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We study the dynamics of epidemic spreading processes aimed at spontaneous dissemination of information
updates in populations with complex connectivity patterns. The influence of the topological structure of the
network in these processes is studied by analyzing the behavior of several global parameters, such as reliability,
efficiency, and load. Large-scale numerical simulations of update-spreading processes show that while net-
works with homogeneous connectivity patterns permit a higher reliability, scale-free topologies allow for a
better efficiency.
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Modern society increasingly relies on large-scale com-
puter and communication networks, such as the Internet. A
major challenge in these networks is the development of re-
liable algorithms for the dissemination of information from a
given source to thousands, or even millions, of users, such as
for news and stock exchange updates, mass file transfers, and
Internet broadcasts[1,2]. In epidemic-inspired communica-
tion, this is achieved by exploring a mechanism analogous to
the spreading of infectious diseases in populations[3,4]. The
information spreads like a benign epidemic through local
interaction between nodes which forward the message they
receive to a random selection of their peers in the network,
until the whole system becomes “infected” with information.
The great advantages of epidemic-style communication is
that dissemination proceeds on a local basis, without any
coordination from a central organizing body[3,4]. These
protocols are also highly resilient to sudden failure of com-
munication links and nodes.

A relevant result in the mathematical theory of epidemics
is that the spreading of infection in a population is strongly
affected by the patterns of connectivity in the underlying
contact networks. In particular, in scale-free topologies, char-
acterized by degree distributions with power-law behavior
Pskd,k−g [5], the statistical relevance of hubs makes the
network highly permeable to attacks[6–8] and the spreading
of infections[9] and highlights the need for special immuni-
zation strategies. This result suggests that the topology of the
underlying computer and communication network might
heavily affect the performance of epidemic-style data dis-
semination protocols. Surprisingly, however, the impact of
network topology on such protocols has not been thoroughly
explored, although the results could have an important tech-
nological value. Indeed, these protocols can potentially find a
large spectrum of application, such as mobile communication
networks and, more recently, resource discovery in the so-
called peer-to-peer systems built on top of the Internet[10],
and finally in grid computing[11].

In this paper, we define a simple epidemic data dissemi-
nation model and perform a detailed numerical study of the
dynamics of the information propagation in networks with

diverse topological properties. Our basic model is a slightly
modified version of the Daley and Kendall(DK) model
[12–14] and it can be considered as the simplest epidemic
algorithm for the updating of distributed databases[4,15].
We study the main relevant features of the model, such as the
reliability of the dissemination process and the amount of
traffic generated by the dynamics. Specifically, we study two
different prototypical networks: a random homogeneous net-
work [16] and a scale-free network. The results obtained
point out that in the homogeneous topology, the epidemic
process provides a more reliable updating of the network.
The scale-free topology, on the other hand, allows the algo-
rithm to perform more efficiently in terms of the generated
traffic. Finally, we compare the present model with a deter-
ministic broadcast process and find that in a wide range of
the model parameters the epidemic algorithm is more effi-
cient.

The model we shall consider is defined in the following
way. Each of theN elements of the network can be in three
possible states. We call a node holding an update and willing
to transmit it aspreader. Nodes that are unaware of the up-
date will be calledignorantswhile those that already know it
but are not willing to spread the update anymore are called
stiflers. We denote the density of ignorants, spreaders, and
stiflers at timet asc std, fstd, andsstd, respectively, such that
for all t, c std+fstd+sstd=1. The spreading process takes
place along the links between spreaders and ignorants. Each
time step, spreaders contact one(or more) neighboring node.
When the spreader contacts an ignorant, the last one turns
into a new spreader at a ratel. On the other hand, the
spreader becomes a stifler with rate 1/a if a contact with
another spreader or a stifler takes place[17]. The parameter
a can be considered as the average number of contacts with
spreader/stifler nodes before the spreader turns itself into a
stifler. This dynamics mimics the attempt to diffuse an up-
date or rumor by nodes which have been recently updated. At
the same time, if a node attempts too many times to commu-
nicate the update to nodes which have already received it, it
stops the process, turning itself into a stifler. In other words,
the node realizes that the update has lost its novelty and
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becomes uninterested in diffusing it. The present dynamics
thus introduces a tradeoff in maximizing the number of up-
dated nodes and minimizing the number of contacts at-
tempted. Obviously, the efficiency of the spreading process
will depend on the rate at which individuals lose interest in
further spreading of the rumor and the topology of the un-
derlying network.

