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Anisotropy and nonequilibrium effects on the light scattered from suspension
in a nematic solvent
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We investigate the effects produced on the light scattering spectrum by the anisotropic diffusion of impuri-
ties in an incompressible nematic solvent. The spectrum is calculated by using a fluctuating hydrodynamic
description when the system is both in a fully thermodynamic equilibrium state and in a nonequilibrium steady
state induced by a dye-concentration gradient. In the former state, the isotropic pretransitional phase as well as
the nematic phase of the solvent are considered. This spectrum is sym¢heteatzian with respect to the
frequency shifts, but anisotropic through its explicit dependence on the ratio of the diffusion coefficients of the
dye parallel and normal to the mean molecular axis of the nematic. The values of these coefficients were taken
from experimental measurements of diffusion of methylred and nitrosodimethylaniline in a
N-(p-methoxybenzylidenep-butylaniline (MBBA) solvent. This anisotropy changes the height and the width
at mid height with respect to the isotropic case in amounts which for MBBA vary up to 36% and 26%. We also
calculate the spectrum in the presence of a concentration gradient of the dye and find that its presence gives rise
to an asymmetry of the spectrum in its dependence on the frequency shift; its maximum increases and is
displaced with respect to its equilibrium position. The size and direction of this shift are proportional to the
magnitude of the dye-concentration gradient and depend on its relative orientation with respect to the scattering
vector. For small dimensionless concentration gradiérts02), this effect is maximum when these vectors
are parallel and the scattering angle is 16w1°). The maximum degree of departure from equilibrium is
significant and turns out to be approximately 55%. In view of the significant changes in the spectrum, our
theoretical analysis suggests that these effects might be observable.
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[. INTRODUCTION light scattering spectra were small, in the case of a Poiseuille
flow induced by an external pressure gradient the effect may
. - ) be quite large and might be observable. However, to our

ously, and the local perturbations arising from them distur . ieqge, at present there is no experimental confirmation
the equilibrium state of the system. As a result, relaxationys these effects, in spite of the fact that for nematics the

processes involving a large number of particles are genekcattered intensity is several orders of magnitude larger than
ated, and these slow, collective modes relax toward theif,, ordinary fluids.

equilibrium values. The response of the system can be de- op, the other hand, in the last two decades mass diffusion
scribed in terms of incremental variables and the equationg, mesophases has been extensively studied by a variety of
governing them. Since these fluctuations around their avegsyperimental methods. Diffusion coefficients have been mea-
age equilibrium value are usually small, the equations degyred py mass transport and densitometric techniques, by
scribing their space and time variations can be obtained by,eans of NMR spin-echo techniques, and by quasielastic
linearizing the general equations of motion. neutron scattering, and detected optically or by radiotracers

The investigation of the effects of fluctuations about non-r1 1) Early measurements of mass diffusion in liquid crystals
equilibrium stationary states of simple fluids has attracte sing impurity diffusion have shown that the diffusion is

increasing attention during the last two decades. Simple ﬂuanisotropic in most cas¢&2,13. The diffusion of small par-

ids su_bject toa static temperature or pressure gradient hayg|es dissolved in nematio§mpurity diffusion) has shown
been investigatedl-4], and some of the predicted results tht giffusion parallel to the directdD,) is faster than per-
were detected by light scattering experimef#iss]. Similar — hongiculanD ) to it. The ratio of these diffusion coefficients
stud@s have also been deyelppe_d for some nonequlllbrlurEeems to be independent of the actual shape of the diffusing
stationary states of nematic liquid crystals, such as thosﬁ]olecule[14—1q. However, to our knowledge, investigation

generated by a static temperature gradight a stationary of the effects of this asymmetry on the light scattering spec-
shear flow[8], or an externally imposed constant Pressure,. - has not been considered

ghradi(;nt[9,10]. AI_}.hbolugh in the_t:‘irs_t two caies it was foug_d In this paper, we report theoretical results describing the
that the nonequilibrium contributions to the correspondingetacts on the light scattering spectrum produced by the an-

isotropic diffusion of impurities in an incompressible nem-
atic solvent. This spectrum is calculated by using a fluctuat-

