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A phase-field model is developed for simulating quantitatively microstructural pattern formation in solidi-
fication of dilute binary alloys with coupled heat and solute diffusion. The model reduces to the sharp-interface
equations in a computationally tractable thin-interface limit where(i) the width of the diffuse interface is about
one order of magnitude smaller than the radius of curvature of the interface but much larger than the real
microscopic width of a solid-liquid interface, and(ii ) kinetic effects are negligible. A recently derived anti-
trapping current[A. Karma, Phys. Rev. Lett.87, 115701(2001)] is used in the solute conservation equation to
recover precisely local equilibrium at the interface and to eliminate interface stretching and surface diffusion
effects that arise when the solutal diffusivities are unequal in the solid and liquid. Model results are first
compared to analytical solutions for one-dimensional steady-state solidification. Two-dimensional thermo-
solutal dendritic growth simulations with vanishing solutal diffusivity in the solid show that both the micro-
structural evolution and the solute profile in the solid are accurately modeled by the present approach. Results
are then presented that illustrate the utility of the model for simulating dendritic solidification for the large
ratios of the liquid thermal to solutal diffusivities(Lewis numbers) typical of alloys.
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I. INTRODUCTION

Most cast metals typically contain one or more solutes
and predicting the evolution of the microstructure and segre-
gation patterns of solidified alloys is of great technological
interest. Solidification of alloys differs in many respects from
solidification of pure substances. The solidification rate is
limited by both heat and solute diffusion. The heat and solute
diffusion fields are coupled at the solid-liquid interface by
the relations for the interface temperature(e.g., phase dia-
gram) and by heat and solute flux balances. Furthermore, the
solutal diffusivity in the liquid state is generally two to four
orders of magnitude smaller than the thermal diffusivity.
Therefore, solute diffusion is often on a length scale similar
to that of the microstructure(e.g., dendrites), and small sol-
ute additions can strongly affect the interface pattern evolu-
tion. Because of the low solutal diffusivity, larger solute ad-
ditions tend to slow the solidification rate relative to that in
pure substances. Another characteristic of alloy solidification
is the large contrast of solutal transport properties in solid
and liquid; the solutal diffusivity is typically two to four
orders of magnitude smaller in solid than liquid. This con-
trast strongly influences the microsegregation pattern in the
solid and hence the properties of solidified alloys. Despite its
importance, direct numerical simulation of alloy solidifica-
tion controlled by both solute and heat diffusion has experi-
enced only limited progress.

The phase-field method has become a widely accepted
technique for the computational modeling of interfacial pat-

tern formation and has been the subject of several recent
review articles[1,2]. Its most appealing feature is that ex-
plicit interface tracking is avoided by the introduction of an
order parameter, i.e., a phase-field variable, which takes on
constant values in the bulk phases and varies smoothly but
steeply in a diffuse interface region. The heat and solute
conservation equations are appropriately modified to account
for the presence of heat and solute rejection inside the diffuse
interface. Phase-field formulations involve new parameters
that must be related to physically measurable properties. This
is often done through a “sharp-interface” analysis, which
considers the asymptotics of the model equations in the limit
of vanishing interface width. Such a sharp-interface analysis
requires that the interface width be of the order of the capil-
lary length, which makes computations intractable because
an exorbitantly fine grid is needed to resolve the steep gra-
dients inside the diffuse interface.

This problem is circumvented to a large extent by the
“thin-interface” analyses presented by Karma and Rappel
[3,4] for pure substances and by Karma[5] for isothermal
solidification of dilute binary alloys. These thin-interface
analyses assume that the interfacial region is small compared
to the scale of the microstructural pattern but much larger
than the capillary length. References[4,5] illustrate the ad-
vantages of the thin-interface analyses and also show that the
phase-field parameters can be chosen such that interface ki-
netic effects are eliminated.

Previous numerical studies of alloy solidification have of-
ten omitted to solve the heat equation, but employed various
assumptions for the temperature, i.e., isothermal domain,
constant cooling rate, “frozen gradient,” etc.[6–9]. The
model presented here is intended for small concentrations
where, even though the thermal diffusivity may be much
larger than the solutal diffusivity, the solutal and thermal
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effects are still comparable and the solute and heat conser-
vation equations need to be solved simultaneously. Recently,
a study of nonisothermal binary alloy solidification using the
phase-field method has been presented[10] but the authors
report the presence of solute trapping and interface width
dependent results. In Ref.[11], the model of Loginovaet al.
[10] is used together with an adaptive finite volume mesh
that allows dendrites to grow without the thermal boundary
layer reaching the boundaries. However, Ref.[11] also re-
ports the lack of convergence of results with interface width
and the presence of solute trapping. The phase-field model
set forth in the present work uses a computationally tractable
thin-interface analysis that makes it possible to obtain results
that are independent of the interface width and that provides
the freedom to choose the phase-field parameters such that
growth without kinetic effects or solute trapping can be
simulated.