At the mean-field level and using the homogeneous as-
sumption for the network connectivity pattern, the time evo-
lution of ignorants, spreaders, and stiflers is described by the
simple set of equations

]tc std = − lc stdfstd, s1d

]tfstd = + lc stdfstd −
1

a
fstdffstd + sstdg, s2d

where sstd is obtained by the normalization conditionsstd
=1−c std−fstd [12,14]. The dynamics asymptotically
evolves to the statefs`d=0 in which the system is frozen.
Noticeably, in random homogeneous networks, the density
ss`d of elements which are aware of the update is always a
finite fraction of the whole population[12,14]. The homoge-
neous assumption is, however, not valid anymore in the case
of heterogeneous scale-free networks, where it is known that
spreading processes may show very different properties[9].
In particular, an explicit dependence on the nodes’ degreek
must be included in the rate equations. While a general ana-
lytical solution cannot be obtained in this case, numerical
studies on scale-free networks can be used to evaluate the
reliability and efficiency of this process in more complex
topologies[12,13].

In the present investigation, we used two specific network
models. First we consider the Barabási-Albert(BA) network
[5]. In this model, starting from a set ofm0 nodes, one pref-
erentially attaches at each time step a newly introduced node
to m older nodes. The procedure is repeated many times and
a network with a power-law degree distributionPskd,k−g

with g=3 and average connectivitykkl=2m builds up. This
network is a clear example of a highly heterogeneous net-
work, in that the degree distribution has unbounded fluctua-
tions. As a reference of homogeneous networks, we consid-
ered the Watts-Strogatz(WS) network [18] in the case of
complete random rewiring. In this case, one starts from a
ring with N nodes, each of them connected symmetrically to
2K neighbors. With probabilityp, each link connected to a
clockwise neighbor is rewired to a randomly chosen node;
otherwise it is preserved. After enough iterations, a random
network with an exponential connectivity decay for largek

and kkl=2K is generated. Henceforth, we will usem0=m
=3 for the BA network andp=1 andK=3 for the WS model,
giving kkl=6 for both networks.

We have performed large-scale numerical simulations by
applying repeatedly the rules stated above on BA and WS
networks. Initially, c s0d=sN−1d /N, fs0d=1/N, and ss0d
=0, i.e., we start from a single spreader who is willing to
spread the update through the network. At every time step,
each of thefN spreaders contacts all its neighbors in a ran-
dom sequence, unless during a contact it turns into a stifler.
In this case it immediately stops contacting further nodes.
This accounts for the larger transmission capabilities of high
degree nodes that can reach a larger number of neighbors as
specified by the heterogeneous network topology. The dy-
namical rules of the model are applied in parallel. The sizes
of the networks used in the simulations carried out range
from N=103 nodes toN=105 nodes and all numerical results
have been obtained by averaging at least over 10 different
networks and 103 iterations. The parameterl may be varying
as for the case of communication networks, where it is
known that the rate of packet loss is not always zero. Nev-
ertheless, without loss of generality,l=1 since it just fixes
the time scale by rescaling opportunely the rate 1/a in Eq.
(2). On the other hand, we vary the rate at which spreaders
decide not to communicate the update any more froma=1 to
a=10 and monitor several quantities of interest.

In order to characterize the propagation process, we first
focus on thereliability R of the rumor propagation defined as
the final densityss`d of nodes that have gotten the update
when the process dies out. For obvious practical purposes,
any algorithm or process that emulates an efficient spreading
of a given message or data packet will try to raise as much as
possible this magnitude. In Table I, we report the reliability
of the spreading process for the BA network and the random
graph generated with the WS algorithm withp=1 for several
values of the parametera. As noticed previously[13], in the
WS network the number of stiflers at the end of the process
is already high even fora=1, and the BA network appears
less reliable. In general, it results that homogeneous net-
works allow a larger reliabilityR in epidemic updating pro-
cesses. This is not straightforward and one may think that the
existence of hubs in scale-free networks helps propagate the
rumor. However, a closer look at the spreading dynamics
tells us that the presence of hubs introduces conflicting ef-
fects in the dynamics. While hubs may in principle reach a
larger number of nodes, spreader-spreader and spreader-
stifler interactions are favored in the long run. Indeed, it is
very unlikely that a hub in the spreader state contacts all its
ignorant neighbors before turning into a stifler. Once a few
hubs are turned into stiflers, many of the neighboring nodes

TABLE I. Reliability of the epidemic process, defined as the density of nodes that has received the
update, in the WS and BA networks for different values of the parametera. Standard deviation of the mean
values is ±2 units in the last significant digit.

a 1 2 3 4 5 6 8 9

RWS 0.831 0.962 0.986 0.994 0.996 0.996 0.998 0.999

RBA 0.368 0.684 0.781 0.874 0.932 0.952 0.977 0.987
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could be isolated and never get the update. In this sense,
homogeneous network allow for a more capillary diffusion
of the update, since all nodes contribute equally to the
message-passing. This is opposite to what happens in the
usual epidemic spreading model in heterogeneous network
models. These models lack an infected recovery rate induced
by neighbors already infected and fully exploit the advantage
of the hub’s large degree[9].

