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Linear morphological stability analysis of the solid-liquid interface in rapid
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The interface stability against small perturbations of the planar solid-liquid interface is considered analyti-
cally in linear approximation. Following the analytical procedure of Trivedi and KRrZTrivedi and W. Kurz,
Acta Metall. 34, 1663(1986)], which is advancing the original treatment of morphological stability by Mullins
and SekerkdW. W. Mullins and R. F. Sekerka, J. Appl. Phy35, 444 (1964)] to the case of rapid solidifi-
cation, we extend the model by introducing the local nonequilibrium in the solute diffusion field around the
interface. A solution to the heat- and mass-transport problem around the perturbed interface is given in the
presence of the local nonequilibrium solute diffusion. Using the developing local nonequilibrium model of
solidification, the self-consistent analysis of linear morphological stability is presented with the attribution to
the marginalneutra) and absolute morphological stability of a rapidly moving interface. Special consideration
of the interface stability for the cases of solidification in negative and positive thermal gradients is given. A
quantitative comparison of the model predictions for the absolute morphological stability is presented with
regard to experimental results of Hoglund and Apx. E. Hoglund and M. J. Aziz, irKinetics of Phase
Transformationsedited by M.O. Thompson, M. J. Aziz, and G. B. Stephenson, MRS Symposia Proceedings
No. 205(Materials Research Society, Pittsburgh, 1991 325 on critical solute concentration for the interface
breakdown during rapid solidification of Si-Sn alloys.
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[. INTRODUCTION face. The sequence of growth morphologies, Fig. 1, is well
e - I I, known from experiments on directional solidification and so-
In the solidification of liquids, an initial solid-liquid inter- lidification in the undercooled staf&]. It has been demon-
face is subject to unstable growth which leads to varioUg ated in computational modelir§] of crystal growth as
crystal patterns of cellular, dendritic, banded, fractal, etc.,,g||.

morphologieg 1-3]. A scheme of changing the crystal mor-  The theory of morphological stability was developed first
phology with the interface velocity can be considered in thepy Mullins and Sekerka, who considered the stability of a
example of one-phase solidification, i.e., when the liquidspherical particle grown into a supersaturated solufitin
transfers into solid without precipitation of additional phases.and stability of the planar front during directional solidifica-
Figure 1 shows schematically the steady-state growth motion of a binary liquid[8]. In investigating the evolution of
phologies which form in a liquid as a result of morphological small harmonic perturbations of the planar interfégje they
instability at given interface velocity/ in single-phase so- provided a rigorous basis of linear morphologi¢al)stabil-
lidification. With a small velocity, an initially smooth inter- ity at low solidification velocity. Particularly, Mullins and
face remains planar up to a velocity equal to the criticalSekerka introduced a concept of marginal stability for the
velocity V¢ defined by the constitutional undercoolifd].  wavelength of perturbation, which gives neutral stability of
Behind V¢, the smooth interface becomes unstable and théhe plane when the amplitude of perturbation does not
interface exhibits a steady cellular morphology. By further _

. . . planar cells dendrites cells planar
increasing the velocity, a surface of cells may become un-  “trom front

stable with the developing of dendritic patterns. At high in-
terface velocity, dendritic patterns degenerate with the ap- 77, /" 'F ll é\g Aoy T
pearing of rapidly moving cells. A demarcation line \ét S hhhS Se R s
=V, divides the regions between the interface instability, ——— —
V<V,, and the absolute stability/>V,, where the planar 0 Ve Va 4
interface is morphologically stable against small perturba- i ) o i

tions of its form. This demarcation is usually known as the FIG. 1. Morphological diagram for solidification of binary sys-

critical velocity V, for absolute stability of the planar inter- tems, which is illustrating the microstructural transitions “planar
A front” — “cellular structure”— “dendrites”— “cellular structure”

— “planar front,” with the increasing of the solidification velocity

V. Here V¢ is the velocity given by the criterion of constitutional

*FAX: ++49{2203-6012255 undercooling, and/, is the velocity for absolute morphological
E-mail address: Peter.Galenko@dlr.de stability of the interface.
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change in time. Behind the critical velocity of the marginal
stability, the increasing of the amplitude of perturbation in
time may lead to cellular or dendritic interfaces. The theory
[8] gave rise to a great number of investigations of morpho-
logical transformations due to linear instability of interfaces
and nonlinear behavior of unstable interfaces. These are pre- N
sented in an overview by Coriell and McFaddgi} and a
monograph by Davi$10].

In its classic form[8], the theory assumes a local equilib-
rium at the interface, which is an excellent approximation for
many metallic systems solidifying at small interface veloci-
ties. At large driving force for the interface advancing, and
with the increasing of its velocity, the analysis of Mullins
and Sekerka can be modified. Trivedi and Kuyda] ad-
vanced the analysis of Mullins and Sekeflga for the case
of rapid solidification, and introduced the stability functions  FIG. 2. Optical micrograph of longitudinal through-thickness
dependent on the interface velocity. By taking into accountection of a melt-spun ribbon of Ni-18 at. % B allgg2]. The
the velocity dependent coefficient of solute redistributionribbon was produced with the spinning velocity of 120 m/s and
(partitioning function, they developed an analytical model with the thickness of 3%m. The crystal microstructure exhibits a
[12] of microstructure formation under directional solidifica- transition from planar interface with solute segregation-free to
tion, over the range from low interface velocity up to veloc- cellular-dendritic patterns. The transition proceeds due to decreas-
ity V, of absolute morphological stability. ing of the interface velocity fronv >V, up toV<V,. Wheel sur-

In addition to the previous analysis of pattern formationface at bottom of micrograph.
and morphological stability of the interface in which the
treatment is extended to rapid solidificatiphil] and non- used and concluded that ¥tV the complete transition to
equilibrium effects at the interfadé 2], the local nonequilib-  diffusionless solidification may proceed sharply, with the ap-
rium in bulk phases may play an essential role in rapid sopearing of the break point in the kinetic curves “dendrite tip
lidification. Particularly, a deviation from local equilibrium velocity—undercooling” and “dendrite tip radius—
in solute diffusion may act on the rapid advancing of theundercooling.” In addition to this, Leet al. [19] performed
solid-liquid interface because the interface velogitgan be  the linear stability analysis in rapid directional solidification
of the order of or even greater than the solute diffusion speedsing the model of Galenko and Sobol¢V7]. As they
Vp in bulk phases. For instance, the diffusion speed can be afhowed[19], the effect of the local nonequilibrium in solute
the order of[13] Vp~0.1-10 m/s. In modern experiments diffusion postpones the onset of the cellular instability in
on solidification of undercooled droplets the interface veloc-better agreement with experimental data, in comparison with
ity approacheg14] V~10-100 m/s. Therefore, the under- the model predictions in which the local nonequilibrium only
cooling of liquids is sufficient for detecting solidification at the interface is considered. However, the analysis ofdtee
with the interface velocity comparable to the diffusion speedal. [19] was not self-consisterfin the analysis, the authors

Considering the process of solute diffusion, Fick’s firstused an expression for the slope of kinetic liquidus obtained
law is obtained on the basis of classic irreversible thermodyfrom the local equilibrium thermodynamicsAs it has been
namics of Onsager and Prigogine which assumes propagaeted in Ref.[18], the predictions of rapid solidification of
tion of concentration disturbances with an infinite speed analloys can be satisfactory compared with experimental data
with local equilibrium in the bulk phased5]. Local equi- only on the basis of self-consistent modek., when all
librium is characterized by the statistical distribution func- model functions are taking into account the deviation from
tion, given by the first order term of its expansid]. How-  local equilibrium in the solute diffusion fieJdConsequently,
ever, for a high-velocity solidification front, the time for the first purposeof the present paper is to analyze the mor-
crystallizing of a local volume is comparable to the time for phological stability of the planar interface on the basis of the
relaxation of the diffusion flux to its steady-state vaJu8]. self-consistent model of local nonequilibrium solidification.

