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We discuss the possibility of having “quantum dissipation” due to the interaction with chaotic degrees of
freedom. We define the conditions that should be satisfied in order to have a dissipative effect similar to the one
due to an interaction with a(many body) bath. We also compare with the case where the environment is
modeled by a random matrix model. In the case of interaction with “chaos” we observe a regime where the
relaxation process is nonuniversal and reflects the underlaying semiclassical dynamics. As an example we
consider a two level system(spin) that interacts with a two-dimensional anharmonic oscillator.
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The interaction of a system with its environment is a cen-
tral theme in classical and quantum mechanics. The main
effects that are associated with this interaction are “dissipa-
tion” (irreversible loss of energy) and “noise.” The latter is
due to “fluctuations” of the environmental degrees of free-
dom. On short time scales the main effect is the “decoher-
ence” due to the noise. On long time scales the interplay of
dissipation and noise leads to a state of thermal equilibrium.

The common modeling of the system-environment inter-
action is provided by a HamiltonianHtotal=H0+HsQ,P;xd,
whereH0 is the system Hamiltonian,x is a system observ-
able, andHsQ,P;xd describes the environment including the
interaction with the system. The simplest(and most popular)
modeling of the environment is as a large collection of har-
monic oscillators. This is known as the Caldeira-Leggett ap-
proach[1,2]. Another approach is to use random matrix mod-
eling of the environment[3–5]. However, in this paper we
are interested in another possibility, where the interaction is
with (few) chaotic degrees of freedom.

In what follows “interaction with chaos” means that the
environment is the quantized version of a few degrees of
freedom chaotic system. This should be contrasted with “in-
teraction with bath” where the environment is modeled as a
large collection of quantized harmonic oscillators. Let us re-
gard the environment as a “black box”(one does not know
what is there). The questions that we would like to address
are(1) How to characterize the bath in a way which does not
assume a specific model.(2) Is it possible to distinguish “in-
teraction with chaos” from “interaction with bath.” As we
explain below the second question is related to the notions of
“thermodynamic limit” and “universality.”

Common models for dissipation assume a “thermody-
namic limit,” which means interaction with infinitely many
degrees of freedom. In this paper we inquire whether few
chaotic degrees of freedom may have the same effect. This is
a question of great practical importance. Future “quantum
electronics” may consist of several interacting “quantum
dots.” One wonders how a coherent process in one part of the
“circuit” is affected by the “noise” which is induced by the
quantized chaotic motion of an electron in a nearby quantum
dot. In other words: one would like to know whether it is
possible to use in the nanoscale reality notions such as “dis-

sipation” and “dephasing,” that are traditionally associated
with having an interaction with many degrees of freedom.

As a specific example we consider a two level system
(spin) that interacts with a two-dimensional anharmonic os-
cillator. This would be the well known “spin-boson” model
[1,2] if the interaction were with a bath of harmonic oscilla-
tors. The motivation to deal with this model is well docu-
mented in the cited literature.

We also compare with the case where the interaction is
with a random-matrix modeled environment. In the “quan-
tum chaos” literature, and in mesoscopic physics, random
matrix theory (RMT) is regarded as the “reference” case.
Any deviation from RMT is called “nonuniversality,” and
has to do with the underlying semiclassical dynamics. In this
paper we show that the notion of(non) universality can be
extended into the studies of quantum dissipation.

The basic parameters that characterizeany system-
environment modeling are listed in Table I. We shall define
these parameters in a way which is independent of the theo-
retical modeling of the bath. A common assumption is going
to be that the mean level spacing is very small. For com-
pleteness of presentation, and for the purpose of defining
what does it mean “very small,” we keepD as an explicit
free parameter[6]

As a leading example we consider a two level system. For
the system Hamiltonian we writeH0=s"V /2ds1 whereV is

TABLE I. The various parameters that characterize a generic
quantum dissipation problem.(See text for details.)

Parameter Significance

D~"d environment mean level spacing

Db~" environment bandwidth

T environment temperature

dT environment heat capacity

e system energy

A system amplitude of motion

V system rate of motion

G strength of coupling
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the Bloch frequency andsi=1,2,3 are the Pauli matrices. One
can think of this Hamiltonian as describing a particle in a
double well potential[1,2]. Then it is natural to define its
position asx=vs3, wherev is a constant. We assume that the
interaction with the environment is via this “position” coor-
dinate HsQ,P;xd= 1

2sP1
2+P2

2+Q1
2+Q2

2d+s1+xdQ1
2Q2

2. This
environment can be interpreted as a particle moving in a
two-dimensional anharmonic well(2DW). In the representa-
tion un ,nl, which is determined byHsQ,P;0d and s3, the
Hamiltonian matrix takes the form

