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It is predicted that large and opposite generalized Goos-Han&®Hhi) shifts may occur simultaneously for
TE and TM light beams upon reflection from an asymmetric double-prism configuration when the angle of
incidence is below but near the critical angle for total reflection, which may lead to interesting applications in
optical devices and integrated optics. Numerical simulations show that the magnitude of the GGH shift can be
of the order of beam’s width.
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It is well established that a light beam that is totally re- The asymmetric double-prism configuration considered
flected from a dielectric interface undergoes a lateral shifhere is shown in Fig. 1, where two prisms of refractive indi-
from the position predicted by geometrical optics. This phe-cesn, andn, are placed adjacently with a thin dielectric layer
nomenon is known as the Goos-Hanch@H) effect[1,2]  of refractive indexn, and thicknessa being formed in be-
and was theoretically explained first by Artmai®). The GH  tween them, so that,,ns>n,. Our discussions are in two
shift depends on the polarization state of the b¢arv] and  dimensions. A light beam of wavelengthand angular fre-

its magnitude for incidence angles close to the critical anglgyuency is incident from lower left at incidence angt
for total reflection is about the order of the wavelength. Thejhat is assumed to be less than the critical angle

smallness of the shift for optical wavelengths has impeded 't§sin‘l(n /n,) for total reflection. Let (%)
direct measurement in a single-reflection experin|éng|. ! w . o "
Since the investigation of the GH shift has been extended tgA(ky)exp(|ku->?) be the electriqor magnetig field of the
frustrated total internal reflectiof5,9—12 and partial reflec- Fourier angular spectrum of the incident T& TM) beam,
tion [13-19 and to other areas of physip#], such as acous- Where time dependence exfwt) is implied and suppressed,
tics [20], nonlinear optic§21,22, surface physic$23], and ky=(Kux, ky) = (K, cos 8, kysin 6,), k,=nko, ko=2m/\ is the
quantum mechanics, attention has been paid to the mechg@rave number in the vacuum, amigis the incidence angle of
nism for enlarging its magnitude 3,15,18,24-3p the plane-wave component under considerati,) is the

It was predicted that the GH shift can be enhanced byympiitude angular-spectrum distribution. Combining Max-
resonance by an order or more for TE polarization in spaye||'s equations and boundary conditions yields the electric
fually d_|sper5|ve semmondycto[%] or for TM polarization (or magnetig fields of corresponding Fourier angular spec-
in cesium vapoy31]. In this paper we report that large and ¢ym (%) =r (k) A(ky)exp [i(—kyx+k,y)] for reflected beam,
opposite GH shifts may occur simultaneously for TE and TMgq (%) =t(k)A(k,)extliks(x—a) +ikyy] for transmitted

light beams upon reflection from an asymmetric doubleyq,, wherer(k,) is the amplitude reflection coefficient
prism configuration when the angle of incidence is below bu (K

near the critical angle for total refection, which may havet y)—g_1 e_xp( |¢1)/_[£_lo expl _ld)O)]' t(ky)_!s the amplitude
) . L . : : X ransmission coefficient(k,) =1/[gy exp(—idg)], dp and ¢,
interesting applications in optical devices and integrated o are defined by 4

tics. These large GH shifts are in connection with transmis-
sion resonances in much the same way as in a total internal \
reflection configuration32]. Numerical simulations show y
that the magnitude of the GH shift is about the order of
beam’s width at transmission resonances.