This paper is organized as follows. In Sec. II the sharp-
interface model of alloy solidification is reviewed. The
phase-field model is introduced in Sec. III and the thin-
interface limit is presented in Sec. IV. A comparison of
phase-field results with an analytical sharp-interface solution
for a one-dimensional solidification system is given in Sec.
V. The model is further validated by comparing it to the
two-dimensional calculations of Karma[5] for purely solutal
(isothermal) dendritic growth. Finally, several two-
dimensional dendritic growth simulations are presented for
the case of coupled heat and solute diffusion with Lewis
numbers of unity and 50. Independence of the results on the
diffuse interface width and the grid spacing is demonstrated.

II. SHARP-INTERFACE MODEL

Consider the solidification of a dilute binary alloy with
equal thermal diffusivitysad and specific heat at constant
pressurescpd in solid and liquid, and zero solid-state solutal
diffusivity. The standard set of sharp-interface equations con-
sists of

]tc = D¹2c sliquidd, s1d

]tT = a¹2T sliquid and solidd, s2d

cls1 − kdVn = − D]ncl smass conservationd, s3d

LVn = cpas]nuTus − ]nuTuld sheat conservationd, s4d

Tl = TM + mcl − Gk − Vn/mk sGibbs-Thomsond, s5d

wherec is the mole fraction ofB (solute) atoms,D is the
solutal diffusivity in the liquid,T is the temperature field,cl
is the concentration on the liquid side of the interface,k is
the equilibrium partition coefficient,Vn is the normal veloc-
ity of the interface,L is the latent heat,Tl is the temperature
on the liquid side of the interface,TM is the melting point of
pure solvent,m is the liquidus slope of the dilute alloy phase
diagram,G is the Gibbs-Thomson coefficient,k is the local
curvature of the interface, andmk is the kinetic coefficient.

To relate the sharp-interface and phase-field models later
on, it is convenient to define the dimensionless variables

U =
c − c`

s1 − kdc`

, s6d

u =
T − Tm − mc̀

L/cp
, s7d

wherec` is the value ofc far from the interface that equals
the initial concentration of the alloy. According to the above
definitions,U andu are dimensionless measures of the con-
centration and the undercooling, respectively.

In terms of these variables, the free-boundary problem
becomes

]tU = D¹2U, s8d

]tu = a¹2u, s9d

f1 + s1 − kdUigVn = − D]nUul , s10d

Vn = as]nuuus − ]nuuuld, s11d

ui + Mc`Ui = − d0k − bVn, s12d

where the thermal capillary length is defined as

d0 =
G

L/cp
=

gTMcp

L2 , s13d

andg is the excess free energy of the solid/liquid interface;
for simplicity, we takeg to be isotropic to construct the
phase-field model and introduce anisotropy later on for the
dendrite growth simulations. Additionally, we have defined
the kinetic coefficient

b =
cp

mkL
, s14d

and the scaled magnitude of the liquidus slope

M =
− ms1 − kd

L/cp
. s15d

Note that the subscripti on u and U is present when these
quantities are being evaluated at the interface(the liquid side
for U). In the following section a variableU is defined in the
phase-field model that is related to the chemical potential
(and hence is continuous at the interface) and that is identical
to the definition of Eq.(6) in the liquid.

III. PHASE-FIELD MODEL

The objective is to construct a phase-field model that re-
duces to the above set of sharp-interface equations in a com-
putationally tractable thin-interface limit where(i) the width
W of the diffuse interface is mesoscopic, i.e.,W is about one
order of magnitude smaller than the radius of curvature of
the interface(e.g., the dendrite tip radius) but much larger
than the real microscopic width of a solid-liquid interface,
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and (ii ) kinetic effects are negligiblesb=0d as for many al-
loys solidified at small undercooling/supersaturation. We first
motivate the phase-field equations from a thermodynamic
viewpoint and then analyze the thin-interface limit of these
equations by a direct extension of recent results for the iso-
thermal solidification of a dilute alloy[5].

