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Using a Monte Carlo approach we study the role of inheritance and natural selection in the dynamics of
populations. We show that a population subject to inheritance has a much better chance of survival in a given
condition than a population where new generations do not inherit genomes of their parents. The dependence of
the survival chance on such factors as selection pressure, fecundity, or carrying capacity of the system is much
stronger when selection and inheritance are present. We demonstrate, in accordance with biological observa-
tions, that in certain conditions evolution can save a population which would perish without it.
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I. INTRODUCTION

Biological population dynamics became in recent years
the object of many studies as well by evolutionary biologists
[1–3] as by physicists[4–8]. Tools developed to study dy-
namics of extended systems, nonequilibrium statistical phys-
ics as well as optimization problems(genetic algorithms),
provide new ways to approach such problems. Biological
population dynamics has many interesting, and still not
solved, problems such as conditions for a successful coloni-
zation[3,9–11], pattern formation[12,13], or changes in the
genotype space[14]. Another problem, which attracted much
attention by biologists[1,2,15] but much less by physicists,
is the determination of the stability, or extinction time, of a
population either in stable or in changing environment
[8,16,17].

The conditions when a population may stay alive depend,
in general, on such factors as the genetic diversity of the
population[18], climate and the rate of its change[19], se-
lection pressure[2], mutation rate[20], the availability of
resources often related to the carrying capacity of the system
[2], average fertility and dispersion rate[21]. It would be
useless to include all those factors into a model, hence the
necessity to choose just a few, which are considered most
interesting for the investigated problem. There are also many
possible approaches to describe dynamics of a population—
analytic ones, using most often difference or differential
equations of the Lotka - Volterra type, or numerical simula-
tions via either Monte Carlo or cellular automaton technique.
Each of the approaches has its own merits and drawbacks, as
discussed, in a biological context in Ref.[22,23]. There is
still another important problem which received virtually no
attention of physicists, namely, the role of natural selection
and inheritance in preserving a population. The problem has
been studied, in general terms, by evolutionary biologists
[1,24]. As could be expected, evolution plays a crucial role in
determination of the fate of a population. If there would be
no evolution then the average fitness of the population would
remain constant in time[1]. In an evolutionary process there
is natural selection and inheritance of better genomes to the
offspring which increases mean fitness[25].

Shaffer [22] explained that there are four major factors
influencing possible extinction of a population—

demographic stochasticity, environmental stochasticity, ge-
netic stochasticity, and natural catastrophes. Demographic
stochasticity is the risk coming from events happening to
particular members of the population, such as unexpected
death and infertility. It is especially important for small
populations. In this context quite often the notion ofmini-
mum viable populationis introduced[22] as the smallest
population which has a given chance of remaining alive after
a given period of time. Since, however, both limits are quite
arbitrary, the notion is not very helpful. Environmental sto-
chasticity relates to all random changes in such factors as
availability of food, density of predators, and climatic
changes. Big scale changes in the habitat fall into the natural
catastrophes category. Genetic stochasticity is random
changes at the genetic level. It is quite difficult in field stud-
ies to determine the role played by each factor in driving a
particular population to extinction, as shown by the example
of the extinction of the heath hen quoted by Shaffer[22].

In this paper we study the role of inheritance in popula-
tions under selection on the survival chance for a population,
when the habitat remains constant, both in time and in space.
Situation when there is no inheritance we shall call in the
following without evolution, since the genetic pool at each
generation is random and constant in time. We shall study
two scenarios—one in which the traits of the parents are
passed on to the progeny(evolutioncase) and the second in
which there is no heredity(no evolution). A population
changing in time without heredity is of course rather difficult
to find in nature, but one possible realization could be a
population in which selection kills phenocopies, which are
independent of the genotypes. Selection eliminates worse
phenocopies, but that does not change the genetic pool.

The following parameters characterizing the model will
be changed—carrying capacity of the system, selection pres-
sure, and fecundity. We shall show that when the evolution is
acting, a population has a much better chance to stay alive,
and that the chosen variables play important roles in preserv-
ing a population from extinction. We shall use Monte Carlo
simulations.

