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A version of the extremal optimization(EO) algorithm introduced by Boettcher and Percus is tested on two-
and three-dimensional spin glasses with Gaussian disorder. EO preferentially flips spins that are locally “unfit”;
the variant introduced here reduces the probability of flipping previously selected spins. Relative to EO, this
adaptive algorithm finds exact ground states with a speedup of order 104 s102d for 162- s83-dspin samples. This
speedup increases rapidly with system size, making this heuristic a useful tool in the study of materials with
quenched disorder.
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INTRODUCTION

Exploring the low-temperature behavior of disordered
materials, such as spin glasses and other random magnets
[1], is quite challenging due to the very phenomena, glassy
dynamics and multiple metastable states, that are important
in such materials. Scaling arguments[2–4] indicate that
many properties of the glassy state, including the scaling of
the energy of excitations and correlation functions, can be
found by studying the ground state and its response to per-
turbations. Significant effort has been invested in identifying
models whose ground states can be computed in a time poly-
nomial in the system size[5]. Where no polynomial-time
algorithm is known, exact and heuristic methods that take
time exponential in system size are used. This enterprise is
intimately connected with concepts developed in computer
science, especially the distinction between P- and NP-hard
optimization problems[6].

The Ising spin glass(ISG) is a prototypical example of a
disordered magnet. NP-hard problems such as the three-
dimensional(3D) ISG are, of course, particularly challeng-
ing. Exact methods for the 3D ISG with Gaussian bond
weights can solve 123-spin samples with open boundary con-
ditions [7]. Such sizes have not proven to be sufficiently
large to decide between alternate pictures for the low-
temperature behavior. Heuristic genetic methods mix con-
figurations and can therefore generate large scale “moves”:
such methods are used for samples with 143 spins for ±J
couplings [8]. Heuristics with local moves generally have
difficulty finding the exact ground state, due to the large
barriers separating metastable states. Techniques such as flat
histogram methods[9] can partially lower free energy barri-
ers between metastable states.

In this Rapid Communication, I study a modified version
of extremal optimization(EO) [10]. EO is a local search
algorithm that preferentially flips spins with low “fitness.”
The version presented here, “jaded” extremal optimization
(JEO), increases the fitness of a spin by an amount propor-
tional to the number of times it has been flipped. The goal of
this adjustment is to reduce the repetition in exploring paths
in configuration space, so that more possibilities can be
quickly explored. Empirically, this simple change dramati-
cally increases the effectiveness of the EO algorithm for
finding ground states of two- and three-dimensional spin

glass samples. As exact ground states are needed for studies
of excitations and scaling, the algorithm is, for the most part,
stringently tested by demanding that it find the ground states
computed by exact methods. Both EO and JEO take a time
exponential in the system size to find the exact ground state,
but the rate of growth is slower for JEO. Although JEO in-
troduces an extra parameter, large improvements are
achieved with only modest tuning.

I. EXTREMAL OPTIMIZATION AND
EXTENDED ALGORITHM

A principle motivation for applying EO is to explore the
energy landscape near the trial configuration by uncondition-
ally modifying “unfit” variables. Preferentially(but not ex-
clusively) changing variables with low fitness tends to raise
the expected fitness while maintaining large fluctuations. The
algorithm differs somewhat from traditional Monte Carlo al-
gorithms that conditionally select variables according to the
expected improvement. In EO, the potential moves are se-
lected according to their rank by fitness, rather than a
Boltzmann distribution by weight.

A correspondence can be defined between fitness and the
Hamiltonian for the Ising spin glass[10]. The Hamiltonian
for spinssi, indexed by positioni, in a d-dimensional ISG of
linear sizeL is

H = − o
ki j l

Jijsisj , s1d

whereJij are random bond strengths each chosen with prob-

ability PsJijd=e−Jij
2/2/Î2p for nearest neighbor spins with

1ø i , j øN=Ld. Whend=2, algorithms with running times
polynomial in N are availablef11g to find the ground
state. Whendù3, finding the ground state energy is NP
hard, so that finding ground states for the worst-case
choice ofJij is expected to take a time exponential inN. In
the context of EO, one choice for the fitness variableli
for a spin variablesi is

li = li
0 ; siS o

jPUi

JijsjD , s2d

whereUi are the set of unsatisfied bondsssiJijsj ,0d contain-
ing si. sAllowing for site-dependent constant shiftsli

0→li
0
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+ki as in Ref.f12g did not affect the comparisons here.d The
configuration energy is related to the fitness byH=−1

2 oili
0

+oi j uJij u. Any increase in the fitness decreases the total en-
ergy.

Given the fitness variablesli
0, there are a variety of strat-

egies one could employ to attempt to improve the total fit-
ness. The simplest version of EO takes “greedy” steps: the
algorithm repeatedly flips the least fit variable until a static
state is achieved. The greedy method converges quite rap-
idly, but in a spin glass the convergence is to a local mini-
mum that is generally quite far from the optimal solution,
both in configuration of thehsij and often in energy per de-
gree of freedomH /N. Similar greedy approaches for deci-
sion problems such as the satisfiability of sets of logical con-
straints (SAT), which seeks truth assignments for Boolean
formulas so that all clauses contain a true value, can be quite
successful for given ensembles of problems[13].