The starting point of the model is an expression for the
total free energy of the system that can be written in the form

Fff,c,Tg =E dVFs

2
u¹fu2 + fABsf,c,TdG , s16d

where fABsf ,c,Td denotes the bulk free energy density of a
binary mixture ofA and B atoms/molecules andc denotes
the solute concentration defined as the mole fraction ofB.

The phase-field equations considered are

] f

] t
= − Kf

dF

df
, s17d

] c

] t
= ¹W ·SKc¹W

dF

dc
− jWatD , s18d

] T

] t
= a¹2T +

L

2cp

] f

] t
, s19d

whereKc andKf are constants. Equation(18) is equivalent
to the mass continuity relation withm;dF /dc identified as
the chemical potential. The solute current consists of two

parts. The first −Kc¹W m is the standard flux driven by the
gradient of chemical potential that reduces to Fick’s law of
diffusion in the liquid. The secondjWat is an “antitrapping”
current that is only nonvanishing in the diffuse interface re-
gion [5], and hence does not affect the bulk thermodynamic
properties of the model that remain governed byF. This
current produces a solute flux from solid to liquid along a

direction normal to the interfacesn̂=−¹W f / u¹W fud that coun-
terbalances the solute flux induced by the gradient of chemi-
cal potential across a moving interface. The latter leads to the
well-known effect of solute trapping that has been studied
experimentally[12] and reproduced previously in a phase-
field model[13]. The characteristic velocity for solute trap-
ping, which is proportional toD /W [12,13], is reduced ab-
normally for a thick interface(large W) in the simulations
[5]. The form and magnitude of the antitrapping current can
be chosen so as to eliminate this spurious effect and to re-
cover precisely local equilibrium at the interface. Further-
more, this current provides sufficient flexibility in the choice
of functions in the phase-field model to eliminate corrections
to the mass conservation condition(interface stretching and
surface diffusion) that arise in the thin-interface limit when
the solute diffusivities are unequal in solid and liquid[5,14]
(and Ref.[15] for the two-sided thermal model). Note that it
is possible to write down the phase-field model in a form
where the temperature equation is also derived variationally
by introducing the energy density as an auxiliary variable.
However, this is unnecessarily complicated here since the
antitrapping current already makes the equations nonvaria-

tional. Our main goal is to formulate the phase-field model in
such a way as to solve the sharp-interface equations written
down in the preceding section in some computationally trac-
table limit. A nonvariational formulation has proven to be
more flexible for this purpose[5].

A form of the free energy density appropriate for the di-
lute limit c!1 is used that has the advantage that it leads to
simple analytical forms for the stationary phase-field and sol-
ute profiles across the diffuse interface[1] and a constantg.
The bulk free-energy density of the alloyfABsf ,c,Td is writ-
ten as the sum of the free energy of the pure materialfsf ,Td
and the contribution due to solute addition. The latter is the
sum of the standard entropy of mixingRTn0

−1sc ln c−cd,
where R is the universal gas constant andn0 is the molar
volume assumed constant, and the change«sfdc of the en-
ergy density due to solute addition. The choice

«sfd =
1 + ḡsfd

2
«s +

1 − ḡsfd
2

«l , s20d

interpolates between the values«s and«l ,«s in the solid and
liquid, respectively, whereḡsfd is a monotonously increas-
ing function of f with limits ḡs±1d= ±1, with f= +1sf=
−1d corresponding to solid(liquid). Adding together the pure
and solute contributions yields

fABsf,c,Td = fsf,TMd + fTsfdDT +
RTM

n0
sc ln c − cd + «̄c

+ ḡsfd
D«

2
c, s21d

where

fsf,TMd = Hs− f2/2 + f4/4d, s22d

has the standard form of a double-well potential with a bar-
rier heightH and «̄;s«s+«ld /2 andD«;«s−«l have been
defined. Moreover, the pure part has been expanded to first
order in DT;T−TM by defining the function fTsfd
;]fsf ,Td /]TuT=TM

, andRT/n0 has been replaced byRTM /n0

since terms,DTc can be neglected in the dilute limit. Other
phase-field models are derived with expressions for the bulk
free energy that are not restricted to the dilute limit[7,9]. For
example, the model introduced in Ref.[9] describes the so-
lidification of a binary alloy with a lens-shaped phase dia-
gram. Also, Kim and co-workers[7] have shown that, in the
dilute limit, their model reduces to that of Tiadenet al. [6].