In this case, local equilibrium is absent in the bulk phases In the present analysis, special consideration is paid to the
and the solute flux cannot be described by the classicaltability of the interface around the demarcation Ilixie,V,,
Fick’s first law. Including the evolution equation for the dif- below which the interface instability occurs and behind
fusion flux, the analysis of Galenko and SoboJ&V] shows which the absolute morphological stability proceeds as
that the deviations from local equilibrium in phases and ashown in Fig. 1. This transition is known from the experi-
the interface drastically affect both the solute diffusion andment as a transition from cellular patterns to the segregation-
the interface kinetics. Therefore, in this paper we considefree patterns[20,21. The crystal microstructure after the
the linear stability analysis for a rapidly moving interface transition is shown in Fig. 2. As it has been stafed], the
under local nonequilibrium solute diffusion. transition from the macroscopically smooth solid-liquid in-

The linear morphological analysis of the interface stabil-terface to the cellular-dendritic microstructures occurs with
ity has been developed and used to obtain a stable tip dghe decreasing of the interface velociybelow critical ve-
dendrite growing under local nonequilibrium solute diffusion locity V4 for absolute stability of the planar front. Around the
in rapid solidification[18]. A marginal stability criterion was velocity V=V,, the kinetics of crystal growth begin to dis-
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agree with the predictions of the model in which the local R r . . .
nonequilibrium only at the interface is considerete the Gi(r,t) =—f Dy(t—-1t) VTi(t',nNdt . (1)
results of analysis in Ref.18]). Consequently, theecond -
purposeof this paper is a quantitative evaluation of the dis- Relaxation of the solute diffusion flux is
crepancy between the local nonequilibrium model and the
model in which the local nonequilibrium only at the interface
is taken. It is also in comparison with the experimental data
on morphological stability of the interface in solidifying al-
loy. where indexi=L or i=S is related to the liquid or solid
The paper is organized as follows. In Sec. Il we give aphases, respectively; are the temperatures in the phages,
formal description of departure from local equilibrium due tois the solute concentration in the liquidis the timer is the
solute diffusion and give a set of governing equations taradius vector of a point in the system, abg(t—t") are the
analyze the morphological stability of the interface. In Secrelaxation functions of the fluxe®R=qg or R=j). Equations
[l we analyze the influence of perturbations in fields and aft(1) and(2) imply the fact that when the interface moves with
the interface on the linear stability of the planar interface. Ina high velocity, local equilibrium in the fields does not occur
Sec. IV, an obtained criterion of marginaleutra) stability — and the diffusion fluxes at a point in the system no longer
allows us to analyze the morphological stability of the inter-depend on the instantaneous gradients of the temperature and
face for the case of solidification in undercooled liguidth ~ chemical composition, but are also determined by the local
negative temperature gradigmaind for the directional solidi- prehistory of the solidification process.
fication (with the positive temperature gradignThe abso- Equations(1) and (2) represent general expressions for
lute stability of the planar interface is analyzed in Sec. V. Aevolution prehistory of the diffusion processes. For the case
discussion about expressions for solute trapping and kinetiof heat diffusion, when the heat propagates with much higher
liguidus which define a final form of the function for the speed in comparison with the interface velocity, the influence
absolute stability of the planar interface is given in Sec. VI.of local nonequilibrium in the temperature field on the kinet-
Also, in this section, we compare the derived function for theics of the interface advancing is negligikleee the analysis
absolute interface stability with the available experimentalof heat transfer in rapid solidification in Rdi23]). There-
results obtained in Si-Sn alloy solidification. Finally, in Sec.fore, we specially define the relaxation functiddg in Egs.
VII we present a summary of our conclusions. (1) and(2) for the important class of dissipative hyperbolic
models in which they take the following forms:

J(F,0) = —f Dj(t-t) VC(t',Ndt’, (2)

i o i x
Il. STATEMENT OF THE PROBLEM Dy(t-t) =Dy(0)at-t), 3)
We consider a dilute binary alloy that undergoes noniso- x -t
thermal solidification in infinite space. Let us take into ac- Djt-t)= DJ-(O)exp<— T_D) (4)
count the heat diffusion in phases, solute diffusion in the )
liquid, and one can neglect the solute diffusion in solid. Thewhere D{q(O):Ki are the thermal conductivity in the liquid
main physical assumption of the present problem is an abd=L) and solid(i=S), § is the Dirac delta function, and
sence of local equilibrium both at the solid-liquid interface D;(0)=D/, is a value of relaxation function for solute dif-
and in the solute diffusion field around the interface. In thisfusion at a moment=t".
case, the degree of local nonequilibrium is estimated by the Equation(3) describes an instant relaxation which occurs
relation of the interface velocity and the diffusion speed ata moment=t". Therefore, one can expect a description of
Vp which is a parameter of the process of diffusion and carocal equilibrium heat transport by the functi¢8) in com-
have different values at the interface and in bulk phases. Thiination with Eq.(1). In contrast to this, the relaxation func-
speedVp is a maximum speed of propagation of the diffu- tion (4) with the flux prehistory(2) leads to local nonequi-
sion profile in the system and defined ¥s=(D/75)*2  librium solute diffusion. In usual circumstances, the
whereD is the diffusion coefficient, andy is the time of relaxation timery for diffusion flux is very small and the
relaxation of diffusion flux to its steady-state value. There-relaxation effects are negligible. It is usual to speak in this
fore, we develop the rapid solidification model which is tak-case of “viscous diffusion” which can be accurately de-
ing into account the finiteness of the diffusion speed in thescribed by the Fickian local equilibrium approximation.
system. However, Egs.(2) and (4) describe relevant difference of
solute diffusion with respect to the classical Fick's law. To
date, departures from this law are known as the appearance
A. Departure from local equilibrium of internal effects, couplings of diffusion and viscosity, and
) _ longitudinal diffusion (see Refs.[24—-2§ and references
If local thermodyngmic equilibrium in the bulk IS NOt therein. In addition to these appearances, E@.and (4)
reached, the connection between the vectors of diffusiogan also be applied to the process of the phase transition in a
fluxes,q; andJ, and the driving forcesyT, andVC, for the  strongly nonequilibrium medium. Rapid solidification of a
heat and solute diffusion, respectively, have the followingbinary melt is a good example of such a nonequilibrium
integral form. Relaxation of the heat flux is phase transition in which the interface can move with the
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high velocity comparable with the diffusive speéd;-Vp T ,