In a liquid, fluctuations occur spontaneously and continu

*Electronic address: hijar@fisica.unam.mx ing hydrodynamic description when the solvent is in both a
TCorresponding author. fully thermodynamic equilibrium state and a nonequilibrium
Electronic address: zepeda@fisica.unam.mx steady state induced by a dye-concentration gradient. We find
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z P geometry is experimentally feasible and corresponds to one
2 of the configurations used by Chateldit9].We shall ana-
lyze only those nonequilibrium states of the suspension for a
- , , solvent at rest, defined by the stationary concentration field
P4 k, ! of impurities
. 19 Ve i
: noll v i ' -
| icll?z | | ) (M) =co+7 - Ve, (1)
k, where Vc is a uniform concentration gradient on tlyez

plane whose direction is specified by the anglén Fig. 1,
and ¢ is the impurity concentration at equilibrium. With

respect toh, and the wave vectdk defined above20], the
P9 hydrodynamic variables of the nematic solvent may be di-
vided into two independent sets, namely, transverse and lon-
FIG. 1. Schematic representation of a plane homeotropic nemgitudinal. The former set ifn,(r,t),v,(f,t)}, while the latter
atic cell with a concentration gradient in the direction definedsby is {p(F,t),a(F,t),vy(F,1),v,(F,t),ny(F,1)}. Here p(r,t) and
0 is the scattering angle. o(F,1) are, respectively, the local mass density and the vol-
ume density entropy. The specific entrofgntropy per unit
that the height of the central peak in the equilibrium Lorent-mas$ s(f',t) is related too(f',t) throughs=op™%, andi(r’,t)
zian due to transverse director fluctuations is changed anig the unitary director field.
that its shape becomes asymmetric due to the applied con- The hydrodynamic description of a uniaxial nematic lig-
centration gradient by an amount determined by its magniuid crystal is well established and has been verified experi-
tude. The maximum difference between the nonequilibriunmentally in detail[21-24. Its generalization to include elec-
and equilibrium contributions to the spectrum for varioustrohydrodynamic effects has also been accomplished,
values of the external gradient is estimated. It is found thatriggered by the many electro-optic effects existing in these
this anisotropy increases with the magnitude of the gradieniquids which have produced a variety of applications in dis-
and has an important effect on the nonequilibrium part of theplay deviceg25]. If the suspension is sufficiently diluted, the
spectrum. Our theoretical analysis suggests that these effeqisesence of the impurities does not appreciably perturb the

might be observable. dynamics of the liquid crystal, and linear deviations around
an equilibrium state defined kpy, nio, ands, will be denoted
Il. MODEL AND BASIC EQUATIONS by 8p(r,t)=p(r,t)—po, dvi(F,t)=v;(F,t), A(r,H)=ni(r,t)

-n?, and &s(F, ) =s(F,t) - s,. The description of the hydrody-

Consider a dilute suspension of noninteracting impuritieshamic state of the nematic may also be accomplished by
diffusing through an initially quiescent thermotropic nematicusing the pressure field(f,t) instead of the density field
liquid crystal solvent, as depicted in Fig. 1. In nematics, as if‘b(F,t), or the temperature fieldi(F',t) instead of the entropy

ordinary isotr_opic liquids, sound' waves may pro'pagate ande|d o(r,1), since these fluctuations are related through well
all the remaining hydro-dynamic modes are diffusive. Inynown thermodynamic relatior[26].

studying the latter, we shall assume that the temperature per- vegrs ago Landau and Lifshif27] proposed a pioneering
turbations are sufficiently small so that the nematic fluid mayethod to describe fluctuations about equilibrium states
be regarded as incompressible. There are different forms fQfere the fluctuation-dissipation theorem and linear re-
introducing this restriction into the set of nematodynamiCgponse can be used effectively. Their justification in terms of
equations[17,18. Here we follow the Leslie-Ericksen ap- e general framework of Onsager’s theory of irreversible
proach and eliminate the term divby settingr,=v4 and  h5cesses[28,29 was achieved by Fox and Uhlenbeck
v5=0[17], where, as we shall define later an, v4, andvs 2837, and their formulation allowed for the use of state
denote several nematic viscosity coefficient,t) stands \ariaples which did not posses a definite time reversal sym-
for the nematic’'s hydrodynamic velocity field. metry. This generalization is necessary for applications to the
~ For the homeotropic configuration in Fig. 1, the chosenygrodynamics of simple and complex fluids such as liquid
initial director’s orientatiomg is |nd|cat§d with respect to the crystals. The equations of motion for the above thermal fluc-
origin at the center of the cell so tha§=(0,0,1), and the  tyations are derived from the well known general hydrody-
light sci';\ttering process is also sketched. The incident wavgamic equations for a nematjt7,18,32,3B by introducing
vector k; is directed along the axis, while the scattered fluctuating components into the momentum current of the
wave vectork, is chosen to be in théscattering y-z plane. ~ Solvent, oy;(7,t), the entropy currenfX(r.t), and the relax-
p,=(1,0,0 and p,=(0,-cosé,sin 6) denote, respectively, ation quasicurrent of the orientation of ttle nematic,These