Next, the equilibrium properties of the model follow from
the equations,

dF

dc
= mE, s23d

dF

df
= 0, s24d

wheremE is the spatially uniform equilibrium value of the
chemical potential. These two conditions uniquely determine
the spatially varying stationary profiles ofc and f in the
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diffuse interface region,c0sxd andf0sxd. Thec profile varies
between the equilibrium concentrationcs

0sTdfcl
0sTdg in the

solid (liquid) phase, which define the equilibrium phase dia-
gram of the alloy. These concentrations are determined by
the standard common tangent construction that follows di-
rectly from Eqs.(23) and (24). The latter is equivalent to
requiring that the chemical potential and the grand potential
(i.e., thermodynamic potential for a varying number of solute
particles) be equal in the solid and liquid, or, respectively,

U ] fssc,Td
] c

U
c=cs

0
= U ] f lsc,Td

] c
U

c=cl
0
= mE, s25d

fsscs
0,Td − mEcs

0 = f lscl
0,Td − mEcl

0. s26d

Applying the first equilibrium condition(23), we obtain at
once

RTM

n0
ln c + «̄ + ḡsfd

D«

2
= mE, s27d

from which the expressions for the equilibrium partition co-
efficient

k ;
cs

0

cl
0 = expS−

n0D«

RTM
D , s28d

and the stationary concentration profile

c0sxd = cl
0 expS ln k

2
h1 + ḡffsxdgjD , s29d

are obtained. Now, applying the second equilibrium condi-
tion (24), yields

s
d2f0

dx2 + Hsf0 − f0
3d = fT8sf0dDT + ḡ8sf0d

D«

2
c0, s30d

where the primes denote differentiation with respect tof. If
the functionfTsfd is chosen of the form

fTsfd =
RTM

n0m
expS ln k

2
f1 + ḡsfdgD , s31d

the right-hand side of Eq.(30) vanishes provided that

T = TM + mcl
0. s32d

It should be noted that Eq.(31) recovers standard thermody-
namics of dilute alloys. Indeed, sincefTs+1d− fTs−1d
=L /TM [1], the right-hand side of Eq.(31) is such that the
Van’t Hoff relation

L

TM
=

RTMs1 − kd
n0m

, s33d

is recovered by subtracting Eq.(31) evaluated atf= +1 from
the same equation evaluated atf=−1. This relation is a spe-
cial case of the Gibbs-Konovalov rule when applied to dilute
alloys [16].

The vanishing of the right-hand side of Eq.(30) implies
that f0sxd=−tanhfx/ sÎ2Wdg whereW measures the width of
the diffuse interface. In addition, for Eq.(18) to reduce to
Fick’s law of diffusion in the liquid, the form

Kc =
n0

RTM
Dqsfdc s34d

is chosen, whereqsfd is a dimensionless function that dic-
tates how the solute diffusivity varies through the diffuse
interface. With all the above choices, Eqs.(17) and (18) be-
come

t
] f

] t
= W2¹2f + f − f3 +

RTM ln k

nH
ḡ8sfd

3Fc −
T − TM

m
expS ln k

2
f1 + ḡsfdgDG , s35d

] c

] t
= ¹W ·SDqsfdc¹W Fln c −

ln k

2
ḡsfdG − jWatD , s36d

where t=1/sKfHd has also been defined and Eq.(19) is
unchanged. To make contact with the results of Ref.[5] for
the isothermal limit whereT is constant, the above equations
are rewritten in terms of the dimensionless variable

u =
n0

RTM
sm − m`d = ln sc/c`d −

ln k

2
fḡsfd + 1g, s37d

which measures the departure of the chemical potential from
its valuem` for a flat interface at the equilibrium liquidus
temperature. In addition,ḡsfd is eliminated in favor of the
function g̃sfd, which has the same limitsg̃s±1d= ±1, using
the transformation

expS ln k

2
f1 + ḡsfdgD =

1 + k

2
−

1 − k

2
g̃sfd. s38d

After simple algebraic manipulations, Eqs.(35) and(36) be-
come

t
] f

] t
= W2¹2f + f − f3 −

RTMs1 − kdc`

2n0H
g̃8sfd

3Sexpsud −
T − TM

mc̀
D , s39d

] c

] t
= ¹W · fDqsfdc¹W u − jWatg, s40d

where u=ln(2sc/c`d / f1+k−s1−kdg̃sfdg). As discussed in
Ref. [5], additional freedom to obtain the desired thin-
interface limit can be gained by replacing the functiong̃sfd
in this last expression foru by another functionhsfd that has
the same limits atf= ±1. The simplest choice ishsfd=f,
which yields the new expression
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u = lnS 2c/c`

1 + k − s1 − kdfD . s41d

The phase-field model is now completely defined by Eqs.
(39)–(41) and (19), together with the additional choices

jWat = −
c`s1 − kdW

2Î2
expsud

] f

] t

¹W f

u¹W fu
, s42d

qsfd =
1 − f

1 + k − s1 − kdf
. s43d

The model defined by Eqs.(39)–(43) yields the desired thin-
interface limit as discussed in the following section and the
Appendix. It is interesting to note that the present thermody-
namically motivated phase-field model is identical, with the
exception of the antitrapping current in the species equation
and the choice of the functiong̃sfd in Eq. (39), to that of
Beckermannet al. [8], which was derived with a geometri-
cally motivated volume-averaging technique.