~0.1-10(m/9) [13]. In this case, the time for crystallizing o avTh 9)

of local bulk is of the order of the relaxation time of the

solute diffusion flux{13,17,18, characterizing its decay for-

ward of its local equilibrium value. Therefore, when - @JrE:DVgC (10)

~Vp, the relaxation interacts with the diffusion process di- Pat2 gt ’

rectly, and it is necessary to take into account the local pre-

history of the solute diffusion, e.g., in a form described bywherea; are the thermal diffusivities in the liquid=L) and

Eqgs.(2) and(4). solid (i=9). Equation(9) is the common partial differential
Equation(4) simulates a physically reasonable situation inequation of parabolic type for the heat transfer which adopts

which exponential decay of the diffusion flux occurs in thethe infinite thermal speed. Equati¢h0) shows that Eqg6)

local bulk of the liquid phase. This equation provides theand(8) give rise to the partial differential equation of a hy-

lowest order of approximation of the diffusion flux relax- perbolic type for the solute concentration, which is the sim-

ation. Indeed, substituting Eq&3) and (4) for Egs.(1) and  plest mathematical model combining the diffusiidissipa-

(2), respectively, one obtains tive) mode and the propagativevave mode of mass
- transport under local nonequilibrium conditions. In such a
q+KiVTi=0, ©) case, Eq.(10) describes the transport process under non-

Fickian diffusion.
R After integration of Eqs(9) and(10) over an infinitesimal
TDE +J+DVC=0. (6) zone that includes the interface, the following boundary con-
ditions for the diffusion transport hold:
Equation(5) is a well-known Fourier law which is true for
infinite thermal speed in the system, i.e., the heat diffusion KLVaTL +KsV Ts=QV,, (11
flux is instantly relaxed to its local equilibrium value and the
effects of local nonequilibrium in the thermal field are neg- 9
ligible. Equation(6) can be treated as the simplest generali- -DV,C=(C-CyV,+ TDE[(C -CyV,l, (12
zation of the classical Fick’s first law+DVC=0 that is
recovered whenrp =0 or in stationary situations in which whereQ is the latent heat of solidificatio¥,T, andV,C are
93/ 9t=0. The evolution equatiofb) takes into account the the normal gradients of temperature and solute concentration
relaxation to local equilibrium of the mass flux and is knownto the interface, respectively,, is the normal velocity of the
as the Maxwell-Cattaneo equation in the context of heatnterface,Cgis the solute concentration at the interface in the
transport25,2§. By taking the relaxatioii2) with the expo- ~ solid phase given by expression

nential law(4), it follows from Eg. (6) that the fluxJ at a —kC (13)
point in the system is defined by the evolution of the con- '
centration gradienVC(t’,7) during the period-<t'<t,  anqiis the coefficient of solute partitioning at the interface.
but not by the gradien?C(t,r) at the moment, as in local
equilibrium approximation. Thus, taking into account the ex-
ponential decay for the relaxation of the diffusion flisee
Eq. (4)], the simplest evolution equatiq®) is obtained for Under the assumptions drawn in Sec. Il A we consider the
the interaction of the relaxation process and solute diffusiongoverning equations for analysis of the morphological stabil-
Instead of Eq(6), by taking suitable relations for the func- ity of the planar interface against small perturbations of its
tions of D(C), D(dC/dt), or D(VC), one can describe more form. Our analysis is based on the analysis given by Trivedi
complicated situations for non-Fickian diffusion in nonequi- and Kurz[11] which is advancing the treatment of Mullins
librium media. These are described by the evolution equatioand Sekerkd8] to the case of rapid solidification.

with the higher-order time derivatives or couplings of relax- The analysis of interface stability is given further in the

>

B. Governing equations

ation to nonlocal effects for transient procesges. reference frame moving with the constant velocity We
The heat and solute diffusion are governed by the balancghall consider the case when the planar interface given by
laws equationz(x)=0 moves along the axis of the Cartesian
coordinate systenfx,z). Then the two-dimensional steady-
aT; : ;
Xi—+V -G = (7)  state fields of the solute concentration and temperature are
at obtained from Eqs(9) and(10) as
aC #C vz)azc VaicC
Fr .J=0, (8) 92 ( 2D O (14)
where y; are the heat capacities in phases. Substitution of ,
Egs.(5) and(6) into Egs.(7) and(8), respectively, gives the J TL ‘92TL VT, =0 (15)
following system of equations: X? ﬁzz a dz '
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&ZTS

ax?

PTs, ViTs

T as dz whereT, andC, are the values for the temperature and sol-

Following the standard procedure of the analysis of theute concentration for the unperturbed planar interface, re-
morphological stability, let us place harmonic perturbationspectively, and the parametdranda define the correspond-

=0. (16) Ty=To+ad(t)sin(wx), (22)

on the planar interface. The perturbation is described by
= ¢(x,t) = at)sin(wx), (17)

where & is a small amplitude of perturbatiodd <1), w
=2x/\ is the cyclic frequency with the wavelength The
response functions on the perturbed interfée,t), i.e., the
temperatureT , and solute concentratio@,, are defined by
the following relation:

Ty=Ty+mC,+TK, (189

wherem is the slope of the liquidus line in the kinetic phase

diagram(i.e., phase diagram for nonequilibrium solidifica-

tion of a blnary system I" is the Gibbs-Thomson coefficient |

(i.e., the capillary parameter defined by the surface energy
the interfacg andK is the mean curvature of the perturbed
interface.

For the sake of simplicity of the following analysis, the
kinetic termV/u (in which u is the kinetic coefficient of
atomic attachment to the interfgcs omitted in Eq.(18).

ing corrections to the small perturbations on it. Taking into
account the small magnitude of perturbations on the planar
interface, the perturbed steady-state solution for solute con-
centration can also be presented in a form proportional to
S(t)sin(wx). This leads to the following expression:
C(x,2) =C(2) + F(2) 8(t)sin(wxX), (22
whereC(2) is the solute distribution for the planar interface.
The functionF(z) is defined from Eq.(20). The far-field
condition takes the value for the planar interface, Hz)
— 0 with z— oo,
Substitution of Eq(22) into solute diffusion equatio(il4)
ads to the following approximations. In the zero order of
agnitude by the amplitude of perturbation

d’c \ dC

21\ /2
(1-VAVE)—= + 5= =0.

(23)

In the first order of magnitude by the amplitude of perturba-

This simplification has no influence on the main results ofjjyn, s
the present analysis due to the fact that a constant kinetic

coefficient does not affect the marginal condition of the front
stability [9,27]. It has been shown that the kinetic effects

sz VdF

’F=0.
dZ "pdz *

(1-V3V3 (24)

influence the interface stability in the case where temperature

dependence of the kinetic coefficidi®7], or when an opti-

mum stability conjecture for selection of the interface oper-

ating state, is usefkg].

