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Role of evolution by natural selection in population dynamics
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Using a Monte Carlo approach we study the role of inheritance and natural selection in the dynamics of
populations. We show that a population subject to inheritance has a much better chance of survival in a given
condition than a population where new generations do not inherit genomes of their parents. The dependence of
the survival chance on such factors as selection pressure, fecundity, or carrying capacity of the system is much
stronger when selection and inheritance are present. We demonstrate, in accordance with biological observa-
tions, that in certain conditions evolution can save a population which would perish without it.
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[. INTRODUCTION demographic stochasticity, environmental stochasticity, ge-

Biological population dynamics became in recent yeard!€lic stochasticity, and natural catastrophes. Demographic
the object of many studies as well by evolutionary biologistsStochasticity is the risk coming from events happening to
[1-3) as by physicist§4—8]. Tools developed to study dy- particular m_embt_ers of the populatlon,_ such as unexpected
namics of extended systems, nonequilibrium statistical physdéath and infertility. 1t is especially important for small
ics as well as optimization problemigenetic algorithmg ~ POPulations. In this context quite often the notion roi-
provide new ways to approach such problems. Biologica/m"¥™m V|.able populatlons. introduced[22] as t'h.e smallest
population dynamics has many interesting, and still noP©Pulation which has a given chance of remaining alive after
solved, problems such as conditions for a successful COlonErglinzrr]yp?rzg%g{ingii : r?ért](i/%rgomla?p\)/fi? %?Cirlérnaseﬁgl qsLtJ(I)tf-J
gztr:%wp?égs_pl;uéplpztir&:g;agrlggllezrﬁ%:\i;h?éhcgﬁt?z?c(;at;nnzzih chasticity relates to all random changes in such factors as

: ; . - availability of food, density of predators, and climatic
_attennon by p|olo_g|st$1,2,15j buf[_much Ies_s by ph_ysmsts, changes. Big scale changes in the habitat fall into the natural
is the determination of the stability, or extinction time, of a

) ) . . . ) catastrophes category. Genetic stochasticity is random
population either in stable or in changing environmentcpanges at the genetic level. It is quite difficult in field stud-
(8,16,17. . . ) ies to determine the role played by each factor in driving a

The conditions when a population may stay alive dependparticular population to extinction, as shown by the example
in general, on such factors as the genetic diversity of thef the extinction of the heath hen quoted by Shaf@s].
population[18], climate and the rate of its chang®9], se- In this paper we study the role of inheritance in popula-
lection pressurg2], mutation rate[20], the availability of  tions under selection on the survival chance for a population,
resources often related to the carrying capacity of the systemvhen the habitat remains constant, both in time and in space.
[2], average fertility and dispersion raf@l]. It would be  Situation when there is no inheritance we shall call in the
useless to include all those factors into a model, hence thillowing without evolution since the genetic pool at each
necessity to choose just a few, which are considered mogteneration is random and constant in time. We shall study
interesting for the investigated problem. There are also manfwo scenarios—one in which the traits of the parents are
possible approaches to describe dynamics of a population-passed on to the progeigvolutioncasg and the second in
analytic ones, using most often difference or differentialwhich there is no heredityno evolution. A population
equations of the Lotka - Volterra type, or numerical simula-changing in time without heredity is of course rather difficult
tions via either Monte Carlo or cellular automaton techniqueto find in nature, but one possible realization could be a
Each of the approaches has its own merits and drawbacks, gspulation in which selection kills phenocopies, which are
discussed, in a biological context in RgR2,23. There is independent of the genotypes. Selection eliminates worse
still another important problem which received virtually no phenocopies, but that does not change the genetic pool.
attention of physicists, namely, the role of natural selection The following parameters characterizing the model will
and inheritance in preserving a population. The problem habe changed—carrying capacity of the system, selection pres-
been studied, in general terms, by evolutionary biologistsure, and fecundity. We shall show that when the evolution is
[1,24). As could be expected, evolution plays a crucial role inacting, a population has a much better chance to stay alive,
determination of the fate of a population. If there would beand that the chosen variables play important roles in preserv-
no evolution then the average fitness of the population wouldng a population from extinction. We shall use Monte Carlo
remain constant in timgl]. In an evolutionary process there simulations.
is natural selection and inheritance of better genomes to the
offspring which increases mean fitng2%]. Il. MODEL