the incident and scattered unit polarization vectors, wiiere stochastic components are, respectiv&d)&ij(F 1), J(r,1),

is the scattering angle. The scattering process is associatadd Y;(r,t) and are chosen so that they are zero averaged
with a wave vector changk=k; -k, and with a frequency Stochastic processes;(r',t)=(Y;(F',t))=(J},t))=0, satis-
shift w=w;—w,. It should be pointed out that this scattering fying fluctuation-dissipation relations of the form
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<Eij (F’t)zkl (F’,t’))z2kBT0vﬂk,5(F—F’)5(t—t’), 2) nematic throughﬁthe dynamics of its directiof(r',t) and
velocity fieldsuv;(r,t).

To describe the response of the system to small perturba-
tions originating in spontaneous thermal fluctuations, we in-
troduce the incremental variablée(r,t)=c(r,t)—c%(r) de-
fined with respect to the stationary stafér). As mentioned

o1 10 , above, we shall analyze only those nonequilibrium states of
DI 1)) = A A7 - ) 8t~ 1), @ the form (1), which fgr futur()e/ use it will bqe convenient to
wherekg is Boltzmann’s constanty; is a reorientational vis-  recast in the equivalent form
cosity of the nematic, and the superscript O denotes the lin-

Yi(FOY(7 1) = 2kBT0 5f}i5(r*—r')5(t—t'), (3)

earized quantity. The linearized projection operafdr and () = o +asin(g -1 (10)
the thermal conductivity tensoaO are defrned respectively, \yith
by &:°=a;-nn} and k=« +Kan nf, where §; is the
usuai Kronecker deltax,= K~k IS the anlsotropy in the - 1
thermal conductivity, and, and «; denote, respectively, its a= 5 (11)
perpendicular and parallel components with respect to the
director field. Also, the linearized viscous tenstﬁr;l is provided that we take the limig—0. Both g and a are
0 0.0.0 auxiliary variables which are introduced in order to simplify
Vi = V28 0 81 B) + 2(vy + v, = 2wg)nindngn) the analysis of Eq(9).

Following Landau and Lifshit#27], we also introduce a
fluctuating mass diffusion currerjf(F,t) into Eq. (7). This
+ (v4= 1) 88 + (V5= va+ 1) (S0 + Sgnfn). quantity is also a Markovian, Gaussian, stochastic process
(5) with zero mear(JF(F,t))zo and a fluctuation-dissipation re-
lation of the form

008
+(v3= ) (NjN; G + 1y nk5|| +; ”k5 +nn) 5jk)

Herey;,i=1 ,5, denote several nematic viscosity coeffi-
cients. (IF(FH)JIF(F 1)) = 2Djc(N) &(F = ) St~ t')
This process yields a complete set of linearized hydrody- -
namic equations for an incompressible nematic in the geom- =2Dji(co+ - Vo) ar—r)at-t'),
etry under consideration. However, as will be shown below, (12)
in this case it is unnecessary to know their explicit form.
They may be found in Ref$9] and[26]. where we have used E({l). The fluctuating linearized equa-
Let us now turn our attention to the suspended impuritiestion associated with Eq9) then reads
If no chemical reactions occur between them, their total
number is conserved and their local concentration density 9o _ (D, V2 +D,V2)&c + V,cdv; + D(V,cV,on
c(r,t) obeys the conservation equation a
R +V,cV,0n) - V,JF. 13
%(t;+ViJi:0, (6) ol I) ivi ( )

Note that it is coupled with the dynamics of the fluctuations
on; and dév; of the solvent.