Considering only the terms of the first order of smallness

by the amplitudes of perturbation, one can obtain for the

A general solution of Eq(23) has the following form:

)

Vz

= (25
D(1-V2IV3)

C(2=C1+C, exp(—

curvature of the perturbed interface the following expressionS0lution (25) must be limited az— and it satisfies the

#¢

(522l

Thus, the systenmil4)—<18) is the extension of the model for
the case of significant deviations from local equilibrium in
the solute diffusion field during rapid solidification. In the
case of the local equilibrium solute diffusion, i.e., ¥g§
—o0, Eq. (14) describes the approximation of Fick’s diffu-
sion which has been used in the existing mods&e, e.g.,
Ref.[2]). The systen{14)—(18) has been used in the descrip-
tion of local nonequilibrium solidification with planar and
nonplanar solid-liquid interface$17,18,29,30 With the
definition of the functions for solute partitionirgV) and the
liquidus slopem(V), the system of Eq$14)—(19) can be also
applied to the problem of morphological stability of the in-
terfaces in rapid solidification.

)

2 (-3/2
) } = - dw’sin(wx). (19
3%

Ill. MORPHOLOGICAL STABILITY

Within the linear analysis of stability, a solution of Egs.
(14—(16) on the perturbed interfagd7) is described by

C,=Co+ ba(t)sin(ex), (20)

following conditions: C|,.o=C, and dC/dZ,.o=G¢, where
G¢ is the concentration gradient at the unperturbed interface.
Solution(25) satisfies these conditions in the following form:

GcD(1 - V2IV3)

C(Z):CO v
x[l_ x(_L)]
&P D(1-V2N2)) |’ b
C(2)=Cy V=Vp. (26)

A general solution of Eq(24) has the following form
V+ [V +4D(1 - VAVE) w?]*2

2D(1 - V3IV3) Z)
V-[V2+4D¥(1 - V) w Z]WZ)
(27)

F(2)=Fg exp(—

+Fpexp|(-
! Xp( 2D(1 - V2/\V3)

Solution(27) must be limited az— <« and it takes only the
real values for anyw. In this case, Eq(27) leads to the
following particular solution
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wcZ C(x,2=Cy=C, withV=Vp. (33

——2 ), V<V,
(1 —v2/v3)1’2> P

F(z2) =Fy exp (—
Therefore, even in the presence of perturbations, a transition
to the complete partitionless solidificatio@(x,z)=C.,, pro-
F(2=0, V=Vp. (28)  ceeds with the finite velocitieg=Vp.
A solution of Eqs.(15) and(16) for the heat transfer with
the condition(21) is obtained in Ref[11] and has the fol-
lowing form:

Vv ( Vv )2 , 1/2 e y
= + + ) 7
“eT b -vivgPe T [\ b -veng)e) T -To= ﬂ{l ) exp(‘ a_ﬂ

\ L
(29 +(a—-Gp)dt)sin(wx)exp— w, 2), (34)

HereF, is a constant of integration, and the frequelagyis
related to the frequency of the perturbation as

Note that once the interface velocity is equal to or greater

than the diffusion speed,=Vy, solution(27) takes the zero Gsas[ Vz

values for both constants of integratidf,=0 is due to lim- Tg—Tp= 1-ex (— —)]

iting of the solution at the infinite poirk— o, andF,;=0 is as

for getting the real solution of(z). Hence, from Eqs(26) + (a- Gg) d(t)sin(wx)exp wsz), (35)
and (28) one can obtain that, with'=Vp, the coefficiento

=0 in Eq.(20). where G, and Gg are the gradients of temperature in the

For obtainingF, it is necessary that Eq22), after sub- liquid and solid on the unperturbed planar interface, respec-
stitution of Egs.(26) and (28), must satisfy Eq(20) on the tively. The frequencies and wc are described by
perturbed interfac€17) in the first order of magnitude. It

A . . \Vj \VJ 2 1/2
leads to the following expression: W = —— + (_) +?| | (36)
2a, 2a,
FO =b- Gc. (30)
Hence, substituting Eq$26) and (28)~(30) into Eq. (22), __ V(¥ 2+ .| 37
one gets an expression for the perturbed field of solute con- “s= 2ag 2ag @ ' (37)

centration. This yields )
Using the transport balancé$l) and(12), the boundary

GcD(1 - V2V3) Vz conditions on the perturbed interfaesix,t), Eq. (17), are
C-GCp= - v 1-exp|- D(L-V2N\2) obtained for the steady-state regime of solidification as fol-
lows:
+ (b= G¢) 8(t)sin(wx)
T, dTg ~
_ ¥z KL —| *Ks —| =QV, (38)
xeXp<_(l—V2/V%)1’2>' V < Vp, Loz s S 4z &
_ ~ aC ~
C-GCo=0, V=Vp. (31) -D(1-VAV3) —| =(1-KVCy. (39

Within the local equilibrium limitVp—o (i.e., when the
interface velocity is much smaller than the diffusion speedHereV is the velocity of the perturbed interface. Substitution
V<Vp), solution (31) transforms into solution obtained in of the expressioﬁ/zv+(déldt)sin(wx) for the velocity of

Ref.[11] for the case of the local equilibrium solute diffusion . : :
. o the perturbed interface into Eq88) and(39) gives the con-
transport. Furthermore, as E&1) shows, with the velocities ditio% of stability regardingq th)e sién )0% the function

equal to or greater than the solute diffusion speed the CONs-145/dt. The concrete form of the functiodds/dt is ob-
centration does not depend on the interfacial perturbationtsained aé follows

and is equal to those ones at the planar interface. It is known )
from solution given in Ref[17] that the solute concentration

at the unperturbed planar interface is described by

In the zero order of magnitude by the amplituélg) of
perturbation, substitution of Eq$19—21) into Eq. (18)
gives the following relation:

1-k Vz
C(2-C. . C.. exp( D(1—v2/v§,)>’ V< Vp, To=Ty+ MG, (40)
for the temperaturd, and solute concentratio@, on the
C2-C.=0, V=Vp, (32)  unperturbed planar interface. Equatiei®) is also consistent
with the liquidus line in the kinetic diagram of phase state. In
whereC,, is the solute concentration in the liquid far from the first order of magnitude by the amplitudé), one gets a
the interface(i.e., nominal concentrationThen, from Egs. relation between coefficients andb in Egs.(20) and (21).
(31) and(32) it is clear that This yields
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a=mb-Tw?. (41 ity V=Vp—¢, 0=<e<1. Then, forV— Vp, one can obtain the
. . , . ) prefactor in the form
Equation(41) gives a linear relation for the corrections to the

temperature and solute concentration on the perturbed inter- 2DGV
face and uses Gibbs-Thomson effect for the curved interface. 0T T2
For the heat balance at the interface, let us now substitute b