An improved method,t-EO [10], sorts the spins byli and
chooses themth spin in the list with probability proportional
to m−t. This favors the choice of spins with low fitness, but
allows for the occasional choice of sites with very high fit-
ness. Fluctuations arising from the stochastic choice among
spins with low fitness and the ranking of spins by the total
weight of broken bonds, rather than energy improvement,
allow the search to escape metastable states. It is argued[10]
that for large systems the optimal choice oft approachest
=1.

The extension considered in this paper(JEO) adjusts the
fitness by an amount proportional to the number of timeski
that a sitei has been previously chosen, that is,

li = li
G ; li

0 + Gki , s3d

whereG is a site-independent “aging” parameter. The vari-
ables are sorted byli

G and then selected by rank as int-EO.
The t-EO algorithm corresponds to the choiceG=0. Setting
GÞ0 reduces the probability of selecting moves that have
been flipped many times before. For configurations nearsor
ind the ground state, it is favorable forsomespins to have
low fitness, in order that a number of other spins can maxi-
mize their fitness. WhenG=0, these spins, which are actu-
ally in their ground state orientation relative to the other
spins, will be flipped in futility. Shifting theli during the
algorithm also breaks the finite set of offsets between fit-
nesses of distinct spins that exist atG=0 sdue to the finite
number of bond configurations at each sited. This adaptive
scheme has similarities to a variety of methods for solving
problems such as the SAT that disfavor repeated selection
of the same move, such asNOVELTY [14] and variants of
WALKSAT and GSAT [15,16]. In contrast with these other
schemes, the selection process in JEO is combined with the
power law distribution for selecting ranked moves. Spin
glasses with continuous disorder differ from SAT problems
as they have less local degeneracy but also possess a global
up-down symmetry, so that distinct methods may be appro-
priate.

In order to select spins quickly, I used the approximate
selection method described in Ref.[12]. The spins are stored
in a heap structure[17] according to their current fitness.

This structure is a tree that is relatively cheap to maintain
[Oslog Nd total cost to select a spin and update the tree].
Each spin has a parent(except for the root) and at most two
children. Each child is more fit than its parent and the root of
the tree contains the least fit spin. This structure does not
guarantee any other interlevel sorting, so that a spini that is
deeper in the tree than, but not a direct descendant of, a given
spin i8, may have a lower fitness. The heap structure does
maintain a useful approximate sorting, though. To select a
spin to flip, a level, is selected with probability proportional
to 2−st−1d, and then a random spin within level, is chosen.
The spin at this site is then inverted. The fitness of the neigh-
boring spins is adjusted and the heap is updated using stan-
dard methods[17].

EO does not take advantage of the special structure of the
2D problem: it is not necessary or even expected that it will
find the solution in a time polynomial in the system size.
Polynomial-time solvable problems have been used to study
algorithms, for example, for hard mean-field problems[18].
For some classes of problems, heuristics can find solutions in
polynomial time[13,19]. In the 2D ISG, large low-energy
excitations may make local algorithms especially inefficient.

II. PERFORMANCE OF THE ALGORITHM

In this section, I compare the performance of the extended
EO algorithm, JEO, witht-EO as applied to Ising spin
glasses with Gaussian disorder. When feasible, comparisons
with ground states found using exact methods provide a pre-
cise and direct test for convergence.

Two-dimensional spin glass

The 2D ISG models are on a square lattice withL2 spins
and open boundary conditions. To determine the 2D ground
state, each sample is mapped[11] to a general weighted
matching problem. The matching problem for a graph is to
find a set of edges with minimal total weight such that each
vertex belongs to exactly one edge. The weighted graph for a
2D ISG sample has edges dual to the lattice bonds, with
weight uJij u for an edge that crosses a bond with weightJij ,
and extra edges of weight zero that ensure that the frustration
of each plaquette is maintained: unfrustrated(frustrated)
plaquettes give an even(odd) number of bonds dual to the
edges of the plaquette in the matching. To find the minimum
weight matching and hence the ground state energy for a 2D
ISG sample, I used theBLOSSOM IV algorithm developed by
Cook and Rohe[20].

The exact ground state energy of each 2D ISG sample
was input to thet-EO and JEO codes. When the heuristic
codes found this energy, the codes terminated. The primary
results from these computations were the distributions of the
running times, measured in number of spin flips, to find the
true ground state. The time to solution is a function of both
the seed used to generate the sample and an independent
“algorithm seed” used to generate the random initial configu-
ration and to select spin flips. In a given sample, the distri-
bution of times to find a ground state was roughly Poisso-
nian. This suggests that restarting the algorithm with
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different initial configurations or seeds for selecting flips
does not significantly decrease the mean running time. This
conclusion was consistent with empirical trials of restarting
the algorithm: the algorithm does not get stuck in history-
dependent traps. Given a samplek, the mediantm

k of the
running time was estimated from the solution time for 100
algorithm seeds. The results reported here are fort̄m, the
sample mean oftm

k . The G=0 data are in agreement with
previously results fort-EO, with t̄m minimal att<1.5.