To carry on the analysis it will be convenient to write the
dynamic equations for the solute in Fourier space. To this
end we define the Fourier transform of an arbitrary field

,&(F,t) as

whereJ;(r,t) is the flux of the diffusing particles, which for
a uniaxial nematic is

J(F,t) == Dy (F,HV (F, 1) + c(F, vy (F 1), 7)

whereu;(F,1) is the velocity field of the solvent and;;(r,t)

is the diffusion tensor of the suspended impurities. For a (e EJJ (7 L
nematicD;; has the standard uniaxial form Atk o) dt oy A(f,Dexpl=itk-F- ot} (14)

D;;(F,t) =D, &; + Dni(F, (7, 1). (8)  where we use a tilde to denote the Fourier transformed quan-
tity. Then, Eq.(13) reads
Here the diffusion anisotropy is definedBg=D,-D , . Us-
ing these equations we arrive at the following diffusion equa-  §&(k, ) = G(k, ©)(V,c65, + D .k,V,coF +iD .V ck oF,
tion for c(r',t): _
-ikJD), (15
Jdc

o D, VZc+ Danin ViV jc + Da(mVin; + Vi) Ve where the propagatd(k, o) is

—_— (9) G(kw) = (-iw+D K + D)™, (16)

Note that there is an expliciihonlineay coupling with the and the fluctuation-dissipation theorgit?) is now
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TRk o) I5(K,0") = 2027 Dyl + w'>{c05(|2+ k) (k) (K, )
_ = -Gk, w)G(K 0 ){kk A (k) I (K ,0"))
a ” L " ) = > > - >
+Z[5(k+k —q)—5(k+k +q)]}, —ViCVjC<5l7i(k,w)55j(k’,w’)>
(17 + DX (K, ) Ty (K', "))
where we have made use of E40). Also note thaG(k, w) X[k VieVic + ki V.Vic + ki VeVic
satisfies the relation + kik,-'(VzC)z]}- (23
YAy Note that in contrast to Eq21) in the nonequilibrium
Cl-k-) =G (ka), (18 situation the density gradient introduces a coupling between

ity, év;, and orientation fluctuationgh;. However, from Eq.
(23) it is clear that the contribution of such coupling is sec-
lil. DYNAMIC STRUCTURE FACTOR ond order in the density gradient. Therefore, for sufficiently
When the external concentration gradient vanishes, thaMall density gradients these contributions may be neglected
system is in equilibrium, Eq15) reduces to compargd to the f|r§t order contributions Eontamed in the
correlation of the nmseﬁf, Eq. (17), througha. Thus
N P
8k, w) = =iG(k,w)kJ (k ), (19 <5E(|Z,w)5c'(|2’,w’)>

and Eq.(17) becomes o 2(2m) KK Dy B (K )R ) S0+ )

FF(K,w) I (K, ")) = 2(2m)*coD;; SK+ K ) Sl + ). e T -
G (k)J (K, 0) = 2(2m)*eoDyy ok + K)o + ) o coir k) + B[k k) — o+ K+ )]
(20) 2i
From Egs.(19) and (20) it follows that the equilibrium = (60(k, w) 5c(k', "))+ (Sc(k, w) Sc(k', ")) (24)
autocorrelation function of concentration fluctuations of the
suspended impurities is then given by It is convenient to rewrite the nonequilibrium contribution in

the form
(K, ) T(K', "))

= - 2(2m)"coDkik] G(k, @) G(K',0") 8k + k') dw + w'), "
(21) x 5(w+w')%2 ok +K' - ed).

e==*1
which vanishes for ak’ andw’ values except fok’ =—k and (25)
o' =-o. In this case we have

(SB(K, ) (K, ' ))"®4= — 2(277) K. DymG (K, 0) G (K, ')

. _ . Accordingly, if we now substitute
Sk, w) = (F(k, ) (= k, = ))*

- - - - € - - €

= 2(2m)*5%(0)coD;jkik;|G(k, )%, (22) k—k+ P K'— k' + P (26)
whereSeU(lz,w) stgncis for theadyngmiac structure factor in jjig the right hand side of Eq25), we obtain
equilibrium and|G(k, w)|?=G(k,w)G"(k,w). To arrive at
Eqg. (22) use has been made of the prope(i). (K, ) SB(K', "))