\~/=V+(d5/dt)sin(wx) for the interface velocity into the con- 2[1 —|<(v)]v2/V2D
dition (38). Then, in the zero order of magnitude by the =Co| 1+ 1 —\2I\2
D

V=Vp-¢

amplituded(t), one gets a relation for the temperature gradi- V=Vp~e
ents and the velocity of the unperturbed planar interface. V dk(V)
This is =Col 1 +[1-K(Vp)] 2 +Vp——-
€ dV V:VD
—K G +KGs=QV. (42)
=201 -k(V . 47
In the first order of magnitude one gets the following [ ( D)]> “7)
expression:
1ds From this expression follows two consequences. First, in the
Q-—=aK w_+Kgwe +K G (V/a, — ) case of partition solidification wittv=Vp, one getsk(Vp)
od # 1. In this case, the prefactor tends to infinity with- 0.
~- KGo(V/ag+ o), (43) Second, with the complete solute trappingVp)=1 and

_ _ _ _ dk(V)/dv=0, one gets foV—Vp that the prefactor has a
which gives the change of the amplitudé) of perturbation  positive sign and limited magnitude for the second
in time according to the heat balance. Substituting expressioasymptotic This yields
V=V+(dé/dt)sin(wx) into the mass balance9), one can

get in the zero order of magnitude a relation for the gradient

_ 21\ /2
0<Co<1+2[1 k(W) ]V /VD>

of concentration, interface velocity and solute concentration 1 —V2/V§,
in the following form:
dk(V)
- D(1 - V?V3)Gc = (1 -k)VGC,. (44) = Co<1 +Vp vl ) <o, (48)
V=V

According to Eqg.(39), the change of the amplitudét) of
perturbation in time is defined by the first order of smallnessConsequently, as it is given by E@6), (Co—2DGcV/V3) is
by the amplitude of perturbation. This yields positively defined term also for the local equilibrium case,
Vp—0e, and local nonequilibrium cas¥,— Vp, if the com-
(Co- 2DGCV/V2D)ld—5: b[Dwe(1 - V2V2)Y2 - (1 -K)V] plete solute trapping occurk(Vp)=1. This term influences
odt only the speed of decreasing/increasing of the amplitude of
perturbation, but not a selection of the stable mode itself.
From Eqs(43) and(45), taking into account Eq41), the
(45  expression for the functiod 'ds/dt can be obtained. The
sign of &6'dé/dt defines the condition of decreasing,
51ds/dt<0, or increasings *ds/dt>0, of the interfacial
perturbation in time. With5'd5/dt=0 one has the marginal
(neutra) stability of the interfacg8,11].

+G¢[V - Da(1 - V2V3)*2].

Note that due to introduction of the finite spe¥d of
solute diffusion into the model, an additional term,
—2DGCV/V§), has appeared in the left-hand side of Etp)
in comparison to the analysis in Rdfl1]. The prefactor
(CO—ZDGCV/VZD) has a positively defined value: one gets
(CO—2DGCV/V2D)>0 due to negative concentrational gradi- IV. MARGINAL STABILITY
entGe=<0 with k<1 at any velocityV <Vp,.

One can also show that for the limiting cadgs— « and
V—Vp, the prefactor is limited and positively defined as We now consider marginal stability for the neutral stabil-

ity of a small perturbation on the planar interfagelds/dt
=0. From Eqs(43) and(45), one can obtain expressions for
(me values ofa andb. These are

A. The criterion of marginal stability

0 < (Co— 2DGV/IVE) < oo, (46)

To obtain these limiting cases, one can take the expressi
for Gc from the balance(44) in the form Gc=-(1
-k)\VCy/[D(1-V?/V3)], and one gets the relatiofC, a=K, G o - Via +KG _ws—Vlas (49)
—2DGAV/IV2)=Cy[1+2(1-K)(V2/V2)/(1-V2/V2)].  From TN Lo HKsws oK o + Kews

this it fozllows the first positive asymptotic (C,
—-2DGcV/Vp)=Cy>0 with Vp— . For obtaining the sec- _ 2N
ond asymptotic withV—Vp, let us consider the interface b=G¢ wc = /D ~V7/Vp) 22] ,
velocity in the vicinity of the diffusion speed, i.e., the veloc- wc = (1 =KV/[D(1 - VAVH)'?]

V< \Vp,
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b=0, V=V,;. (50) bilizing the interface. Therefore, if the absolute morphologi-

_cal stability is not reached by the steady balarte?
The system of Eqg41), (49), and(30) allows one to obtain - -k G ¢ +KGeés, the interface is unstable, and the result-

a relation for the constant front velocityand the frequency g interface may exhibit a cellular-dendritic pattern. In case
w of a perturbation in the steady-state regime by excluding (i), with K, G, & +KGets>0, the total heat flux is directed
andb. This relation can be considered as a final form for the;om the interface to the solid phase and the temperature
condition of marginal stability. _ - gradient, in addition to the surface energy, stabilizes the form
Let us introduce the following functions of stability: of the interface. In this case, wii< Vj, the morphological
stability depends on relation of a destabilizing action of the

& = wL—V/aL, (51) force mGcé:. and the stabilizing forcel w?+K G &,
Kiop +Ksws +KGgés With the interface velocityy=Vy, solidification
leads to the chemically partitionless pattern. A destabilizing
_ wstViag 52 action on the front is absent and the interface itself remains
ST K o, + Ksws' (52 linearly stable against any small interfacial perturbation.
wc = VI[D(1 - VIV3)?] B. Characteristic size for crystal microstructure

c V < Vp,

T _1- _\2)N\2\1/27’
wc = (1 -KV/[D(1 - V?V)*?] According to the marginal stability hypothesis suggested
in Ref. [31] and developed in Ref$2,12], a characteristic

=0, V=Vp. (53)  size R selected by crystal microstructure in solidification

The functionsg and &g in Egs.(51) and(52) coincide with I((Sﬁg.t,ht)r:e fd i?1 rtldrr]:te tp ridlrmbsstirer:ated to the critical wave-
those derived by Trivedi and Kufa1]. However, as Eq53) 9 ot interface perturbation as

shows, the functioné: of concentrational stability differs

from the corresponding function derived previously in Ref. R=\ 2m (55)
[11]. As it follows from Eq.(53), within the local equilibrium 1)

limit, Vp—o, one gets the special cas&:=(wc

-V/D)/[wc—(1-K)V/D] which coincides with the result Assuming equality for thermophysical parameters of the lig-
given in Ref.[11]. WhenV~Vyp, the functionéc given by uid and solid, one can obtain characteristic $&fom Egs.
Eq. (53) takes corrections for the relation of the interface (54) and(55). This yields withV<Vp,

velocity V and diffusion speed/p. With V=V, the exact

equality é-=0 takes place. This equality is the consequence T'o 1/2

of solution of the problem of local nonequilibrium solute R= , (56)
diffusion which takes into account the finite speéglin the chEc - }(GLEL + ngs)

bulk liquid. Thus, after substituting Eqé49) and (50) into 2

Eqg. (41) and taking into account Eq$51)—(53), one can

obtain the criterion of marginal stability. This yields and withV=Vp
I’ + K G & +KGeis—MGeéc =0, V< Vp, o 112
Fw*+K G § +KGsfs=0, V=Vp. (54) - E(GLgL + Ggés)