IV. THIN-INTERFACE LIMIT

To analyze the thin-interface limit of this model, as well
as to carry out simulations, it is useful to rewrite the phase-
field equations in terms of the dimensionless thermal under-
cooling u defined by Eq.(7), as well as the variable

U =
expsud − 1

1 − k
, s44d

which reduces to the dimensionless concentration defined by
Eq. (6) on the liquid side of the interfacesf=−1d. The fol-
lowing final set of equations is obtained

t
] f

] t
= W2¹2f + f − f3 − lg8sfdsu + Mc`Ud, s45d

1 + k

2

] U

] t
= ¹W ·SD

1 − f

2
¹W U +

W

2Î2
f1 + s1 − kdUg

] f

] t

¹W f

u¹W fu
D

+
1

2

]

] t
hff1 + s1 − kdUgj, s46d

] u

] t
= a¹2u +

1

2

] f

] t
, s47d

where the coupling constantl is defined as

l = −
15

8

RTMs1 − kdL
2n0Hcpm

=
15L2

16HcpTM
, s48d

andgsfd=8g̃sfd /15. The factor of 15/8 has been introduced
such that for the choiceg̃sfd=15sf−2f3/3+f5/5d /8 and
g8sfd=s1−f2d2, Eqs.(45)–(47) above reduce identically to
those analyzed by Karma and Rappel[3,4] in the limit of
vanishing concentrationMc`→0. Also 1/l is a dimension-
less measure of the barrier height of the double-well poten-
tial, and the second equality in Eq.(48) follows from the

Van’t Hoff relation for dilute alloys, Eq.(33).
An asymptotic analysis of the thin-interface limit of this

model is needed to show that it reduces to the free-boundary
problem defined by Eqs.(8)–(12). The basic results of this
analysis have already been summarized for the isothermal
limit in Ref. [5]. Given that the treatment of the isothermal
and the thermosolutal case are very similar, all the math-
ematical details of the analysis need not be repeated here.
The main difference between the two cases is the expression
for the interface kinetic coefficientb that is derived in the
Appendix for a one-dimensional interface. As in the isother-
mal limit, corrections to the mass conservation condition that
correspond to interface stretching and surface diffusion van-
ish in the present thermosolutal model. The expressions for
d0 andb that are necessary to carry out the simulations, are
given in the following.

The excess free energy of the solid-liquid interface is
given by

g = WHE
−`

+`

dySdf0

dy
D2

; IWH, s49d

wherey is the coordinate along the direction normal to the
interface scaled byW, and I =2Î2/3 is obtained by evaluat-
ing the integral withf0=−tanhfy/ sÎ2Wdg. Note that the fact
thatg is independent of concentration in the present model is
a direct consequence of our choice of the free-energy density
that uncouples the equilibrium phase field and concentration
profiles in the diffuse interface. From the definitions of the
capillary length, Eq.(13), and ofl, Eq. (48), one obtains at
once that

d0 = a1
W

l
, s50d

where a1=15I /16=0.8839. . .. The equations of the present
phase-field model reduce identically to those analyzed by
Karma and Rappel[3,4] in the limit of vanishing concentra-
tion Mc`→0, as well as to those analyzed by Karma[5] in
the isothermal case whereu is fixed.