Htotal = FE + vB " V /2

" V /2 E − vB
G , s1d

whereE=diaghEnj is a diagonal matrix that contains the en-
ergy levels of the environment andB is a banded matrix(see
Ref. [9]). The initial state of the total HamiltonianCst=0d is
assumed to be factorized asw ^ c, wherew is the initial state
of the spin andc= un0l is the initial state of the environment.
It is implicit that we average over states withEn0

,E corre-
sponding to a microcanonical preparation. As for the spin,
we would like to consider the standard scenario where the
initial state is a coherent superpositionuwl=su↑ l+ u↓ ld /Î2.
The reduced probability matrix after timet is

rn,n8std = o
n

Cn,nstd*Cn8,nstd ; 1
2s1 + MW · sW dn,n8, s2d

whereMW =sM1,M2,M3d is the polarization of the spin. It is

most convenient to describe the state of the spin usingMW . In

particular we defineSstd=MW ·MW as a measure for the purity
of the spin state.

We turn to formulate the general case. The interaction of
the system with the environment is assumed to be of the
general formHint=−xF, wherex andF are system and en-
vironmental observables, respectively.(In the above example
x=vs3 and F=−Q1

2Q2
2.) In the absence of system-

environment coupling we can characterize the fluctuations of
the observableFstd by a correlation functionCstd. (We are
using here Heisenberg picture language.) Its Fourier trans-

form C̃Esvd is known as the power spectrum of the fluctua-
tions. The observableF has a matrix representation
knuF uml=−Bnm, where we use the basis which is determined
by H. The fluctuations are related to the band profile of this
matrix:

C̃Esvd = Fo
m

uBnmU2 2pdSv −
Em − En

"
DG

En,E

s3d

;2ps2dsvd +
2p " s2

D
RS"v

D
DGS"v

Db
D . s4d

In the first expression there is an implicit microcanonical
averaging over the statesEn,E. In the second expressions2

is the average valueuBnmu2, taken over the near-diagonal ma-
trix elements. The lower cutoff functionRs¯d depends on
the level spacing statistics[7]: It is Rs¯d<1 for v. D /".
The mean level spacingD is proportional to"d, whered is

the number of environmental degrees of freedom. Anycha-
otic motion is characterized by a finite correlation timetc.

ThereforeC̃Esvd has a a cutoff frequencyvc=2p /tc. This
implies [via Eq. (3)] that Bnm is a banded matrix with a
bandwidth Db= "vc. The envelope functionGs¯d, with
Gs0d;1, describes the band profile.

For sake of comparison we refer to the spin-boson model.
The distribution of the bath oscillators is described[1,2] by a

spectral function Jsvd, leading to C̃Esvd=2"Jsvd / s1
−e−b"vd, whereb is the reciprocal temperature of the bath.
The “ohmic” assumption of having “white noise”[Cstd with
short correlation timetc] for high temperatures is imposed
by construction, by settingJsvd~vGsv /vcd. This corre-
sponds to a strong chaos assumption. However, it should be
realized that even if we “cook” a harmonic bath that has the

sameC̃Esvd as that of a chaotic environment, still there is a
major difference: In spite of having the same band profile,
theBnm matrix of a harmonic bath is very sparse: only states
that differ by “one photon” excitation of a single oscillator
are coupled(hence the differencesEm−En are the frequen-
cies of the harmonic oscillators).

In what follows we would like to define the notion of
temperature(T) without assuming a specific modeling. There
are three features of the environment that has to do with this
notion: (i) the growing density of states,(ii ) the growing

fluctuations intensity,(iii ) the asymmetry ofC̃Esvd with re-
spect tov. Let us regard the system as a “thermometer.” The
equilibrium is determined by the microcanonical temperature
T=f]Elns1/ D dg−1. For d=2 environment with constant den-
sity of states we would getT=`. [We consider this hypo-
thetical case for argumentation purpose. This would be in-
deed the case if the environment were modeled as a billiard.
In a later paragraph we discuss the model of Eq.(1) for
which T is finite.] In case of a two level system, havingT
=` implies an equal probability for the two energy states.
Now we can take(instead of a two level system) a particle
with one degree of freedom as a “thermometer.” Since we
already know that the “temperature” is(say) T=`, we may
deduce that the friction coefficient, as determined by the
fluctuation-dissipation theorem ish=n / s2Td=0, where n

=C̃Esv,0d is the intensity of the fluctuations. This conclu-
sion is wrong. In fact the friction coefficient ish= 1

2 D
3]Esn / D d, as discussed in Ref.[8] (and references therein).
Thus we can define an effective temperature, which is related
to the thermalization process

Teff ;
n

2h
= F ]