Shaffer[22] explained that there are four major factors We consider a square lattice of linear dimensiansL,
influencing possible extinction of a population— on sites of which a population composed at titnef N(t)
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individuals is located. An individual is characterized by its the program returns to stéf). In order to breed the follow-
position on the lattice and its traja phenotypgz [0, 1]. ing steps have to be realized. Otherwise the program returns
One lattice site may be either empty or occupied by at mosto the beginning.

one individual. The lattice has rigid boundaries, hence any (3) One random search is made in the nearest neighbor-
attempt to move an individual outside those borders is unhood of the chosen individual to find an empty place. If
successful. All external factors, such as climatic conditionsfound, the individual is moved there.

density of predators, and prey, influencing an individual are (4) One random search is made in the neighborhood of
summarized in the optimuia € [0, 1] [19,2]], which in gen-  the new position of the individual for a partner. If successful,
eral could change in time and in space. For simplicity wethe pair produce® offspring. For each of them indepen-
shall consider an environment constant in space and timelently one random search is made in a square neighborhood
The agreement of the individual's trait with the optimum of side ZR+1 centered at the location of the first parent to
determines the fitness of the individy&ll], hence the indi- find an empty place for the offspring. If found, the progeny

vidual's probability of survival2] is receives its trait as calculated from E®), or Eq.(3), de-
pending on whether the population is subject to evolution or
p; = exd- (z - F)%s], 1) not, and is put there. If the search was not successful, the

offspring lost its chance and was not born.
wheres is the selection pressure. Fitness is maximized when (5) After picking upN(t) individuals as first partners one
z=F. The individuals may breed, but to do so an individual Monte Carlo stegMCS) was completed, or alternatively one
must first of all move to an empty nearest neighboring site. lfjme unit passed.
there is no such site, no reproduction is possible. After mov- o
ing the individual must find a partner in the neighborhood of ~ To keep the number of parameters at a minimum, we set
its new position. We do not distinguish sexes in our modelconstant the side of the square around the first partner into
yet a pair of individuals is needed for breeding, like in theWhich the progeny may be put, aR2 2. The initial value of
most B offspring (fertility rate), which are located inside a initial concentration, as long as it is not too low, i.e., it does
given distancdR from the first parent. The fertility rate in our not fall below 0.2, does not play an important role. If the
model does not depend either on time or on space. Howevéﬁitiaj concentration, or more precisely, the number of indi-
the number of Sur\/iving progeny, as will be exp|ained be|0W,Vidua|S is too low, the population falls below a threshold
depends on local conditions. When evolution is acting arvalue where stochastic fluctuatiof@emographic stochastic-
offspringk receives a trait which is an average of the traits ofity) may lead to its extinction. This is known in population

both parentgi andj) changed slightly due to mutations, ~ biology as the minimum viable populatid@2], although it
should be stressed that the values taken by biologists as the

z=0.5z +z) +rym, (2) limit ones are quite arbitrary. In our case it means that if the
initial number of individuals is low, and corresponds to about
wherer, is a random numbee (-1, +1) andmis the muta- ¢(0)=0.2, the chance that the population will become extinct
tion rate. Hence each progeny resembles both parents, yetdfter just 10—20 MCS increases significantly. The mutation
is slightly different. Equation(2) describes the inheritance rate was chosen to be=0.01, which is consistent with bio-
for an additive quantitative traiino dominance, epistagis logical data. Should we take a much larger value, the effect
[27]. Natural selection may increase mean fitness, i.e., loweof evolution will be lost, since the progeny traits will be
the average distance between an individual's trait and thquite different from the parents’ ones. Reducing the mutation
optimum. In the absence of genetic variation the trait value isate to zero will finally lead to a homogeneous genetic pool.
determined solely by random events during developmeniaximum time of simulations was chosen so as to reach a
(developmental noigewhich we implement by setting the stationary state. For most of the cases 2000 MCS was
trait of each offspring to an independent random numker enough. Statistical averages from over ¥0ns to 10 for
small lattices were performed.