II. MODEL

We consider a square lattice of linear dimensionsL3L,
on sites of which a population composed at timet of Nstd
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individuals is located. An individuali is characterized by its
position on the lattice and its trait(a phenotype) zi P f0,1g.
One lattice site may be either empty or occupied by at most
one individual. The lattice has rigid boundaries, hence any
attempt to move an individual outside those borders is un-
successful. All external factors, such as climatic conditions,
density of predators, and prey, influencing an individual are
summarized in the optimumFP f0,1g [19,21], which in gen-
eral could change in time and in space. For simplicity we
shall consider an environment constant in space and time.
The agreement of the individual’s trait with the optimum
determines the fitness of the individual[21], hence the indi-
vidual’s probability of survival[2] is

pi = expf− szi − Fd2sg, s1d

wheres is the selection pressure. Fitness is maximized when
zi =F. The individuals may breed, but to do so an individual
must first of all move to an empty nearest neighboring site. If
there is no such site, no reproduction is possible. After mov-
ing the individual must find a partner in the neighborhood of
its new position. We do not distinguish sexes in our model,
yet a pair of individuals is needed for breeding, like in the
simulation model in Ref.[2]. A pair of parents produces at
most B offspring (fertility rate), which are located inside a
given distanceR from the first parent. The fertility rate in our
model does not depend either on time or on space. However
the number of surviving progeny, as will be explained below,
depends on local conditions. When evolution is acting an
offspringk receives a trait which is an average of the traits of
both parents(i and j) changed slightly due to mutations,

zk = 0.5szi + zjd + rkm, s2d

whererk is a random numberPs−1, +1d andm is the muta-
tion rate. Hence each progeny resembles both parents, yet it
is slightly different. Equation(2) describes the inheritance
for an additive quantitative trait(no dominance, epistasis)
[27]. Natural selection may increase mean fitness, i.e., lower
the average distance between an individual’s trait and the
optimum. In the absence of genetic variation the trait value is
determined solely by random events during development
(developmental noise), which we implement by setting the
trait of each offspring to an independent random numberrk,

zk = rk, s3d

taken from a uniform distribution.
The introduced conditions necessary for breeding elimi-

nate the need for an extra factor, such as the Verhulst factor
[26], which controls, otherwise unbounded, growth of the
population. We shall use the Monte Carlo simulations with
the following algorithm. Suppose that at timet there was
Nstd individuals in the population, then we have the follow-
ing.

(1) An individual j is randomly chosen.
(2) Its survival chances are calculated from Eq.(1). A

random numberr j is generated from a uniform distribution.
If r j .pj then the individual is removed from the system, and

the program returns to steps1d. In order to breed the follow-
ing steps have to be realized. Otherwise the program returns
to the beginning.

(3) One random search is made in the nearest neighbor-
hood of the chosen individual to find an empty place. If
found, the individual is moved there.

(4) One random search is made in the neighborhood of
the new position of the individual for a partner. If successful,
the pair producesB offspring. For each of them indepen-
dently one random search is made in a square neighborhood
of side 2R+1 centered at the location of the first parent to
find an empty place for the offspring. If found, the progeny
receives its trait as calculated from Eq.(2), or Eq. (3), de-
pending on whether the population is subject to evolution or
not, and is put there. If the search was not successful, the
offspring lost its chance and was not born.

(5) After picking upNstd individuals as first partners one
Monte Carlo stepsMCSd was completed, or alternatively one
time unit passed.

To keep the number of parameters at a minimum, we set
constant the side of the square around the first partner into
which the progeny may be put, at 2R=2. The initial value of
the concentration was set atcs0d=0.6. Precise value of the
initial concentration, as long as it is not too low, i.e., it does
not fall below 0.2, does not play an important role. If the
initial concentration, or more precisely, the number of indi-
viduals is too low, the population falls below a threshold
value where stochastic fluctuations(demographic stochastic-
ity) may lead to its extinction. This is known in population
biology as the minimum viable population[22], although it
should be stressed that the values taken by biologists as the
limit ones are quite arbitrary. In our case it means that if the
initial number of individuals is low, and corresponds to about
cs0d=0.2, the chance that the population will become extinct
after just 10–20 MCS increases significantly. The mutation
rate was chosen to bem=0.01, which is consistent with bio-
logical data. Should we take a much larger value, the effect
of evolution will be lost, since the progeny traits will be
quite different from the parents’ ones. Reducing the mutation
rate to zero will finally lead to a homogeneous genetic pool.
Maximum time of simulations was chosen so as to reach a
stationary state. For most of the cases 2000 MCS was
enough. Statistical averages from over 103 runs to 104 for
small lattices were performed.

III. RESULTS

Since the optimum is constant in our model, we set it at
F=0, like in biological papers[1]. We shall investigate the
dependence of the extinction time on the carrying capacity of
the system(size of the lattice), fertility, and selection pres-
sure. In each case we shall compare the behavior of a popu-
lation subject to evolution and without it. The extinction time
is determined as a time at which there is just one individual
left in the system. Since for reproduction two individuals are
needed, such a population is doomed. Instead of averaging
the extinction time, as is usually done by biologists[2], we
shall record the most probable time to extinction, determined
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as the maximum in the distribution of the extinction times
obtained for all simulations. This time is a well-defined
quantity not influenced by large but rare statistical fluctua-
tions (presence of very long tails in the distribution). Apart
from the extinction time we measure also the survival chance
for a population, defined as the number of populations which
started from the same initial conditions(same initial density,
same fecundity, selection pressure, and lattice size) and sur-
vived till the end of simulations, divided by the total number
of runs.