The expression forb can be derived by applying the same
analyses as those presented in Refs.[3–5] to derive a rela-
tionship between the planar interface velocityV and the ther-
modynamic driving force at the interfaceui +Mc`Ui in the
present thermosolutal model. As detailed in the Appendix,
this analysis is considerably simplified by the fact that bothu
andU have similar spatial variations in the diffuse interface
region at leading order in an asymptotic expansion where the
interface Péclet numberp=WV/D is the small parameter, or
equivalently at second order in an expansion wherel is the
small parameter[4,14]. This similarity is a direct conse-
quence of the forms chosen for the antitrapping current, Eq.
(42), and of the diffusivity functionqsfd, Eq. (43), and is
key to recover the desired thin-interface limit without correc-
tions to the solute or heat conservation conditions at the in-
terface and with local chemical equilibrium at the interface.
The expression forb is given by
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b = a1S t

Wl
− a2

W

D
FD

a
+ Mc`f1 + s1 − kdUgGD , s51d

where a2 is a constant that depends on the choice of the
function gsfd. In this paper the standard formgsfd=f
−2f3/3+f5/5 will be used, which has vanishing first and
second derivatives atf= ±1, for which a2=0.6267. . .[4].
The whole term multiplyinga2 originates from the fact that
both u and U are spatially varying in the diffuse interface
region, i.e.,b=a1t /Wl with botha andD tending to infinity
and hence bothu andU constant through the interface. Note
that for a realistic value ofD /a, this term is largely domi-
nated by the spatial variation ofU, or equivalently of the
chemical potential, through the interface. This is becauseu
varies on a scalea /V that is several orders of magnitude
larger than the scaleD /V over whichU varies. Hence,u is
essentially constant inside the diffuse interface when both
a /D@1 andD /V@W. It should be pointed out that in Ref.
[5], theU appearing in the expression forb is taken to be a
constant rather than the actual field. The constant value ofU
that was used in Ref.[5] to evaluateb was the value corre-
sponding to a sharp, flat interface under equilibrium condi-
tions at the interface temperature, which was known because
solidification was assumed to occur isothermally. This stands
in contrast to a thermosolutal situation where there is no way
of knowing the interface temperaturea priori.

It follows from Eq. (51) that b can be made to vanish
provided thatt is chosen to be a function ofU in the phase-
field model, defined by

tsUd = a2l
W2

D
FD

a
+ Mc`f1 + s1 − kdUgG . s52d

As in previous studies, crystalline anisotropy is included, by

letting W=W0Asn̂d, where n̂=−¹W f / u¹W fu is the unit vector
normal to the interface andAsn̂d=1+« cos 4w is a function
that describes the anisotropy, wherew=arctans]yf /]xfd is
the angle between the direction normal to the interface and
the x (horizontal) axis, and« is a dimensionless parameter
that characterizes the anisotropy strength. To carry out the
simulations, it is useful to define the scaled diffusivity

D̃ =
Dt0

W0
2 s53d

and the Lewis number

Le =
a

D
. s54d

Following Eq. (52), b can be made to vanish by inputting
into the phase-field model

tsU,¹W f/u¹W fud = t0fAs¹W f/u¹W fudg2

3F 1

Le
+ Mc`f1 + s1 − kdUgG , s55d

and

D̃ = la2. s56d

Measuring length and time in units ofW0 and t0, respec-
tively, scales out these parameters from the phase-field equa-

tions, in which case the only parameters left areD̃, l, and
Le. The results can be related to physical units using the
relation W0=d0l /a1 and t0=sd0

2/Dda2l3/a1
2 [which follow

from Eqs.(50) and(53)]. The results should be independent
of l when they are converged. Note that decreasingl corre-
sponds physically to decreasing the interface width while
increasing at the same time the height of the double-well
potential so as to keep the surface energy and henced0 fixed.

V. VALIDATION FOR ONE-DIMENSIONAL STEADY-
STATE ALLOY SOLIDIFICATION WITH KINETICS

A. Analytical solution for a sharp interface

An analytical solution of the sharp-interface model can be
found for the steady-state propagation of a flat interface into
a hypercooled melt of a binary alloy with kinetics, which
provides a validation case for the phase-field model. The
governing equations of the sharp-interface formulation are
rewritten in a moving frame attached to the interface, which
propagates with a constant velocityV along the sole coordi-
natex as

V
] U

] x
+ D

]2U

] x2 = 0, s57d

V
] u

] x
+ a

]2u

] x2 = 0, s58d

together with the interface conditions

f1 + s1 − kdUigV = − D]xUul , s59d

V = − a]xuul , s60d

ui + Mc`Ui = − bV, s61d

and the far-field boundary conditions

lim
x→`

Usxd = 0, s62d

lim
x→`

usxd = − D, s63d

whereD denotes an externally imposed dimensionless under-
cooling. The solution of Eqs.(57)–(63) is given by the fol-
lowing spatial distributions ofU andu

U =
1

k
expS−

Vx

D
D , s64d

u = expS−
1

Le

Vx

D
D − D, s65d

in the liquid andU=1/k and u=1−D in the solid, and the
expression for interface velocity
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bV = D − 1 −
Mc`

k
. s66d

Since the equilibrium freezing range corresponding to a melt
concentrationc` is given by −mc̀ s1−kd /k, the last term in
Eq. (66) represents the freezing range nondimensionalized
by the unit undercooling,L /cp. For the solution to be valid,
therefore, the imposed dimensionless undercooling must ex-
ceed unity.