Zk:rki (3)

taken from a uniform distribution. . RESULTS
The introduced conditions necessary for breeding elimi-
nate the need for an extra factor, such as the Verhulst fact
[26], which controls, otherwise unbounded, growth of the
population. We shall use the Monte Carlo simulations with
the following algorithm. Suppose that at tintethere was

Since the optimum is constant in our model, we set it at
=0, like in biological paper$l]. We shall investigate the
dependence of the extinction time on the carrying capacity of
the system(size of the latticg fertility, and selection pres-
N(t) individuals in the population, then we have the follow- Sure. In e?‘Ch case We_shall compare '_[he behav_lor pf a popu-
ing. !atlon sub_Ject to evol_utlon and ywthout |t._The extinction time

is determined as a time at which there is just one individual
(1) An individual j is randomly chosen. left in the system. Since for reproduction two individuals are
(2) Its survival chances are calculated from Eiy). A needed, such a population is doomed. Instead of averaging
random number; is generated from a uniform distribution. the extinction time, as is usually done by biologig2$, we
If r;>p; then the individual is removed from the system, andshall record the most probable time to extinction, determined
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FIG. 1. Number of individuals in a population vs tiria Monte FIG. 2. The most probable time to extinctidg, vs carrying
Carlo stepy with and without evolution and with identical initial capacityK on a log-log scaleB=30, ands=1.67.
conditions. Selection pressuse 2, carrying capacityk =900, and
fecundity B=30. systems, composed of relatively few individuals, the survival

chance drops drastically with decreasing size of the habitat.

as the maximum in the distribution of the extinction timesEven small fluctuations in the number of individuals could
obtained for all simulations. This time is a well-defined have dramatic effects on the whole population. The same
quantity not influenced by large but rare statistical fluctua-effect is also visible, although on a smaller scale, in Fig. 2.
tions (presence of very long tails in the distributjor\part A different behavior of populations living on a small and
from the extinction time we measure also the survival chancéarge systems is reflected also in the distribution of the ex-
for a population, defined as the number of populations whichinction time, as shown in Figs.(d) (with evolution) and
started from the same initial conditio(game initial density, 4(b) (without it). For small systems most of the extinctions
same fecundity, selection pressure, and lattice) sinél sur-  happen before 50 MCS. For large systems no extinction has
vived till the end of simulations, divided by the total number been observed till 50 MCS. Therefore not only the maximum
of runs. of the distribution(the most probable time to extinctipn

In Fig. 1 we present, taken in a single run, the time de-moves with the size of the system but the smallest extinction
pendence of the number of individuals in a population in thetime moves as well. Small populations, with or without evo-
cases with and without evolution. The values of the selectiorution, not only die more often but they also die faster.
pressurés=2.0) and carrying capacitgk =900 are interme- Figure 5 presents the dependence of the most probable
diate. The initial spatial distribution of individuals as well as time to extinction on the selection pressiwgelt decreases
the values of their traits are identical in the two presentedexponentially as a function & independent of whether evo-
cases. As could be easily seen, the time around 50 MCS lstion is acting or not. The behavior of the survival chance as
critical for both populations. However only evolution can a function of selection pressure has a more complex charac-
save the population. This kind of behavior has been alster (Fig. 6), exhibiting once again two different regimes—for
found, using different type of considerations, by biologists
[1] 40 Evolution ——