The previous discussion, however, refers only to average
properties. In SF networks, the connectivity distribution is
highly heterogeneous and it is interesting to have more de-
tailed insight into the reliability of the process for different
connectivity classes. It may be particularly relevant that a
higher R corresponds to the highly connected nodes, the
hubs, which have a dominant role in the system. Figure 1
shows the behavior of the reliabilityRk measured as a func-
tion of the nodes’ connectivityk. This amounts to the relative
density of nodes with connectivityk that have received the
update and it is measured asRk=kSk/Nkl, whereSk and Nk

denote the total number of stiflers and the total number of
nodes with degreek, respectively. Thek l represents the av-
erage over many realizations. The results confirm that during
the spreading dynamics, it is very likely that highly con-
nected nodes are reached by the update. In fact, 1−Rk de-
creases exponentially withk and very high levels of reliabil-
ity are obtained well before the natural cutoff of the network
skmax,102d even for moderate values ofa. This is an inter-
esting feature signaling that heterogeneous topologies can be
considered reliable as far as the “hubs” are concerned. We
should note, however, that since the reliability is not a
model-independent quantity, this result might depend upon
the specific details of the rumor algorithm.

In general, one does not only want to have high reliability
levels, but also the lowest cost in terms of network load
[4,15]. This is generally achieved by imposing the minimum
possible load to the network. Here, we define the loadL
imposed to the network as the number of contacts established
per node, i.e., how many messages on average each node
sends to its neighbors in order to propagate the update. By

using this quantity, an obvious definition of the global effi-
ciencyE of the whole process is represented by the number
of individuals who have gotten the update per unit of load,
E=R/L. Its physical meaning is straightforward: the effi-
ciency is equal to the fraction of “useful messages”(number
of sites reached by the rumor) over total “load” imposed on
the system. In Fig. 2, we report the behavior of the efficiency
of the spreading process as a function ofa. In this case, the
scale-free topology appears most efficient for data dissemi-
nation. Indeed, the relative difference between SF and WS
networks in global efficiency is larger than 10% up to values
of a=5. This can be appreciated also by looking at the inset
in Fig. 2. For both topologies, the load on the network grows
with a, but the load imposed on SF networks is always
smaller than on WS nets. Finally, it is interesting to compare
the epidemic algorithm efficiency with those of the simplest
broadcaststrategy. This strategy essentially consists of a de-
terministic message-passing of each element to all its neigh-
bors except the one from which the first update has been
received. This way, a reliabilityR=1 is achieved since all
nodes are surely contacted. In this case, the load is simply
given bykkl−1. In the case of networks withkkl=6 such as
the one used in the present study, the efficiency of the broad-
cast strategy is thereforeE=0.2. It is interesting to note that
in both the BA and the WS case, the epidemic algorithm
achieves a better efficiency for a wide range of values of the
parametera. This indicates that epidemic algorithms can
provide attractive alternatives to broadcast solutions so far as
the efficiency is concerned.

It is worth stressing that we are considering strategies in
which the nodes do not have memory, i.e., they may try to
resend a message to a node that has been contacted before. It
is possible, however, to conceive different dynamics of the
updating spreading strategies in which a tradeoff between the
memory introduced in the process and the optimization of
reliability and efficiency is opportunely chosen. Other op-
tions rely on a careful tuning of the local message-sending
dynamics. For instance, we considered the case in which

FIG. 1. Relative density of ignorants 1−Rk as a function of their
connectivityk at the end of the spreading process in SF networks
for different values of the parametera. The size of the network is
alwaysN=104 nodes.

FIG. 2. Efficiency of the rumor-spreading process as a function
of a in networks of sizeN=104. Results are compared with the
efficiency of the basic broadcast algorithm that is represented by the
thick line. The inset shows the growth of the load generated as a
function of the parametera.
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each spreader contacts only one node at each time step, re-
ducing the effects of the hubs. This simple change allows for
higher levels of efficiency, however at the price of a much
lower reliability. In general, it is thus possible to devise and
tailor different processes that optimize one or more features
of the update spreading on a given topology. We defer a
more detailed study of this issue to future work as well as the
inclusion of asynchronous effects resulting from communi-
cation delays.

In summary, we have studied the effect of the complex
topological properties of many real networks in epidemic
strategies for the communication of updates. The obtained
results stimulate the seeking of heuristics and analytical
methods to optimize epidemic algorithms, taking into ac-
count the specific topology of the underlying network. These
studies may have a large impact in technological and com-
munication networks where the use of rumorlike algorithms

might become a practice for data dissemination, reliable
group communication, or replicated database maintenance.
They might also provide a deeper understanding of social
phenomena such as the spreading of new ideas in a popula-
tion or the efficiency of marketing campaigns. Finally, we
point out that the class of model studied here, including a
time-delay mechanism, can be extended to the study of neu-
ronal systems where a neuron’s state can change as a result
of its interaction with its neighboring nodes.
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