Using Eqs.(6) and (64), the concentration distribution in
the liquid is given by

c = c`F1 +
1 − k

k
expS−

Vx

D
DG . s67d

The concentration distribution in the solid isc=c`.

B. Comparison of phase field with analytical sharp-interface
results

After nondimensionalization usingt=t0 as the time scale
andW=W0 as the length scale, one-dimensional versions of
Eqs. (45)–(47) were solved numerically until a steady state
was achieved. The equations were discretized with finite dif-
ferences in space and explicit time stepping. The computa-
tional domain consisted of 2000 equally spaced grid points.
The dimensionless grid spacing and time step used were
Dx/W0=0.4 and Dt /t0=0.008, respectively. Zero-flux
boundary conditions were imposed on both ends for the con-
centration field. For the temperature field, the left end was
taken as insulated and on the right end a time dependent
temperature, known from the analytical solution, was pre-
scribed. The latter boundary condition allows one to choose a
smaller computational domain for Le greater than unity be-
cause it eliminates the need to compute the entire thermal
boundary layer. The initial condition consisted of a thin solid
shell of concentrationc` and dimensionless temperature 1
−D at the left end of the domain, and liquid of concentration
c` at a prescribed undercooling, i.e.,u=−D, in the remainder.
The interface was allowed to propagate to the right until the
concentration boundary layer almost reached the right end of
the domain(i.e., until the value ofU at the next-to-last grid
point increased to 10−3). At this point, the profiles were
shifted towards the left end of the domain and allowed to
evolve in time again. This procedure was repeated until the
interface velocity reached a constant, steady-state value.

The coupling parameterl as obtained from Eq.(51) as

l =
1

bW0

a1t0

+
a2

D̃
H 1

Le
+ Mc`f1 + s1 − kdUgJ , s68d

which implies thatl is a function of the concentration(i.e.,
U). According to Eq.(50), this causes the capillary length to
be variable throughout the computational domain. However,
the capillary length plays no physical role in the one-
dimensional, flat interface problem considered here. The
value of the scaled kinetic coefficient was taken asbW0/t0
=1.5 and, in most cases, the Lewis number was set to unity.

Furthermore, the valuesMc`=0.15 andk=0.15 were chosen
such that the two terms in the curly brackets in Eq.(68),
1 /Le andMc`f1+s1−kdUg, are of a similar magnitude, and,
consequently, thermal and solutal effects have the same im-
pact onl. The only free phase-field parameter is the scaled

diffusivity D̃=Dt0/W0
2, which is varied below in a conver-

gence study.
The variation of the coupling parameterl with U accord-

ing to Eq. (68) deserves further attention. For the simple
problem considered here, the equilibrium value ofU at the
(sharp) interface is known to be equal to 1/k. This provides
an opportunity to compare the performance of the phase-field
model in the thin-interface limit for(i) a variable U in Eq.
(68) for l, whereU is taken from the solution of Eq.(46),
and(ii ) a constant U=1/k in Eq. (68) for l according to the
method used in Ref.[5] for isothermal alloy solidification, as
discussed in Sec. IV. A third method to calculatel is given
by the sharp-interface limit, i.e.,

lsharp= a1
t

bW
, s69d

which does not consider any spatial variations ofU and u
within the diffuse interface. Equation(69) is obtained from
Eq. (68) by settinga2=0.

Figure 1 shows a comparison of the predicted interface
speed as a function of undercooling with the analytical
sharp-interface result, Eq.(66). It can be seen that for the
thin-interface limit, both ways of computing the coupling
parameter(variable or constantU) produce results that agree
well with the exact solution, especially at lower undercool-
ings. The sharp-interface limit result for the coupling param-

FIG. 1. Comparison of predicted(interrupted lines) and exact
(solid line) interface velocities as a function of dimensionless ther-
mal undercooling for one-dimensional solidification of a binary al-
loy into a hypercooled melt. The dashed and dash-dot lines are
obtained with the thin-interface analysis; the long-dashed line cor-
responds to the sharp-interface analysis.
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eter, on the other hand, produces results that are not in quali-
tative agreement with the exact solution. Equation(66)
indicates that the steady-state velocity of the interface is in-
dependent of the Lewis number. This was verified numeri-
cally by simulating cases with large Le, which in some in-
stances required using an implicit time discretization of the
heat equation for numerical stability.