In the local equilibrium limit,Vp — oo, criterion(54) transfers

into the criterion of marginal stability obtained in R¢L1]

on the basis of a local equilibrium approach to solute diffu-

sion transport. The introduction of the finite diffusion speed

Vp into the model leads to the qualitatively new result, which

is related to the transition to completely partitionless solidi- o= 1 (58)

fication. As Eq.(54) shows, with the finite interface velocity 4%’

V=Vp, the solute diffusion ahead of the rapid interface is

absent[see solutiong31)—33)], and the morphological sta-

bility is defined by the relation of the stabilizing foréav?, g 1

due to surface energy, and the contributidq G & L vz

+K<Ggés of temperature gradient§, andGs. (1 + oP2
Using criterion (54), one can analyze qualitatively two

different situations for solidification whefi) the latent heat

is removed from the interface inside the undercooled liquid —

phase, andii) the latent heat is removed from the interface &s=1+———1p, (60)

through the solid crystal phase. In cagg, one gets ( )

K G & +KG£5< 0, and the temperature gradient is desta-

In Egs. (56) and (57) the following designations are ac-
cepted:

(59
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— 2k the completion of solute diffusion. Consequently, Egs.
fc=1+ 1 —\V2V2 |12 (61) (63)—<(65) exhibit a competition of destabilizing and stabiliz-
1-2k- (1 +—2D) ing forces. With the velocityyy <V,, the planar interface is
oPc perturbed with a possible originating of the cellular-dendritic

with Py=VR/2a and Pc=VR/2D as the thermal and solutal Patterns. As the solidification velocity increas¥s: Vy, the
Peclet numbers, respectively. As we noted above (&4.is planar interface becomes morphologically stable against any
true only for solidification in an undercooled liquid, i.e., SM&ll perturbation of its form.

when the temperature gradient is negative. For the case of T° clarify contributions from both the thermal and solute
solidification in the positive temperature gradient the absodiffusion on the absolute stability of the interface, we define
lute morphological stability takes place at the interface ve{he gradients in Eq€64) and(65) in explicit form. For the

locity V smaller than the diffusion speaé, in the liquid. thermal and concentrational gradients at the unperturbed pla-
nar interface we use a solution of the local-nonequilibrium

problem[17]. From the solution, one gets

V. ABSOLUTE STABILITY

A. Nonisothermal solidification G =- M’
Let us consider Eq54) in the limit of large wavelengths &
A>1, which is true fore < 1. With this condition, from Egs.
(51) and(53) one can yield expansions for the functiofis ___(1-KVC,
. . . Cc— - 5. 5. V < VD,
and¢c in the following form: kD(1 - V2/V3)
. a’w?
- KLVZ’ GC = 01 V= VD1 (66)
- o 2 whereTg, is a unit of undercooling equal ©Q/ ., andC. is
o= @ DL - VIVp) V<\Vp the solute concentration in the liquid far from the interface.
k\V? ’ ’ From the second expression in E6), it follows that when
the solute diffusion is absent ahead of the interface With
=0, V=Vp. (62) =\V)p, the gradient of the solute concentration is zero exactly.

Substitution of Eq(66) into Egs.(63)—«65) gives the expres-

~ Substituting these expressions into the criterion of margjon for the absolute stability of the interface. This yields
ginal stability (54) at Gs=0, we get the criterion of absolute

morphological stability for the planar interface. This criterion

a D

can be written in the form of the following nonlinear equa- VA= Va+Vg= FLATT+ ﬁ(ATc, V <\Vp,
tion for the velocityV, of absolute stability:

Va=ViV) +VS(V), (63) o,

Va=V,a=—AT;, V=V

where ATTATET e’ €7

VI(V) = - ﬁ( aLGL> (64) whereAT=Tg, is the thermal undercooling, which is neces-

A rvwv sary for solidification with the planar interface on the thermal

scale, andAT:=(k-1)mC,/k is the constitutional under-

is the velocity of absolute thermal stability, and cooling, which is necessary for solidification with the planar

D (D(1 ‘VZ/VZD)ch interface on the scale of solute diffusion. AdditionallyT
VR(V) = T v <Vp (65 is the nonequilibrium temperature interval of solidification
between liquidus and solidus lines in the kinetic diagram of
is the velocity of absolute chemical stability. phase state.
The velocity V, of absolute thermal stability, Eq64), The criterionVa=a, AT{/T" in Eq. (67) is the same as that

shows the relationship between the contribution of the temwhich has been obtained by Trivedi and Kiii4] using the
perature gradienG, and capillary parametel. With the  advanced model for large growth velocities. The criterion
negative temperature gradief <O the range of morpho- V$=DAT./I'=D(k-1)mC./(I'k?) in Eq. (67) is similar to
logical stability shrinks. Conversely, the positive temperaturethat which has been obtained by Mullins and Sekég8{dor
gradientG,_ >0 extends the range of the velocities at whichthe case of small growth velocities, and rederived by Trivedi
the interface is linearly stable. The velocMﬁ of absolute  and Kurz[11] for the case of rapid solidification. In addition
chemical stability, Eq(65), defines the contribution of the to this treatment, by introducing the finite spedéglinto the
concentrational gradier: and capillary parametdr. This  model we reach a qualitative result. At the finite velocity,
velocity is always less than the diffusion spee&<VD, V=Vp, due to the absence of the solute diffusi@:=0,
because the velocity/,f is defined by the steady balance Eg. (66)], the interval between nonequilibrium liquidus and
between surface tension, given by the capillary parandéter solidus lines is equal to zeray,T-=0. These lines converge
and the gradienG: of solute concentration, existing up to in the kinetic phase diagram witi=Vy, [17], and the abso-
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lute stability of the planar interface is defined only by the[35]), a transition to partitionless solidification occurs at a
undercoolingA Ty, and relation between the thermal diffusiv- finite solidification velocity. Furthermore, the molecular dy-

ity a, and capillary parametdr [Eq. (67)]. namic simulation has showj86] that the transition to the
complete solute trapping is observed at finite crystal growth
B. Isothermal solidification velocity. Therefore, in addition to Eq69), a generalized

function for solute partitioning, in the case of local nonequi-

In the analysis of the criterion of marginal stabili®4), & jiprjum solute diffusion within the approximation of a dilute
special interest is given to the case in which the form of thealloy has been introduce@7]. This yields

interface is defined by the competition between stabilizing

force 'w? due to surface energy, and destabilizing force ke(l‘VZ/V%)JfV/Vm

mMGe&c due to gradienG of solute concentration. Assuming k(V)= 1-VN2+ Vv V< Vp,

the zero temperature gradie@® =0 in Eq. (63), one can D bl

obtain an explicit expression for the condition of absolute

chemical stability of the interface/,A:V‘A?. Using the expres- k(V)=1, V=Vp, (70
sion for G¢ from Eq. (66), one gets

