy was within 1% of the
o

previously results for~EO, witht,, minimal at 7~ 1.5 exact ground sate energy. These approximate solutions were
' m. e o found much more rapidly than exact solutiors10® times
The results for the mean solution tinig for optimal =

andI" are summarized in Fig. 1. As suggested by the dataflas'[er forl.=32).
plotted in Fig. 2.t is not very sensitive to the exact choice
of parameters, as long asis in the range 1.5.7<<2.5 and
the optimall" (on the order of 1C° to 10%) is found to
within a factor of about 2, for the sizes studied here. The best A similar comparison was carried out for 3D ISG samples

running times for~EO grow much more rapidly than those With Gaussian disorder. THe® spins in the 3D ISG samples
lie on a cubic lattice with periodic boundary conditions. For
. , . - . . . 3D ISG samples of size up tc,6the spin glass server at the
®®r=0 1 University of Koln [21] (which applies branch and c{i])
2DISG,L =8 |2212000 1 was used to generate exact solutions. The termination condi-
tion of the algorithm was modified, as exact ground states for
the larger samples were not readily available. All samples
were simulated in parallel with=10 algorithm seeds. When
the minimal record energy for eight of the samples were
identical, the algorithm was terminated. This criterion pro-
duced configurations equal to the exact solutions forLall
=4,6 samples(45 at each size This suggests that true
I ] ground states were found with a high probability fox8
I : : ' ' : ; : and possibly als@.=10. The summary results are plotted in
Fig. 3. Given the termination criterion, JEO was of the order
of 1(? times faster than~EO in converging to a potential
FIG. 2. Plot oft,, for 2D ISG samples of size=8, for I rang- ~ Slution forL=8 samples. Very roughly.=6 samples were
ing from T'=0 (i.e., ~EO) throughT'=0.5, as a function of the SoOlved in=10s on average both on the KdIn spin glass
power law for rank selection, For clarity, the error bars, which are  Server(a 400 MHz Sun Ultrpand using JEQon a 1 GHz
of order 10% of the values for all points, are not shown. The solidintel P9. Further studies would be needed to provide better
lines are added only to group the points. Choodihg0.1 andr  estimates of the confidence in the ground states and how to
~2.0 minimizes the run time. improve such confidence.

Three-dimensional spin glass
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I1l. DISCUSSION duces the time for EO to find the ground state of the ISG in

JEO extends the extremal optimization algorithm of Boet-'W0 and three dimensions. Although the 2D model was used

tcher and Percus by adaptively reducing the frequency of® Make a precise comparison with exact results, the expo-
flipping previously selected spins. As a local move can lead'€ntial equilibration times for the 2D ISG using extremal

to avalanchelike behavior, due to induced changes in the fi@Ptimization are consistent with those that would be seen for

ness of neighbors, this modification also reduces the fre@" NP-hard optimization problem with a similar local solu-
quency of flipping larger domains. This extension of gotion strategy. It may be useful to use an algorithm like JEO to

does add a parameter, the aging paramBteHowever, a locally improve thel configgrations formed by who.le sample
near-optimal value fol” for each problem type at a given CrOSSOVer in genetic algorithm&3]. As exact solutions for

size can be found quickly, and less tuning of the parameter SMall samples can be found with confidence in a relatively
is required than for-EO. small number of steps, in machine time very similar to that

One possible avenue of exploration is to check whethefor bran_ch and cut, this simple algorithm also provides a very
avalanche regions correspond to important domains or excRonvenient way to study small 3D samples.
tations in the sample. Possible modifications of JEO include
using a selection. di;trib_ution with sharp cutof&?], rath_er ACKNOWLEDGMENTS
than power law distributions. Other schemes for reducing the
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