Historically, the phenomenon of the GH shitt,2] in-
volves the evanescent wave in an optically thinner medium.
But the beam shift discussed in this paper has nothing to do
with the evanescent wave. So we term it as generalized GH
(GGH) shift for the rest of the paper, since it keeps the main
features of the GH shift, that is to say, it is due to the finite
width of the light beam and is different from the prediction
of geometrical optics. «—>

v

FIG. 1. Schematic diagram of the GGH shift in asymmetric
*Electronic address: cfli@mail.shu.edu.cn double-prism configuration.
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Jo eXp(—igyp) = —(1 + E)coshxa— I—(ls + ﬂ)sin kia,
2 M 2\
(1)
g; and ¢, are defined by
. 1 s
oot = H -2 sk

2 Nu

—I—(ls— 77|)sin kia, (2
2\ m
_Jnjcosg;, forTE,
K cos6/n;, for T™M, j=u,ls,

¢, is determined by Snell's lawn; sin §,=n sin 6, ki
=n;ko COS 6.
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FIG. 2. Dependence of theoretical GGH shifts for reflected TE

and TM beams on the angle of incidence, whege1.56, n =1,
ns=2.22,a=3\, the TE beam is shown by solid curve, and the TM

It is noted thatgy— ¢, is the phase of reflection coeffi- peam is shown by dotted curve.

cient, andgy itself is the phase of transmission coefficient.
The GGH shift of reflected beam from the position predicted
by geometrical optics as is shown in Fig. 1 is, according t

stationary-phase theory3,5,10, s,:—d(¢0—¢1)/dky|9u:00.
The GGH shift of transmitted beam which is defirnd8] as

the lateral displacement of the peak of the transmitted beam
at the second layer/prism interface from the peak of the in-
cident beam at the first prism/layer interface is given by,

according to stationary-phase theory,

deo a 7s\| (75, 7
_dh| _a {(l+_s){(_s+_l e
dk [ =0, 490 AR/ Y 7

sin k. a n; cos 6
_ﬂ)_u }tan0,+l{<ls—ﬂ>—' Ltan 6,
T 2klxa T m  7Ms/ N, COSO,

n, cos 6 sin X, a
+<@—ﬂ> : 'tan&s} I
M M/ Ns COS b 2k, a

)

6,6y

Substituting¢, defined in Eq.(2) and noticing Eq(3), we
finally get s,=s+5, for the GGH shift of reflected beam,

where
w3 {b-2lz-2-
dk,  4g; n/L\m o m 7
sin X, a n; cos 6
+ﬂ)—'X }tan@—ﬁ{(ls—ﬂ)—' Ltan 6,
T 2I(Ixa Mu 7/ Ny COS B,
n; Cos 6, sin a
_(ﬂ_ﬂ> | ltan05:| Ky } . (4)
M 7/ Ns COS b 2kixa 0,79

Since the power reerctand%satisfiestgf/ ggs 1, we see
thatgi<gj. In fact, we have from Eq2) that

1 2 1 2
ggz_(l-lS> co¢ k,xa+—(ls—ﬂ> sir® ka. (5)
4 M 4\ m

%

First of all, when the incidence angle of the beam is near
he critical angled, in the asymmetric configuratioiil
- 7s/ 7,# 0), 5o will be dominated by its first part,

-3y

45\" ) W\ m/ \m

+ﬁ>sin X,a
T 2k, a

]tan ) (6)

6,~ 0,

Second, becausg — 0 near the critical anglq:ﬁ reaches its
minima (1/4)(1-74/ ,)? at kya=mm(m=1,2,3,..). This
means that the maxima &f near the critical angle are

nd = mln,
1-ndn,

Somax™~ ~ atan 6,

0,~ 0,
which is very large in thaty —0 and 6,— w/2 near the
critical angle. At last, it is noted that near the critical angle,
nsl m— m 1 n, 1s positive, but the sign of 1/ 7, depends on

the polarization of the beam for a definite double-prism
structure, that is, for definiten, and ng. For instance, if
n,>ns, 1-»s/ 7,>0 for TE polarization and 1#¢/ 7,<0

for TM polarization(it should be kept in mind that the inci-
dence angle of the beam is assumed to be always below the
critical anglg. On the other hand, ifn,<ng, then 1