In Fig. 1 we present, taken in a single run, the time de-
pendence of the number of individuals in a population in the
cases with and without evolution. The values of the selection
pressuress=2.0d and carrying capacitysK=900d are interme-
diate. The initial spatial distribution of individuals as well as
the values of their traits are identical in the two presented
cases. As could be easily seen, the time around 50 MCS is
critical for both populations. However only evolution can
save the population. This kind of behavior has been also
found, using different type of considerations, by biologists
[1].

In Fig. 2 we present the dependence of the most probable
time to extinction,text, on the carrying capacityK for the
cases with and without evolution. The dependence has a
similar character, and the curves could be fitted by a power-
type dependence,

text= a + bKc, s4d

where the exponentc has two values—slightly largerc1
.0.56 for a larger system and slightly smallerc2.0.45 for a
smaller system. The effect of the demographic stochasticity
is not evident here, but it shows better in Fig. 3, where the
survival chance is plotted againstK. Here heredity leads to
several times larger chance of survival for populations with
evolution. If there is no evolution then even increasing the
size of the system does not help. For the case with evolution
there are two distinct regions—below and aboveK=900. Be-
low it demographic stochasticity is clearly seen. For small

systems, composed of relatively few individuals, the survival
chance drops drastically with decreasing size of the habitat.
Even small fluctuations in the number of individuals could
have dramatic effects on the whole population. The same
effect is also visible, although on a smaller scale, in Fig. 2.

A different behavior of populations living on a small and
large systems is reflected also in the distribution of the ex-
tinction time, as shown in Figs. 4(a) (with evolution) and
4(b) (without it). For small systems most of the extinctions
happen before 50 MCS. For large systems no extinction has
been observed till 50 MCS. Therefore not only the maximum
of the distribution (the most probable time to extinction)
moves with the size of the system but the smallest extinction
time moves as well. Small populations, with or without evo-
lution, not only die more often but they also die faster.

Figure 5 presents the dependence of the most probable
time to extinction on the selection pressures. It decreases
exponentially as a function ofs, independent of whether evo-
lution is acting or not. The behavior of the survival chance as
a function of selection pressure has a more complex charac-
ter (Fig. 6), exhibiting once again two different regimes—for

FIG. 1. Number of individuals in a population vs time(in Monte
Carlo steps) with and without evolution and with identical initial
conditions. Selection pressures=2, carrying capacityK=900, and
fecundityB=30.

FIG. 2. The most probable time to extinctiontext vs carrying
capacityK on a log-log scale.B=30, ands=1.67.

FIG. 3. Survival chancesSCd, vs carrying capacityK for popu-
lations with and without evolution. Simulation time 2000 MCS.
Same values ofB ands as in Fig. 2.
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strong and weak selection, separated by a transition period.
For strong selection the increase of the extinction time with
diminishing selection is rather slow and the difference be-
tween the evolution and no evolution cases is small. At the

intermediary values of the selection the difference between
the two cases is the largest, since for low selection genetic
structure plays only a small role[see Eq.(1)] and therefore it
does not really matter whether the evolution acts or not. This
kind of behavior is indeed what the biologists observe[1]. As
could be expected, reduced viability due to deviation from
the optimum has a stronger effect on the population dynam-
ics in the absence of heredity because selection cannot bring
the population mean fitness closer to the optimum.

Figure 7 showing the average value of the trait,z, ob-
tained at the end of simulations for the surviving popula-
tions, as a function of the selection pressure, exhibits the
existence of two regions and an intermediary one, between
s=2 ands=1.8 for the case of evolution. Average trait values
in this case lie always closer to the optimum than when there
is no evolution. This is understandable, since only heredity
can help population in approaching the optimum. Since the
surviving populations without evolution were composed of
just a few individuals, the statistics was very bad, even when
an average over 3000 runs was performed. To improve it we
first averaged the values ofz obtained in a given run over the

FIG. 4. (a) Distribution of the most probable time to extinction
for 1000 independent runs, each till 2000 MCS with evolution.
Same values ofB ands as in Fig. 2 and 3.(b) The same as in(a),
but without evolution.

FIG. 5. The most probable time to extinction as a function of
selection for dynamics with and without evolution.K=900,B=30.

FIG. 6. Survival chance vs selection for dynamics with and
without evolution. Same values ofK andB as in Fig. 5.

FIG. 7. Averaged over all population value of the traitz vs
selection for the cases with and without evolution. Same values of
K andB as in Fig. 5.
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last 500 MCS and then those values were once again aver-
aged over the number of surviving populations.