In Fig. 2 we present the dependence of the most probable o Frolaten =
time to extinction,t.,, on the carrying capacitK for the
cases with and without evolution. The dependence has ¢ s}
similar character, and the curves could be fitted by a power-
type dependence,

SC

texe= a+bK°, (4) =T
where the exponent has two values—slightly largec,
=0.56 for a larger system and slightly smalgr=0.45 for a ol
smaller system. The effect of the demographic stochasticity
is not evident here, but it shows better in Fig. 3, where the
survival chance is plotted againist Here heredity leads to ,
several times larger chance of survival for populations with 0 1000 2000 3000 4000
evolution. If there is no evolution then even increasing the

size of the system does not help. For the case with evolution FIG. 3. Survival chancéSC), vs carrying capacitK for popu-
there are two distinct regions—below and ab#900. Be-  |ations with and without evolution. Simulation time 2000 MCS.
low it demographic stochasticity is clearly seen. For smallSame values oB ands as in Fig. 2.
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FIG. 4. (a) Distribution of the most probable time to extinction
for 1000 independent runs, each till 2000 MCS with evolution.
Same values oB ands as in Fig. 2 and 3(b) The same as ia),
but without evolution.
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FIG. 6. Survival chance vs selection for dynamics with and
without evolution. Same values &f andB as in Fig. 5.

intermediary values of the selection the difference between
the two cases is the largest, since for low selection genetic
structure plays only a small ro[see Eq(1)] and therefore it
does not really matter whether the evolution acts or not. This
kind of behavior is indeed what the biologists obsdiljeAs
could be expected, reduced viability due to deviation from
the optimum has a stronger effect on the population dynam-
ics in the absence of heredity because selection cannot bring
the population mean fithess closer to the optimum.

Figure 7 showing the average value of the trajtob-
tained at the end of simulations for the surviving popula-
tions, as a function of the selection pressure, exhibits the
existence of two regions and an intermediary one, between
s=2 ands=1.8 for the case of evolution. Average trait values
in this case lie always closer to the optimum than when there
is no evolution. This is understandable, since only heredity
can help population in approaching the optimum. Since the
surviving populations without evolution were composed of

strong and weak selection, separated by a transition periogl;st a few individuals, the statistics was very bad, even when
For strong selection the increase of the extinction time withan average over 3000 runs was performed. To improve it we

dImInIShIng selection is rather slow and the difference be'ﬁrst averaged the values pbbtained in a given run over the
tween the evolution and no evolution cases is small. At the
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FIG. 7. Averaged over all population value of the traitvs

FIG. 5. The most probable time to extinction as a function of selection for the cases with and without evolution. Same values of

selection for dynamics with and without evolutidd=900, B=30.

K andB as in Fig. 5.
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FIG. 9. Most probable time to extinction vs fecundyfor the
cases with and without evolutioi=900,s=1.67.
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tween the population dynamics with and without evolution.
In the latter the survival chance practically does not depend
on the fecundity and it remains well below the values for the
population with evolution. As the extinction time, the chance
006 - | for survival in the case of evolution could be well fitted into
a hyperbolic tangent.
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IV. FINAL REMARKS
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LA R We have presented a model describing dynamics of a
b ° 50 100 150 200 population living in a constant environment and we have
compared two cases—when evolution by natural selection
FIG. 8. (a) Distribution of the most probable time to extinction acts via heredity and when it is absent. Individuals forming
for 1000 independent runs. Two values of selection. Same values déhe population are characterized by a single vattait, con-
K andB as in Fig. 5. Case with evolutioib) The same as i), ~ tinuous character, phenotypehich, compared with the op-
but without evolution. timum characterizing the environment, determines the indi-
vidual's probability of survival. Individuals are treated
last 500 MCS and then those values were once again aveirdependently, which permits studying the effects of demo-
aged over the number of surviving populations. graphic stochasticity in more detail than in the continuous
In Figs. &a) (with evolution) and &b) (without it) we  models operating only on quantities averaged over the entire
show the differences in the distribution of the extinction timepopulation[1,2]. We have investigated the dependence of the
for smaller and larger selection pressure. Stronger selection