Let us now consider a nonequilibrium state where the oo

concentration gradient componerfsc are different from == 2(2m)*Djj 8w + ') Sk +K)
zero. Then the concentration fluctuations in Fourier space, F €q; e\~ (- €
&(k,w), of the solute are given by Eq15), while the ng 6<ki+?>(ki 5 >G<k+3"">
fluctuation-dissipation theorem for the stochastic density cur- =t
rent JiF(k,w) is given by Eq.(17). Then, the concentration ><(~3<IZ’ n € w;)} (27)
autocorrelation function is obtained from E@.5) by first 2’ ’
evaluationdC at k'=k and ’=w and then multiplying by Notice that the nonequilibrium contribution to the struc-

oc(k,w) and averaging t~he result over an equilibrium en-y,ve factor is different from zero only fok' =k and o’ =
semble. Using the fact thd,f, dvj, anddn; are uncoupled, we —w. Then, after explicit evaluation of the summation over the
arrive at variablee, we arrive at
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- - _ q; i this impliesD;>Djs,>D ,. In the isotropic limit Eqg.(22)
(8K, ) (K, " ))"e4= — a(ki + EI)Du(kj - ‘21> reads =
m &(k+ 3 0)E (k-9 o Sk 0 =22 502K (3
m 2 2 ) o "0+ (Disdeo)”

(28) Let us now define the dimensionless equilibrium structure
where Im denotes the imaginary part. We also made use ctor of the impurities in the nematic phase of the solvent,
the symmetry oD;; and Eq.(19). (o), by

After a direct calculation from the definition d@&(k, w) Seu(lz )
we obtain Swg) = ———, (33
i i Ssk.0)
Im{G(k+ 5’“’)G (k_ 2'¢ )} where 4Kk, w) is given by Eq.(22) and wherew, is the
-~ 20(Djk,+ D K,q,) dimensionless frequency
= 2 = 2 w
&lrsd 229 W= —5 . (34)
><G@+Zw> G@ Zw) (29) Disckizo
Replacing Eq(29) into Eq.(28), taking the limitq—0, and  Inserting Eqs(22) and(32) into Eq. (33), we have
using Eq.(22), we arrive at a
- - - =—, 35
S YK, w) = (F(K, ) F(~ k,— w))"e w0 1+ad%0? @9
=— 2 5E(K, ) T(~ K, - ) where we have introduced the dimensionless coefficient
Vel e _ Disd
0”5 (Djk; cosy+D Lk, sin )Gk w)f?, a= W (36)

(30) which depends on the scattering geometry and on the diffu-

where we have introduced explicitly the angle Thus, the  sion coefficients of the solvent both in the isotrofcetran-
equilibrium plus nonequilibrium contributions to the dy- Sitional phasgand in the nematic phase. In this sensés a

namic structure factor read parameter that measures the effect of the nematic ordering on
R R ) the light scattered by the impurities. Since in the isotropic
Sk, w) = YK, w) + YK, w) limit D,=D,=Dj, and k=kg, we have thata=1 and
v S wp) reduces to
:Se"(k,w){l—ch—(Dkz cosy+D k, siny) 1
° ledw0) = . (37
- - 1+wp
><IG(k,w)lz}- (31) . . : . o
This result coincides with that previously obtained in Ref.
[34].
The dynamic structure fact@B5) is a symmetric Lorent-
IV. RESULTS zian with heighta and half width at half height 1. Thus,
- for a>1, S§Ywy) is larger and narrower thaS’wo),
A. Equilibrium while if <1 the dynamic structure factor in the nematic

We first calculate the light scattering spectrum of the susphase becomes smaller and wider than the corresponding one
pended impurities when there is no concentration gradienif the isotropic solvent. To illustrate this effect quantitatively,
present for a solvent both in the nematic phase and in it§ote that in the isotropic case both the incident and scattered
isotropic phase. To this end, we first take the isotropic limitPeams propagate in a medium with refraction indgy.
of the dynamic structure factor in the equilibrium equationThen, as usudi35],

(22) by making the substitution®;; =D;s,0; and k=K, P

whereD;,, denotes the diffusion coefficient of the impurities Kiso = 2KoNiso sinE, (38)

in the solvent above the clearing point, i.e., in the isotropic

phase;kis, is the scattering wave vector associated with awherek, is the magnitude of the wave vector of the incident
process occurring in the isotropic medium with a refractivebeam in vacuum.

index ni, Furthermore, we shall approximal®,, and ng, On the other hand, when the solvent is in the nematic
by the average®,+2D,)/3 and(n;+2n,)/3, wheren,and  phase, anisotropic effects appear and light propagation inside
n, are the refractive indices of the nematic phase. Note thahe sample strongly depends on the polarization of the
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beams. According to Fig. 1, the incident beam will propagate

as in an isotropic medium with refractive index (ordinary
refractive index and

ky=kon, &, (39)

whereg, is a unit vector along the axis.