In Figs. 8(a) (with evolution) and 8(b) (without it) we
show the differences in the distribution of the extinction time
for smaller and larger selection pressure. Stronger selection
leads to populations which are quite similar to one another in
the sense that the extinction times are nearly all grouped
around one value, while weaker selection permits a wider
distribution of extinction times, hence the populations differ
more from one another. In each case however populations
with evolution die later. For strong selection the very pro-
nounced peak observed in the case without evolution is sig-
nificantly reduced and the distribution oftext is wider. Distri-
butions for weak selection are similar, but again it is shifted
to longer times for the cases with evolution.

Figure 9 shows the most probable time to extinction ver-
susB, the fecundity. As could be expected, the time grows
with B, and the growth could be reasonably well fitted, in the
two cases, by a hyperbolic tangent. A similar effect of satu-
ration has been also found in a kind of mean-field model by
biologists[2].

The dependence of the survival chance on the fecundity is
presented in Fig 10. Again there are strong differences be-

tween the population dynamics with and without evolution.
In the latter the survival chance practically does not depend
on the fecundity and it remains well below the values for the
population with evolution. As the extinction time, the chance
for survival in the case of evolution could be well fitted into
a hyperbolic tangent.

IV. FINAL REMARKS

We have presented a model describing dynamics of a
population living in a constant environment and we have
compared two cases—when evolution by natural selection
acts via heredity and when it is absent. Individuals forming
the population are characterized by a single value(trait, con-
tinuous character, phenotype) which, compared with the op-
timum characterizing the environment, determines the indi-
vidual’s probability of survival. Individuals are treated
independently, which permits studying the effects of demo-
graphic stochasticity in more detail than in the continuous
models operating only on quantities averaged over the entire
population[1,2]. We have investigated the dependence of the

FIG. 8. (a) Distribution of the most probable time to extinction
for 1000 independent runs. Two values of selection. Same values of
K andB as in Fig. 5. Case with evolution.(b) The same as in(a),
but without evolution.

FIG. 9. Most probable time to extinction vs fecundityB for the
cases with and without evolution.K=900,s=1.67.

FIG. 10. Chance of survival vs fecundityB for the cases with
and without evolution,K=900,s=1.67
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most probable time to extinction and the survival chance of
the population on such factors as selection pressure, carrying
capacity of the habitat(size of the lattice), and fecundity. We
have shown that while the extinction time only weakly dif-
fers between the cases with and without evolution, the sur-
vival chance is much greater if the evolution acts. Also the
surviving populations are much more numerous in this case.
Without evolution the survival chance depends very weakly
on the investigated parameters—fecundity, selection, and
carrying capacity. As can be seen from Fig. 3, if there is no
evolution the population remains, even for large values ofK,
i.e., large habitat, in the vicinity of the minimum viable
threshold. The reason may be the fact that the genetic pool of
such population is always random and there are no correla-
tions between the individuals forming the population. In this
case we have a system with no interactions, on the genetic
level, among entities forming the system and the evolution
introduces this kind of interactions. Populations which are
not satisfactorily adapted will be eliminated in each case,
with or without evolution, and at the same rate. Hence there
is equal most probable time to extinction, however, when the
evolution is acting there will be less such populations, and
the survival chance will be much larger in the case of evo-
lution.

The most probable time to extinction and the survival
probability are not related, at least not in a straightforward
way, as shows the following argument.

We have a probability distributionpstextd of the extinction
time text. This distribution has a most probable valuetm and a
tail which is crudely exponential. However, this tail may
vanish(or not) for a long timetmax which depends upon the
parameters used.

The survival chance(SC) looks at what is the probability
that a population remains alive after a timets corresponding
to the end of the simulation. SC is thus the probability of
survival for a timet. ts. It is thus

SC =

E
ts

`

pstddt

E
0

`

pstddt

,

but the denominator is 1 by definition and thus

SC =E
ts

`

pstddt.

In other words, SC is related to the properties of the tail of
the distribution of the extinction times, whiletext character-
izes the most probable value of this distribution. Thus there
is no simple relation between these two quantities.

Our study confirms the findings of Gomulkiewicz and
Holt [1] that evolution may save an initially maladapted
population. We have also shown that in many dependencies,
first of all in the survival chance with evolution acting, two
regimes could be found. This reflects the existence of a
threshold value for extinction of small populations, as pre-
dicted on general grounds by Shaffer[22]. Apart from show-
ing the agreement with the mean-field model of Gomulk-
iewicz and Holt [1] we have also shown that it is more
reasonable to use the most probable time of extinction rather
than the average one. We have demonstrated that it is inter-
esting to study another quantity, not yet considered, i.e., the
survival chance a population has in a given external condi-
tion. From it one could deduce information not present in the
studies of the extinction time.
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