where Vp, is the interfacial diffusion speed withlp,<Vp

mD(k - 1)C., [18,37. In the local equilibrium limit, i.e., when the bulk
A ST <Vp. (68)  diffusive speed is infiniteYp— , expression70) reduces

to the functionk(V), which takes into account the deviation

The form of this expression coincides with the expressiorfrom local equilibrium at the interface only, E¢69). In ad-
given for the case of local equilibrium solute diffusion trans-dition to the previous mod€33,34, the functionk(V) de-
port atVp— o andV<Vp [11]. However, a final form of the  scribed by Eq(70) includes the deviation from local equi-
function VA(C.,) is defined by the functions of solute parti- librium not only at the interfacgintroducing interfacial
tioning k(V) and the slopen(V) of liquidus line in the kinetic  diffusion speedvp,), but also in the bulk liquidintroducing
phase diagram. The behavior of theses functions is rathgliffusive speed/y in bulk). As Eq.(70) shows, the complete
different for the cases of local equilibrium and local nonequi-solute trappingk(V)=1, proceeds a¥=Vp,.

librium solute diffusion[17,32. A thermodynamic approach applied to the solidification of
a binary system{38] provided two models for the solute
V1. DISCUSSION trapping with and without solute drg@1,39. These models

give a shift from local equilibrium at the interface which can

In the first part of the discussion, we synthesize our Syshe expressed in unified form for the slop&V) of kinetic
tem of equations to give the self-consistent model, which igiquidus by the following equation:
adopting the deviation from local equilibrium in the solute
diffusion field for all functions. We discuss the solute parti- o me k
tioning functions and the expression for the slope of kinetic m(V) = 1 _ke{l ~k+Tk+ (1 -K)&]in (k_e)} (72)
liquidus which take into account the deviation from local
equilibrium, both at the interface and in the bulk liquid Here =0 is for the model of solute trapping without solute
around the interface. Then, in the second part of the discugirag andd=1 is for the model of solute trapping with solute
sion, we present a quantitative evaluation of the discreparflrag. Introducing Eq(69) into Eg. (71), one obtains the
cies between the present model and the model in which theonstant liquidus slopen (independent o) only with the
local nonequilibrium is taken only at the interface. These ardnfinite interface velocityV — .

compared with experimental data on the absolute stability of Using the results of the local nonequilibrium thermody-
the planar interface. namic analysig32], one arrives to the slope of the liquidus

line in the following form:

A. Solute partitioning and kinetic liquidus Me k ,V
The boundary condition for solute diffusive transport can m(v) = 1-k, 1=k+In (k_e> +a-k v_D » V=V,
be given on the basis of the continuous growth model
(CGM) [33]. The CGM gives the solute partitioning function mdn k.
at the solid-liquid interface, which, in the dilute solution ap- m(V) = , V=V, (72
proximation, is described by Reff33,34 ke—1
k. + VIV, With V<Vp, the functionm(V) includes the function de-
k(V) = (69)  scribed by Eq(71) for the solute trapping with solute drag

1+ViVp (8=1) and the additional terrtl —k)?V/Vp. This term arises
whereVp, is the speed of diffusion at the interface, dads ~ from the analysis of the Gibbs free energy, taking into ac-
the value of the equilibrium partition coefficient with—0.  count local nonequilibrium solute diffusion around the inter-
The deficiency of the functiog69) is in the difficulty to  face. It is necessary to note that the functinfV) described
describe the complete solute trapping at the finite interfac®y Eq. (72) plays a crucial role for self-consistency of the
velocity, i.e., it predictk— 1 only with V—«. However, as theory of local nonequilibrium solidification. This form of
it has been shown in numerous experimeisee, e.g., Ref. the function has been used in a self-consistent model for
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TABLE I. Physical parameters used in calculations of the limit of absolute stability of the planar interface
in solidifying binary alloys.

Parameter Notation Dimension Al-Fe Si-Sn
Diffusion coefficient D, m?/s 1.7x107°2 2.5x108°
Partition coefficient Ke 0.03 0.016
Liquidus slope Me K/at.% -7.3 -4.6°
Gibbs-Thomson coefficient r Km 1x1072 1.3x10°7P
Interface diffusion speed Vo m/s 7 1P
Diffusion speed in bulk liquid Vb m/s 10 175

“Data taken from Ref[41].
PData taken from Ref[42].

rapid dendritic growth and gave quantitative agreement witfexperimental data, we choose the expression for the slope of
experimental data on kinetics of alloy solidificatifiB8,29.  the kinetic liquidus, which adopts the solute-drag effect, i.e.,
In particular, the self-consistent dendritic growth model, in-it is chosen in the following calculations whefg=1 for Eq.
cluding Eq.(72), predicts the breakpoint &=V with good  (71).
agreement of data on a number of investigated alloys. Fur- Using parameters of an Al-Fe alloy from Table I, one can
thermore, Eq(72) gives us the ability to describe a transition calculate the curve for critical concentratioB,.(V), which
from the growth kinetics, with solute-drag effect at small andgives a threshold for interface instability. As it can be seen
moderate solidification velocitiggirising with the developed from Fig. 3, two regions of the interfacial existence may
solute profile ahead of the interfgcéo the growth kinetics  occur: the planar interface is absolutely stable below the
without solute drag at high solidification velocitiésith the  curves and the interface breaks down in the regions above
degeneration of the solute profile ahead the intejfacethe curves given by the functiois.(V). In comparison with
[32,4Q. Thus, Eqs(70) and(72) close the system of equa- the model with the local equilibrium diffusion and deviation
tions (14)—«(19) for the self-consistent analysis of morpho- from local equilibrium at the interface onl[§Egs. (68), (69),
logical stability. and(71)], the present model for interface stability with the
deviation from local equilibrium, both at the interface and in
the bulk liquid [Egs. (68), (70), and (72)], defines a curve
B. Comparison with experimental data C..(V) which is limited by the diffusion speedy for mor-

To discuss the results obtained for the interfacial stabilityPhological stability of the interface. This limit exists due to a
we now compare the model predictions for the absolute staSteady balance between the stabilizing capillary force and the
bility condition (68) in both cases of solidification, namely, destabilizing force defined by the concentrational gradient,
with local equilibrium solute diffusion and with local non- Which still acts on the interface up to the finishing of diffu-
equilibrium solute diffusion transports. Substituting func- sion, i.e., until the poinV=Vp.
tions (69—«72) into Eq.(68), we analyze the absolute stabil-
ity of the planar interface for different velocities. We stress 100 —————————1
two important points regarding the choice of the expression
for the slope of kinetic liquidus given by E¢71). First, the
result on rapid dendritic growtfi18,29 gives evidence to the
confluence of all model predictions at small undercoolings
and low growth velocities. Disagreement of the kinetic %
curves begins from the undercooling approximately corre-g sof-
sponding to the undercooling for the absolute chemical sta“g
bility at moderate growth velocities. Therefore, our present £
discussion for interfacial stability is limited by the moderate 2
interface velocities, when the model's predictiofgth or 3
without taking local nonequilibrium in bulk liquidoegin to
disagree. Second, in this region of velocities, the local non- |
equilibrium approach to rapid solidification gives a similar
result with the model, which takes into account the deviation

from local equilibrium only at the interface, with the solute-  FG. 3. velocityV, of absolute chemical stability vs solute con-
drag effect(see the analysis presented in R¢82,40). This  centrationC., for Al-Fe alloy. Dashed curve corresponds to solution
fact is due to the existence of the developed solute profilef Eqs. (68), (69), and (71) with solute-drag effect. Solid curve
ahead of the interface at small and moderate velocities, whegbrresponds to solution of Eq8), (70), and(72). Dashed-dotted
the solute drag may appear at the interface. Consequently, iime V=V represents the limiting velocity for the absolute interface
order to evaluate the disagreement between the model arsthbility.