-7/ 7,<0 for TE polarization and 1%/ 7,>0 for T™M
polarization. Thus it is clear that the reflection GGH shift of
TE beam is opposite to that of TM beam near the critical
angle. In Fig. 2 is shown the dependence of the GGH shift

on the incidence angle of the beam, wheye1.56, n=1

(the critical angled,=sin(1/1.56~39.879, n,=2.22, the
thickness of the layea=3\, the TE beam is shown by
solid curve, and the TM beam is shown by dotted curve.
All the physical quantities that have length dimension,

g2 can be very small and even be equal to zero under certaisuch as the GGH shift, the thickness of the thin layer and

conditions. So let us look carefully ag, which will domi-
nates, wheng? is very small.

the width of the beam are in units of wavelength in this
paper. It is shown that the GGH shift is very large and is
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positive for TE beam and negative for TM beam @t

=39.2°. 400+ ] | w0=117A 1
— theory

When the incidence angle is near the critical angle, the

reflectance is minimal at,a=mm as readers easily verify. % wo=1 1700
This minimum is equal t&yin=(1 -7/ 7,)?/ (1 + 54/ ,)>. SO 5300

the power transmission reaches its maximtg,=21—Rmin %

=(4ns py)! (L+7s 7,)? at k,a=ma. This shows that the 3«200_

GGH shift of reflected beam is greatly enhanced by trans- =

mission resonance in much the same way as in a total inter- 5

nal reflection configuratiofi32]. 100¢
Now that the peaks of the GGH shift of reflected beam are
determined byk,a=ma, the angular distanca g, between ‘ . .
two adjacent peaks for a givemis determined byAk,|a 2 25 3 35 4
=1, which givesA6y=m/kya tan 6. In order to retain the a (wavelength)
profile of the beam in reflection, it is required that, be
much larger than the divergence of the beard§
~N\/nymwg, wherewy is the width of the beam. As a result,
for a beam of given width, the thickness of the layer betwee
the two prisms is required to satisfy

FIG. 3. Dependence of numerically calculated GGH shifts for
reflected TE beams on the thickness of the layer, whgrel17\ is
r§hown by dashed curveyy=1170\ is shown by dotted curvef,
=39.2°, and all other parameters are as given in Fig. 2. For com-
parison, the result of theoretical analysis is also shown by solid
W, COS 6, curve.

a<<ag= mWy/2 cosf,tan b ~ —— )
2 cosé, 60=0.1° and being shown by dashed curvand wy

. . ... =117\ (corresponding to beam’s divergenéé=0.01° and
near the cnchI angle. This means that the r(—_:‘strlctlon%eing shown by dotted curyethe angle of incidence is cho-
adopted by Steinberg and Chiao in REf0] [e.g., in the  gen 1o bedy,=39.2°, all other parameters are as in Fig. 2. It
discussions around their equatiof®)—~(39)] are sufficient, ghoyid be pointed out that the discrepancy between theoret-
but not necessary, to ensure that the stationary-phase methpd| and numerical results is due to the distortion of the re-
is valid. . , flected beam, especially when the width of the beam is nar-

To show the validity of the above stationary-phase analy—row_ So the wider the incident beam is, the lesser the

sis, we have made numerical simulations in which the inCiyefiected beam is distorted, and the closer to the theoretical

dent beam is assumed to be of Gaussian profile, result the numerical result is. The peak of the numerical shift
1 [+ at a=3\ is about 194.4 for wy=117\. And it is about
Uin(X)|xe0 = =f A(ky)explikyy)dk, (7)  383.3 for wy=117Q\, which is almost equal to the theoret-
N2 ) ical result 403.4. This shows that the magnitude of the

where the amplitude angular-spectrum distribution is Gauss(_BGH shift at transmission resonance is over 100 times of the

. _ ) 2 Lo wavelength and is of the order of beam’s width.