For the scattered beam, the refractive index is the effec-
tive refractive index, which depends on the orientation of the

vector p, with respect to the optical axis, and is given by

mn.
[n? cog §+n? sir? 9]+

Ner(6) = (40)

Heren, is the refractive index for a linearly polarized beam

along the optical axis, i.e., the extraordinary refractive index.

Thus, sincekzlzl—lzz, from Egs.(39) and(40) we find

IZZ = kone( 0)(&, cos 6+ &, sin 6), (41)
k= ko[, = ne(B)cos 4], (42)

and
k, == Kkgongq(6)sin 6, (43

&, being a unit vector along theaxis. As a resulte may be
rewritten as

2 nZ,(1 - cosé)(1 + 20)
“73 [N, — Nei(0)cos 17 + anZg(O)sir? 6

(44)
with =D, /D,. For small scattering angles we have

Ne(6)=n, and
=/
n, /-

Since typical values otr for thermotropic nematics are
=0.5<1 and usuallyng,>n |, in this limit we havea>1.

(1+20)
30

(45)

o=

PHYSICAL REVIEW B9, 051701(2004)

1.4

1.2

3 2 -1

FIG. 2. Normalized structure fact@&Ywo) as defined by Eq.
(35), plotted vs normalized frequenay,. (—) corresponds to the
nematic phase an@—- represents the isotropic contributiom,is
calculated from Eq(45) for the values of the material parameters
given in Sec. IV and for a smallk=1°) and a largg 6=85°) value

of 6.

tropic phase, has half maximum height. For the particular
experimental situation considered aboj®4], we find
Ap9=0.36, i.e., a height increment of 36%, anif'=
—-0.26, a wdth decrease of 26%. These results are plotted
in Fig. 2. Note that as the scattering angle increases,
decreases monotonically and eventually it takes values
lower than unity. For example, in the particular case of
dye diffusion in MBBA discussed above with=85°, we
havea=0.92,A;%=-0.076, andA$=0.082.This behavior

is illustrated in the inset of Fig. 2.

B. External concentration gradient

We shall now analyze the effect of the impurity concen-
tration gradient on the dynamic structure factor, restricting
ourselves to considering a solvent in the nematic phase. Fol-
lowing the same procedure, we define a normalized dynamic

For instance, experimental data for the diffusion of twogtrycture factorSy(w,) which contains both the equilibrium

different dyes(methylred and nitrosodimethylanilipen
the thermotropic nematicN-(p-methoxybenzylidene
p-butylaniline (MBBA) gives for both dyesr=0.6 [14].
Moreover, for MBBA the ordinary and extraordinary re-
fractive indices are, respectivelyy, =1.56 andn;=1.81
[25], so we haven,,=1.64. In this form we obtaina
=1.36 for f=1°.

Let us defineA;? as the relative change in the height of

and nonequilibrium contributions,

the equilibrium spectrum with respect to the isotropic case,

that is,
$40) - §h40) -,
y(0)

Similarly, the relative width change at half height; is

A= - 1. (46)

o2 -

(1/2)
Wiso

1/2
wi(so)zi_l
o )

ASI= (47)

where w*? and wfsléz) denote, respectively, the frequency

for which the equilibrium spectrum, in the nematic or iso-

Sk, )
wo) = =
Ssuk,0)
V| k, cos g+ ok, sin i
= 1+2
%q(wo) Co kg + Uki
awq
1+ azw(z) (48)

where Sk, ) and Si‘j,(lz,O) are defined by Eqs(31) and
(32), respectively. By using Eq€42) and (43), Eq. (48)
may be rewritten as

2

So(wo) = o) + o) = %"(wo){ L+20Br, 5

0
(49

where vy, is the dimensionless concentration gradient
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Ve
=, 50
%= kc (50)
and
B=p(6,;0)
_ [, —neg(H)cos @lcos i — aneu(6)sin 6 sin
B [N, = nei(6)cos O + onZy(H)sir? 6