] E
lnS 1

D
C̃Esv , 0dDG−1

. s5d

In generic circumstances the distinction betweenTeff andT is
not so dramatic. In fact, some further inspection into Eq.(3)
reveals that genericallyTeff=T/2. The above subtlety does
not apply to a thermal preparation. Assuming a reciprocal
temperatureb, the friction coefficient(as obtained by ca-
nonical averaging over the above cited microcanonical re-
sult) is h= 1

2bn. Therefore, we getTeff=1/b as expected.
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Having definedT, we can make a quantum mechanical
distinction between high- and low-temperature regimes. This

is related to the asymmetry ofC̃Esvd with respect tov. Some
inspection into Eq.(3) reveals that a finite temperature im-
plies that the band profile acquires a factor expfv / s2Teffdg,
which is consistent with the spin-boson modeling(see the
previous paragraph). “High temperature” means that for the
physically relevant frequencies"v /T!1. A sufficient condi-

tion is T@Db. In the latter caseC̃Esvd can be treated as a
symmetric function with respect tov°−v, and therefore it
can be interpreted as the power spectrum of a classical noise.

The issue of thermodynamic limit is related to the heat
capacity of the environment. This isdT=s]T/]Ed−1,d,
whered is its number of environmental degrees of freedom.
The energy that the system can exchange with the environ-
ment is denoted bye. If we want to assume a stable tempera-
ture T, the heat capacity of the environment should be large
enough, so that energy exchange between the system and the
environment does not have a big effect. This leads to the
condition e!dT T. For a generic few degrees of freedom
systeme,d0 T, whered0 is the number of system degrees of
freedom. This leads tod0!dT. In case of a two level system
the condition is much easier. Namely, we havee, "V, and
therefore we get the “easy” condition"V !dT T.

Assuming the typical circumstances of an oscillating sys-
tem, the time variation of the system observablexstd is char-
acterized by an amplitudeuxu ,A, and by a rate of change
uẋu ,V. This specification of the system dynamics is essen-
tial in order to define a dimensionless parameter that charac-
terizes the system-bath interaction

G

D
= minimumX2ps2

D2 A2,S"s

D2 VD2/3C . s6d

Loosely speaking this parameter indicates how many envi-
ronmental energy levels are mixed nonperturbatively due to
the interaction with the system. TheA dependence ofG is the
consequence of the well known theory by Wigner: It is the
number of levels which are mixed by the perturbation in
H°Endnm+xBnm with uxu ,A. If the perturbation is slow
(small ẋ) this A based estimate becomes non-relevant. For a
proper analysis[8] one should switch to the adiabatic(x
dependent) basis, leading to H°Endnm+ ẋfi "Bnm/ sEn

−Emdg with uẋu ,V. TheV based estimate forG follows from
the latter representation. Thus one realizes that for slow rate
of x variation there is a crossover from anA-determined to a
V-determined mixing.

The rest of this paper is aimed in clarifying the signifi-
cance of the parameterG. Some results of the simulations
with the 2DW model Eq.(1) are presented in Fig. 1. The
energy of the environment was in the range 2.8,E,3.2
where the classical dynamics is predominantly chaotic. The
classical correlation time istc,1. The simulations are done
with "=0.03. This means that the bandwidth isDb,0.2.
This should be contrasted with the mean level spacingD
,0.004. The temperature in the specified energy range isT
,1.3, and the heat capacity isdT,2.4. The amplitude of the
motion is A=v, while the rate of the motion is formallyV

=`. The latter should be understood in the path-integral con-
text Eq. [(7)], wherexstd makes “jumps” between the two
sites sx= ±vd. HenceG~sv / " d2. One can easily verify that
the Kondo parameter[2] is a=s1/16pdG /T. In our simula-
tions a!1.

In the lower panels of Fig. 1 we present the corresponding
results of simulations with a RMT model where the induced
fluctuations haveexactlythe same power spectrum as in the
2DW model. The RMT model has been obtained by taking
the Hamiltonian(1) with a randomizedB. We simply ran-
domized the signs of the off-diagonal elements. This proce-
dure destroys all the correlations between the elements, but
does not affect the bandprofile[which is implied by Eq.(3)].
Two observations should be made immediately:(i) A few
degrees of freedom chaos indeed provides a dissipative ef-
fect, as in the case of a many degrees of freedom bath.(ii )
The effect of interaction with “chaos” can be distinguished
from the case of a random-matrix modeled environment. The
latter claim is based on the observation that in the regime
v.0.16 there is a two orders of magnitude difference be-
tween the corresponding curves. Also the scaling of curves
with respect tov is “broken” (upper panel): The sensitivity to
v is much smaller than implied by the overcompensating
scaling of the time axis.