lan, ?égg_vé%ﬁ)s(z[ (eV;yt/IZ)(tkhye l;.yg)l d]’ofkggﬁzzt‘z 3 %)(’aavr:]y has According to Eq.(3), the GGH shift of transmitted beam

t_hWOf I 0: f quently, : in the sense of above definition can be much larger than what
€ following form, is predicted by geometrical optics when the incidence angle

1 [+ is near the critical angle. Since near the critical angjgis
wr(@:? r(k)A(kyexp(— ik x +ikyy)dk,. (8)  minimal atkya=mm, the large GGH shift of transmitted
N2 ) - beam occurs ak,a=mm. Numerical simulations show that

The integral from = to + in Eq. (7) guarantees that the the GGH shift of transmitted beam can also be of the order of

field of the incident beam has a perfect Gaussian profile witf€am's width. o _
respect toy. But for a real incident beam, the incidence When the refractive indices of the two prisms are the

angles of its angular-spectrum components extend frorg@MeSo Will vanish according to Eq(4), so that the GGH
—7/2 to 7/2. So the integral in Eq8) in numerical simu- shift of reflected beam will be equal to that of transmitted

lations is performed from k; to k,, be_am. This shows that the properties of the rgflecti_on GGH
shift do result from the asymmetry of the configuration.
N 1 ([ ) . It is worthwhile to point out that in the above discussions
gr(X) :Efk (k) Alky)exp(— ikyx + ikyy)dky. where the angle of incidence is near the critical angle, the
‘ minima of g? at which the GGH shift of reflected beam
The numerically calculated GGH shif}' of reflected beam reaches its maxima is equal t@/4)(1- 7/ 5,)2 Therefore
is defined by|# (x=0,8)|=max |y N(x=0,y)|. the corresponding reflectan&=g3/gj is not equal to zero.

In Fig. 3 we draw the dependence of numerically calcu-Readers may notice that apart from this case, there are other
lated GGH shifts for reflected TE beams on the thickness otases in which the power reflectance can be equal to zero and
the layer in comparison with the result of theoretical analysighe corresponding GGH shift of reflected beam seems to tend
(solid curve, where two different widths of the beam are to infinity. These happen when I/ 7,=0 or 7/ 7
involved, wo=117\ (corresponding to beam’s divergence -/ 7,=0. In the present asymmetric double-prism configu-

055601-3



RAPID COMMUNICATIONS

C.-F. LI AND Q. WANG PHYSICAL REVIEW EG69, 055601R) (2004

ration wheren,,ns>n;, these two equations have solutions peaks are physically meaningless, because they are located at
only for TM polarization. The solution to the former equa- the zero points of power reflectance. At those points, the
tion is nothing but the Brewster angle, reflected beam is very weak and distorted so severely that it
o cannot be described in terms of a shifted befd®]. The
0, = tan(ng/ny), (9 resonant peaks in those situations result from the discontinu-

for the interface between media of refractive indicesngf ity of ¢ with respect tok, at the zero points ofj; exp(
andn.. The solution to the latter equation which can be re-—i¢1). After all, the phase of complex number zero is math-
written as ematically undefined. In order to make use of such resonant
peaks in the GGH shift, additional mechanisms are needed,
sin 26, sin 26 = sir? 26 (100 such as the weak absorptid@8,29. Discussions of these

determines another angle of incidence.n|f>n,>n (or problems will be presented elsewhere.

ny<<m <ny), the latter equation also has solution for TE po-  Thjs work was supported in part by the National Natural
larization, which can be rewritten as Science Foundation of Chir&rant No. 60377025 the Sci-
_ ence Foundation of Shanghai Municipal Commission of
tan 4, tan 6,=tarf 6. (1) Education(Grant No. 01SG4% the Science Foundation of
Though at an angle of incidence that satisfies any of EqsShanghai Municipal Commission of Science and Technology
(9)«11) for appropriate polarization, the GGH shift of re- (Grant No. 03QMH140% and the Shanghai Leading Aca-
flected beam has resonant peaks which tend to infinity, thesgemic Discipline Program.
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