The results for the mean solution timet̄m for optimal t
and G are summarized in Fig. 1. As suggested by the data
plotted in Fig. 2,t̄m is not very sensitive to the exact choice
of parameters, as long ast is in the range 1.5,t,2.5 and
the optimal G (on the order of 10−3 to 10−1) is found to
within a factor of about 2, for the sizes studied here. The best
running times fort-EO grow much more rapidly than those

for JEO. ForL=16, JEO is of the order of 104 times faster
thant-EO. Extrapolation suggests that the advantage of JEO
increases significantly withL. For comparison, an exponen-
tial dependencet̄m=1532L is shown in Fig. 1. This function
does a good job of describing the JEO data forL=4 through
L=32. In separate runs, for comparison, the heuristic algo-
rithm was terminated when the energy was within 1% of the
exact ground sate energy. These approximate solutions were
found much more rapidly than exact solutions(<105 times
faster forL=32).

Three-dimensional spin glass

A similar comparison was carried out for 3D ISG samples
with Gaussian disorder. TheL3 spins in the 3D ISG samples
lie on a cubic lattice with periodic boundary conditions. For
3D ISG samples of size up to 63, the spin glass server at the
University of Köln [21] (which applies branch and cut[5])
was used to generate exact solutions. The termination condi-
tion of the algorithm was modified, as exact ground states for
the larger samples were not readily available. All samples
were simulated in parallel withn=10 algorithm seeds. When
the minimal record energy for eight of the samples were
identical, the algorithm was terminated. This criterion pro-
duced configurations equal to the exact solutions for allL
=4,6 samples(45 at each size). This suggests that true
ground states were found with a high probability forL=8
and possibly alsoL=10. The summary results are plotted in
Fig. 3. Given the termination criterion, JEO was of the order
of 102 times faster thant-EO in converging to a potential
solution forL=8 samples. Very roughly,L=6 samples were
solved in <10 s on average both on the Köln spin glass
server(a 400 MHz Sun Ultra) and using JEO(on a 1 GHz
Intel P5). Further studies would be needed to provide better
estimates of the confidence in the ground states and how to
improve such confidence.

FIG. 1. Plot of t̄m, the sample mean of the median time to find
the ground state, measured in spin flips, usingt-EO (squares) and
JEO (circles), for the 2D ISG with optimalt and, for JEO,G. The
triangles indicate the same measure of time to find the ground state
energy to within 1% accuracy. The line shows, for comparison, a
running time exponential inL, t̄m=1532L, consistent with the re-
sults for JEO. The uncertainties are comparable to the symbol size.

FIG. 2. Plot oft̄m for 2D ISG samples of sizeL=8, for G rang-
ing from G=0 (i.e., t-EO) through G=0.5, as a function of the
power law for rank selection,t. For clarity, the error bars, which are
of order 10% of the values for all points, are not shown. The solid
lines are added only to group the points. ChoosingG<0.1 andt
<2.0 minimizes the run time.

FIG. 3. Plot of the sample average of the median running times
for t-EO (squares) and JEO(circles) for the Gaussian Ising spin
glass on a cubic lattice. The algorithm terminated when eight of the
minimal record energies agreed among ten parallel samples. The
parametert was fixed for JEO at a near-optimalt=1.7 and near-
optimal values ofG=0.1,0.1,0.05 forL=4,6,8,respectively, were
used. The gain for JEO overt-EO is approximately a factor of 100
at L=8. The line showst̄m=0.05323.4L, for a rough comparison.
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III. DISCUSSION

JEO extends the extremal optimization algorithm of Boet-
tcher and Percus by adaptively reducing the frequency of
flipping previously selected spins. As a local move can lead
to avalanchelike behavior, due to induced changes in the fit-
ness of neighbors, this modification also reduces the fre-
quency of flipping larger domains. This extension of EO
does add a parameter, the aging parameterG. However, a
near-optimal value forG for each problem type at a given
size can be found quickly, and less tuning of the parametert
is required than fort-EO.

One possible avenue of exploration is to check whether
avalanche regions correspond to important domains or exci-
tations in the sample. Possible modifications of JEO include
using a selection distribution with sharp cutoffs[22], rather
than power law distributions. Other schemes for reducing the
fitness of frequently repeated moves could be considered,
such as modifying the fitness using nonlinear functions of the
number of flips at a spin.

Regardless of the exact details of the role of domains and
possible improvements, empirical testing shows that the ag-
ing of the spins during state-space exploration greatly re-

duces the time for EO to find the ground state of the ISG in
two and three dimensions. Although the 2D model was used
to make a precise comparison with exact results, the expo-
nential equilibration times for the 2D ISG using extremal
optimization are consistent with those that would be seen for
an NP-hard optimization problem with a similar local solu-
tion strategy. It may be useful to use an algorithm like JEO to
locally improve the configurations formed by whole sample
crossover in genetic algorithms[23]. As exact solutions for
small samples can be found with confidence in a relatively
small number of steps, in machine time very similar to that
for branch and cut, this simple algorithm also provides a very
convenient way to study small 3D samples.
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