As explained in the Introduction the deviation from RMT
is regarded as “non-universality” and its understanding re-
quires a proper definition of the classical limit. This should
not be mistaken as a synonym for “high temperatures.” The
confusing, and possibly meaningless procedure to define this
limit is by taking"→0. We argue below that the meaningful
definition of a “semiclassical regime” is by considering the
nature of the dynamics of the environment. This leads to the

FIG. 1. The decay ofSstd in case of interaction with chaos
(upper panels) and in case of interaction with a “randomized” en-
vironment that has exactly the same fluctuations(lower panels). The
selected values of the coupling parameter are in the range
10−4,v,0.3. The left panels are for theG,D regimesv,0.02d
and for theG.Db nonperturbative regimesv.0.16d. The inset is
for some of thev.0.16 curves without scaling. The arrows point
on the largestv value. The right panels are for theD, G ,Db

regimes0.02,v,0.16d. The scaling methods of the time axis are
implied by the analysis ofSstd, which should hold if there is a
universal behavior which is determined byCstd alone(see text).
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conditionG@Db. In order to explain this condition we adopt
the Feynman-Vernon picture of the dissipation process.
Within this picture the propagator of the reduced probability
matrix is written as a path integral:

Ksn,n8un0,n08d = o
xA,xB

FfxA,xBgeisAfxAg−AfxBgd. s7d

The summation is over pairs of system trajectories(with
weight factors absorbed into the definition of the integration
measure). The actionAfxg is defined as the phase which is
accumulated along a given trajectory. We note that for a spin
the trajectory is piecewise constantsx= ±vd. The influence
functional is defined asFfxA,xBg=kcuUfxBg−1UfxAgucl,
where the expectation value is taken for the initial prepara-
tion of the environment(it is typically a mixture of many
states implying that an appropriate average should be taken
overc). The environmental evolution operator in case of the
models that we consider isUfxg=Texp−si / " de0

t fE
+xst8dBgdt8. Thus, in a semiclassical framework the problem
of “quantum dissipation” reduces to that of analyzing
“driven degrees of freedom.” It has been realized[10] that
the driven dynamics becomes non-perturbative ifG.Db. Be-
low we discuss the implication of this observation.

The purity Sstd is related to the dephasing factor
uFfxA,xBgu. [For V=0, the Hamiltonian Eq.(1) becomes
block diagonal, leading toSstd= uFfxA,xBgu2, with xA=v
and xB=−vg. If the fluctuations are regarded as “noise,”
one obtains the standard expression

uFfxA,xBgu = es1/2"2dE
0

t E
0

t

Csl8−t88dfxBst8d − xAst88dg2dt8dt88. s8d

This expression implies a short time Gaussian decaySstd
=expf−4Cs0dsvt / " d2g, which evolves into a long time
Gaussian decaySstd=expf−ssvt / " d2g in the regimeG,D. If
the envelopeGs¯d of the band profile were smooth, then we
would expect, in the regimeD, G ,Db, an intermediate
stage of exponential decaySstd=exps−2gtd with g

=2sv / " d2C̃EsVd, G /". In the case of our numerical ex-
ample the band profile has a structure[9], and henceCstd
has oscillations that show up in the simulations.

Can we trust the standard expression foruFfxA,xBgu if we
have a dynamical environment rather than a noise source
[with the sameCstd]? It is not difficult to observe that the
standard expression can be derived from Fermi-golden-rule
(FGR) considerations. In case of Harmonic bath the FGR
treatment is valid, and this expression, withCstd replaced by
its symmetrized version, isexact. But for interaction with
“chaos” we have claimed above that nonuniversality should
show up in the nonperturbative regimesG.Dbd. Our numer-
ics confirm this prediction: In the nonperturbative regime
sG.Dbd we find a prematurest,tcd crossover from the ex-
pected short time Gaussian decay, to a nonuniversal behavior
which is not captured by the standard formula. In the 2DW
case the system has a classical limit, and therefore the non-
perturbative decay ofSstd is slowed down(compared with
RMT) because it is limited by the classical dynamics. As
observed(note the inset) the decay becomes much less sen-
sitive to y.

The above discussed nonuniversality can be regarded as
the manifestation of “semiclassical” correlations between the
off-diagonal matrix elements ofBnm. These arenot reflected
in CEsvd. In the case of the spin-boson model theBnm matrix
is sparse, which implies(in the limit of infinite bath) that
off-diagonal correlations can be neglected. In case of a ran-
dom matrix modeled environment, absence of correlations is
guaranteed by construction forx=0, which implies(assum-
ing no sparsity) lack of “invariance” with respect tox [11].
Accordingly we have three classes of models that become
distinct in the nonperturbative regime.

In conclusion, we have discussed the consequences of
having four energy scalessD ,Db,T, G d in any generic prob-
lem of “quantum dissipation.” The strength of the interaction
is characterized byG. A universal “quantum dissipation” be-
havior requires a separation of energy scalesD! G !Db.
Nonperturbative breakdown of this universality due to the
underlaying semiclassical dynamics is found ifG.Db.
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