Lo 1 " b
250 300 350 400

leads to populations which are quite similar to one another in
the sense that the extinction times are nearly all groupec
around one value, while weaker selection permits a wider
distribution of extinction times, hence the populations differ
more from one another. In each case however population:
with evolution die later. For strong selection the very pro-
nounced peak observed in the case without evolution is sig:
nificantly reduced and the distribution @i, is wider. Distri- 3
butions for weak selection are similar, but again it is shifted
to longer times for the cases with evolution.

Figure 9 shows the most probable time to extinction ver-
susB, the fecundity. As could be expected, the time grows
with B, and the growth could be reasonably well fitted, in the
two cases, by a hyperbolic tangent. A similar effect of satu-
ration has been also found in a kind of mean-field model by
biologists[2].
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The dependence of the survival chance on the fecundity is FIG. 10. Chance of survival vs fecundi for the cases with
presented in Fig 10. Again there are strong differences beand without evolutionK=900,s=1.67
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the population on such factors as selection pressure, carrying

capacity of the habitassize of the latticg and fecundity. We sc="2s

have shown that while the extinction time only weakly dif- * ’

fers between the cases with and without evolution, the sur- f 0 p(tdt

vival chance is much greater if the evolution acts. Also the

surviving populations are much more numerous in this casg, ;i the denominator is 1 by definition and thus
Without evolution the survival chance depends very weakly
on the investigated parameters—fecundity, selection, and o
carrying capacity. As can be seen from Fig. 3, if there is no SC :J p(t)dt.
evolution the population remains, even for large valuek of ts

i.e., large habitat, in the vicinity of the minimum viable : : :
threshold. The reason may be the fact that the genetic pool % In other words, SC is related to the properties of the tail of

S e distribution of the extinction times, whilg,, character-
h lation is alw random and there are n rrela:- Lo et
such population is always random and there are no corre 47es the most probable value of this distribution. Thus there

tions between the individuals forming the population. In this. ) . "
g pop g no simple relation between these two quantities.

case we have a system with no interactions, on the enetl y e o
Y 9 Our study confirms the findings of Gomulkiewicz and

level, among entities forming the system and the evolution

introduces this kind of interactions. Populations which are10It [1] that evolution may save an initially maladapted

not satisfactorily adapted will be eliminated in each casePPPUlation. We have also shown that in many dependencies,

with or without evolution, and at the same rate. Hence ther@irSt_ of all in the survival chance with evolution acting, two
is equal most probable time to extinction, however, when thé€9imes could be found. This reflects the existence of a

evolution is acting there will be less such populations, andnreshold value for extinction of small populations, as pre-

the survival chance will be much larger in the case of evodicted on general grounds by Shaffe]. Apart from show-

lution. ing the agreement with the mean-field model of Gomulk-

The most probable time to extinction and the survivall®Wicz and Holt[1] we have also shown that it is more
probability are not related, at least not in a straightforward/©@sonable to use the most probable time of extinction rather
way, as shows the following argument. than the average one. We have demonstrated that it is inter-

We have a probability distributiop(t.,) of the extinction esting to study another quantity, not yet considered, i.e., the

time te, This distribution has a most probable vatyeand a s_urvival ch_ance a population h_as in a given extemnal <_:ondi-
tail which is crudely exponential. However, this tail may t|on..From Itone c_oul_d def:iuce infarmation not present in the
vanish(or nof for a long timet,,, which depends upon the Studies of the extinction time.
parameters used.

The survival chanceSC) looks at what is the probability ACKNOWLEDGMENTS
that a population remains alive after a titgecorresponding
to the end of the simulation. SC is thus the probability of We are grateful to T. J. Kawecki and S. Cebrat for helpful
survival for a timet>t.. It is thus discussions and comments.

most probable time to extinction and the survival chance of *
p(t)dt
t
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