€

Interface velocity (m/s)
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even better comparison with the available experimental data
can be obtained with using the present model of local non-
equilibrium solidification.

VII. CONCLUSIONS

0.01g" Morphological stability of the planar interface in rapid

solidification of nonisothermal binary system has been con-
sidered. We have taken into account the fact that the high
rate of solidification process leads to the absence of a local
thermodynamic equilibrium in the solute diffusion field and
at the solid-liquid interface. The presently developed model
1 S is self-consistent: the main governing equations, Sec. I, and
Interface velocity (m/s) the interface conditions for solute trapping and kinetic liqui-
dus, Sec. VI, are consistent with the formalism of extended

FIG. 4. Critical concentratioi€,, above which planar interface thermodynamic approach to rapid solidificatig82]. Using

is unstable. Experimental points correspond to solidification of thethe model of local noneauilibrium rapid solidification. our
Si-Sn alloy[42]. Circles are taken from measurements performed d P !

X analysis of morphological stability extends the previous
on bulk single crystal $100), and squares are taken from measure- lvsis of Trivedi and K 11. which has b f d
ments using Sn-implanted Si-on-sapphi&0S samples. Curves analysis of Trivedi and Kurgl1], which has been performe

are given by the models for interfacial absolute stability: dashedF0 advance. the t'refa'ltm('ent of Mulllns and Seke[ﬁ}atq the
with local equilibrium diffusion and solute-drag effect, Eq8), case of rapid so_lldlflcatlon. The main outcomes of this analy-
(69), and(71): solid, with the local nonequilibrium diffusion, Eqs. SIS aré summarized as follows. o
(68), (70), and(72). Dashed-dotted lin¥=V, represents the limit- (i) For the velocities equal to or greater than the diffusion
ing velocity for the absolute interface stability. speedV=Vp from solutions(31)«33) it follows that the
field of concentration does not depend on a form of the in-
For a quantitative comparison of the model predictions weterfacial perturbation and it is equal to the init@ominal)
have chosen experimental results on interface stability duringoncentrationC(x,z)=C.. This result is in agreement with
rapid solidification of a Si-Sn alloy as presented by Hoglundthe previous results for planar and parabolic interfaces
and Aziz in Ref[42]. These authors measured a critical con-[17,30. Solutions(31)—«33) have a clear physical meaning: a
centration of Sn for interface breakdown in a steady-statesource of concentrational disturbances, i.e., the perturbed in-
solidification after pulsed laser melting. Using the param-terface, cannot disturb a binary liquid ahead of itself if the
eters of the Si-Sn alloy from Table I, the model predictionsinterface velocity is equal to or greater than the maximum
for the functionC,.(V) are compared quantitatively with ex- speed of these disturbances.
perimental results from Ref42]. As is shown in Fig. 4, the (i) The obtained criterion of the marginal stability, EqQ.
predictions of the model for interface stability with the local (54), defines a wavelength of perturbation for the neutral
nonequilibrium diffusionEgs.(68), (70), and(72)] are con-  stability. For V<Vp, the neutral stability is defined by a
sistent with the experiment. balance of the stabilizing force, due to surface energy, desta-
At the concentration Sn=0.02 atomic fractiee the ex- bilizing force, due to concentrational gradie@t, and the
treme right experimental point in Fig.),4the discrepancy contribution of temperature gradien@ and Gs. Qualita-
between the model with local equilibrium solute diffusion tively, a result can be obtained from the criterion for the front
(dashed curve in Fig.)4and experiment gives the value of velocity of V=V, i.e., for an absence of the solute diffusion
38.90%(see Table I). At the same alloy’s concentration, the ahead of the interface. As it follows from the second equa-
present mode(solid curve in Fig. 4 gives the discrepancy tion in Eq.(54), the morphological stability of the interface
with experiment of 16.93%see Table ). Consequently, is defined only by the relation between the thermodynamic

Critical concentration (atomic fraction)

0.006

TABLE Il. Discrepancy between theoretical predictions and experiment for the absolute chemical stability
of the planar interface in the Si-Sn=0.02 atomic fraction alloy.

Velocity Definition Value

Absolute chemical stability (m/9) of discrepancy of discrepancy(%)
Local equilibrium solute diffusion, ij):15.5 Vf)—V(AEXp) 38.90
Egs.(68), (69), and(71) Ty 100%

A
Local nonequilibrium solute diffusion, Vf):11.4 Vf)—vffx") 16.93
Egs.(68), (70), and(72) — L00%

A
Experiment, Ref[42] fop)=9.47
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stabilizing force, due to the surface tension, and the drivingameterI” [Eq. (67)]. For an isothermal solidification, the
force of the morphological instability, due to the negativepresent analysis shows the limiting boundary equals to the
thermal gradient in the undercooled liquid. In the case ofdiffusion speedv for the region of morphological instabil-
directional solidification with the positive thermal gradient, ity [see Eq(68) and Fig. 3.

the destabilizing action on the interface is abser¥ atVp,

(iv) The predictions of the present model for the critical

and the interface remains linearly stable against small pertuconcentration above which a planar interface becomes un-

bations of its form.

stable[see Eqs(68), (70), and(72)] are compared with the

(iii) Absolute stability of the planar interface is consid- previous model, which adopts the deviation from local equi-

ered as a steady balance between destabilizing {olee to
the concentrational gradientthe thermal contributioridue
to the thermal gradient and the stabilizing forcédue to

surface tension The velocityV, of the absolute interface

stability is obtained as a sum of the veloci for thermal

stability and velocity\/,f for chemical stability defined by Eq.

librium at the interface onlysee Eqs(68), (69), and(71)],
and with the experimental data obtained for solidification of
the Si-Sn alloy[42]. As it is shown in Fig. 4 and it follows
from numerical evaluation of the theoretical predictions sum-
marized in Table I, the predictions of the model are consis-
tent with the experiment for a whole region of the interface

(67). V,E is the same as what was obtained by Mullins andvelocities investigated.

Sekerka[8] for the case of small growth velocities. It was

rederived by Trivedi and Kur£11] for the case of rapid
solidification. Introduction of the finite speed, into the
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