(51

is a dimensionless function that quantifies the effect of the
relative orientation of the density gradient and the scattering

vector. Notice that, in the isotropic limit, =n;=ni;, and o
=1, reduces to

_sin(012 - 4)

o= , 52
0 2ni, SIP(612) 2
while for small scattering angles, str= 0,cosf=1,
sin
= - lp, <1, (53
on,

where use has been made of the fact thagt{#)=n, for
small 6. Therefore, in this limit the nonequilibrium con-

tribution to the dynamic structure factor may be important

due to the dependence @ on 6L In the following we
will restrict ourselves to the case wheg<1, for in-
stance,#=1°, but ¢ will remain unrestricted. Equation

(53) also shows that for small scattering angles the larges

nonequilibrium effect is obtained for the valug=/2,

PHYSICAL REVIEW E 69, 051701(2004

1.50

1.25

3

FIG. 3. Normalized structure fact&(wg) as given by Eq(49)
vs normalized frequencyg for 6~1°, y=m/2, and B calculated
from Eq. (53) with n, =1.56. (—) corresponds toy,=1.5X 1072
and (——-) to y.=0.

The relative difference between the structure factt9)
and the equilibrium structure fact@d5) as a function of the
frequencywy may be quantified by introducing the following
function:

awq

A" g) ,

1+ azwg

’ S(wg) - %0(100)
%q(wo)

= ‘ 2y.8
(56)

which has a maximum at the frequendy=+(a)™*. In other
words, the largest relative difference betwe®jiw,) and
%%wo) due toy, is obtained atv, and turns out to be

AT(@p) =|y.H|. (57)

that is, when the incident light beam and the external gra- _ _ _
dient are perpendicular, or, equivalently, when the scatter- These effects of the solute concentration gradient on its
ing vector and the density gradient are parallel. This facynamic structure factor may be illustrated by considering
is qualitatively similar to the experimental observations ofagain the experimental value= 0.6, corresponding to the
the effects induced by a temperature gradient on the lighiffusion of dye impurities in nematic MBBAn=1.81,
scattering spectrum of liquid water performed by Beysendliso=1.64, and¢=1°. In Fig. 3 we plot and compare both
et al. [5]. Note thaty, may take only small valuely|<1  So(wo) and S wo) by taking y=m/2 for y,=1.5x 10" We
which are compatible with linear irreversible thermodynam-obtain a frequency shifioy=—-0.40 and a maximum relative

ics, for instance;,=1072.
From Eq.(49) it is clear that the density gradient intro-

duces an asymmetry in the spectrum which consists in an

change of the spectruc}®%=0.5555%) at w,=+0.73.

V. CONCLUDING REMARKS

increment and a displacement of its maximum with respect

to its equilibrium position. In order to calculate the magni-
tude of the frequency shitb, as function ofy., we take the
derivative of Eq(49) with respect tavy and equate the result
to zero. This yields the condition

%+ 3y Ba’wy + ag = ¥f=0. (54)
Expandingwg in a power series ofy, we have, up to first
order in y,

wg = (55)

B
Ye-
o

Summarizing, by using a fluctuating hydrodynamic ap-
proach we have investigated theoretically the influence of the
effects produced by a uniform impurity concentration gradi-
ent on the light scattering spectrum of a suspension in a
nematic solvent. We considered both the isotropic pretransi-
tional as well as the nematic phase of the solvent, when the
system is in a fully thermodynamic equilibrium state and in a
nonequilibrium steady state induced by a dye-concentration
gradient. In the former state, the spectrum is symmetric
(Lorentzian with respect to the frequency shifts, but aniso-
tropic through its explicit dependence on the ratio of the
diffusion coefficients of the dye, parallel and normal to the
mean molecular axis of the nematic. The values of these

Therefore, the maximum is shifted by an amount propor-coefficients were taken from experimental measurements on

tional to the density gradient.

the diffusion of methylred and nitrosodimethylaniline in a
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MBBA solvent. Our results showed that the anisotropy in-gradients(~1072), this effect is maximum when these vec-
creases the hei_ght anq decrea_ses the width at midheight witBrs are perpendicular and the scattering angle is(le°)
respect to the isotropic case in amounts which vary up tQng the size of the shift depends on the magnitude of the

36% and 26% for MBBA.

It should be emphasized again that the nonequilibrium

correction is an odd function ab that introduces an asym-

gradient, as indicated in Fig. 3.
Thek dependence§ ik, ) ~k2 and Sk, w) ~ k™3 are

metry in the Shape of the structure factor, Sh|ft|ng the maxi_relatEd to the nature of the variables involved. For a Simple

mum toward the region of negative values ©f Close to

fluid all the variables are conserved, whereas for a nematic

equilibrium, the size and direction of this shift are propor-the orientation state variables are not conserved.

tional to the magnitude of the dye-concentration gradient and To our knowledge, the physical situation dealt with here
depend on its relative orientation with respect to the initialhas not been considered in the literature and our approach
director’s orientation. For small dimensionless concentratioryields results that might be observable.

[1] D. Ronis, I. Procaccia, and J. Machta, Phys. Re\22A 714
(1980.

[2] A. M. S. Tremblay, E. D. Siggia, and M. R. Arai, Phys. Lett.

76A, 57 (1980.

[3] J. Machta, I. Oppenheim, and |. Procaccia, Phys. ReR22A
2809(1980.

[4] L. S. Garcia-Colin and R. M. Velasco, Phys. Rev.1R 646
(1975.

[5] D. Beysens, T. Garrabos, and G. Zalczer, Phys. Rev. Uéit.
403 (1980.

[6] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev.

Phys. Chem45, 213(1994).

[7] H. Pleiner and H. R. Brand, Phys. Rev. 2V, 1177(1983).

[8] H. Pleiner and H. R. Brand, J. Phy&ari9, Lett. 44, L23
(1983.

[9] R. F. Rodriguez and J. F. Camacho, Rev. Mex. B8, 144
(2002.

[10] R. F. Rodriguez and J. F. ComachoReacent Developments in

Crystals edited by A. Buka and L. Krame(Springer-Verlag,
New York, 1996.

[19] P. Chatelein, Acta Crystallogd, 315(1948.

[20] D. ForsterHydrodynamic Fluctuations, Broken Symmetry and
Correlation FunctiongBenjamin, Reading, MA, 19735

[21] J. L. Ericksen, Arch. Ration. Mech. AnaR3, 266 (1966.

[22] F. M. Leslie, inAdvances in Liquid Crystals Vol,, £dited by
G. H. Brown (Academic, New York, 1979 p. 1.

[23] T. C. Lubensky, Phys. Rev. &, 2497(1970.

[24] L. P. Kadanoff and P. C. Martin, Ann. Phy&\.Y.) 24, 419
(1963.

[25] L. M. Blinov and V. G. Chigrinov,Electro-Optic Effects in
Liquid Crystals(Springer-Verlag, Berlin, 1998

[26] Efim I. Kats and V. V. LebedeVi-luctuational Effects in the
Dynamics of Liquid CrystalgSpringer-Verlag, Berlin, 1994

[27] L. D. Landau and E. LifshitzFluid Dynamics(Pergamon,
New York, 1959.

[28] L. Onsager, Phys. Re87, 405(1931).

Mathematical and Experimental Physics, Vol. B: Statistical [29] L. Onsager and S. Machlup, Phys. R&4, 1505(1953; 91,

Physics and Beyondedited by A. Macias, E. Diaz, and F.
Uribe (Kluwer, New York, 2002, pp. 209-224.

[11] G. J. Krlger, Phys. ReB2, 229(1982.

[12] T. Svedberg, Kolloid-Z.22, 68 (1918.

[13] W. Jost,Diffusion (Academic, New York, 1960 p. 18.

[14] F. Rondelez, Solid State Commufh4, 815(1974).

[15] F. Jahnig and H. Schmidt, Ann. Phy®.Y.) 71, 129(1972.

[16] W. Franklin, Phys. Rev. All, 2156(1975.

[17] P. G. de Genneshysics of Liquid CrystalgClarendon, Ox-
ford, 1974.

[18] H. Pleiner and H. R. Brand, iRattern Formation in Liquid

1512(1953.

[30] R. F. Fox and G. E. Uhlenbeck, Phys. Fluiti8, 1893(1970);
13, 2881(1970.

[31] R. F. Fox, Phys. Rep48, 179(1979.

[32] M. San Miguel and F. Sagués, Phys. Rev38, 1883(1987).

[33] S. Chandrasekhatiquid Crystals 2nd. ed.(Cambridge Uni-
versity, New York, 1992

[34] J. B. Avalos, J. M. Rubi, R. F. Rodriguez, and A. Pérez-
Madrid, Phys. Rev. A41, 1923(1990.

[35] B. J. Berne and R. PecorBynamic Light ScatteringDover,
New York, 2000.

051701-8