Figure 2 presents the results of a convergence study for
one of the cases in Fig. 1sD=2.3d. Here, the predicted inter-
face velocity is plotted against the interfacial solutal Péclet
numberWV/D. This Péclet number was varied by changing

the scaled diffusivityD̃=Dt0/W0
2 in the phase-field simula-

tions. As expected from the thin-interface analysis(see Ap-
pendix), the predictions approach the exact solution for small
interfacial solutal Péclet numbers. Physically, a small inter-
facial Péclet number corresponds to a small interface width
relative to the diffusion length scale. If the interface width is
too large, the thermal or solutal boundary layers will be in-
side the diffuse interface and cannot be accurately resolved.
Note that both a constant and a variableU in Eq. (68) pro-
vide convergent results for smaller values ofWV/D. The
convergence behavior for a variableU is as good as or better
than for a constantU.

A comparison of predicted and exact temperature and sol-
ute concentration profiles is shown in Fig. 3. The interface is
located atVx/D=0, with Vx/D,0 being solid andVx/D.0
liquid; results for the entire computational domain are de-
picted. The mixture concentration in the dimensionless ratio
c/c` also plotted in Fig. 3 is defined as[8]

c = fs1 − fdc1 + s1 + fdcsg/2, s70d

and can be calculated fromU and phase-field profiles using
Eqs.(44) and(41). This mixture concentration is equal to the

solute concentration in the bulk solid and liquid phases and
varies continuously inside the diffuse interface. The phase-
field and analytical profiles are seen to be indiscernible on
the scale of Fig. 3. Figure 4 shows a closeup of the interfacial
region, where the difference between phase-field and analyti-
cal results can be better appreciated. This figure reveals how
the temperature andU profiles from the phase-field model
are smooth representations of kinks in these variables asso-
ciated with the sharp-interface formulation. Figure 5 shows a
similar closeup for various solute concentration profiles. The

FIG. 2. Effect of interface solutal Péclet number, PeD=WV/D,
on predicted interface velocities for one-dimensional solidification
of a binary alloy into a hypercooled melt. The solid horizontal line
corresponds to the exact solution given by Eq.(66); the interrupted
lines are from phase-field simulations using the thin-interface analy-
sis for the coupling constantl.

FIG. 3. Predicted steady-state profiles from a phase-field simu-
lation of one-dimensional solidification of a binary alloy into a hy-
percooled melt; the entire computational domain is shown.

FIG. 4. Closeup of the dimensionless temperature, concentra-
tion, and phase-field profiles in Fig. 3 near the interface. TheU and
u profiles predicted by the phase-field model vary smoothly inside
the diffuse interface and match their sharp interface counterparts
outside of it.
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mixture concentration varies smoothly within the diffuse in-
terface and approaches the concentration profiles in the bulk
solid and liquid outside of it. The latter are obtained from the
mixture concentration using the following relationscl /c`

=2sc/c`d / f1+k−s1−kdfg and cs/c`=2ksc/c`d / f1+k−s1
−kdfg, which follow from Eq.(70). These bulk-phase con-
centration profiles from the phase-field model are seen in
Fig. 5 to agree well with the analytical predictions from the
sharp-interface model.

VI. SIMULATIONS OF ISOTHERMAL DENDRITIC
SOLIDIFICATION

For further validation, the isothermal dendritic solidifica-
tion of a binary alloy into a constitutionally undercooled melt
is simulated in two dimensions and the results are compared
to those presented by Karma[5]. The domain is a square box
with symmetry boundary conditions applied on the bottom
and left sides and a fixed far-field solute concentration at the
right and top sides. The initial condition consists of a small,
quarter-of-a-circle shaped solid seed in the lower left corner
and undercooled melt in the remainder of the domain. The
far-field concentrationc` and the equilibrium liquidus con-
centration at the system temperature,cl

0, are related via the
imposed solutal undercooling as

V =
cl

0 − c`

s1 − kdcl
0 . s71d

The following values of the system parameters were adopted
from Ref. [5]: V=0.55,«=0.02,k=0.15, and no kinetic ef-
fect (i.e., b=0). For the calculation shown in Fig. 6, the
value of the coupling constant was chosen asl=3.1913,

which corresponds toD̃=2. The governing equations were
solved on a grid of 8003800 node points, with explicit time
stepping and finite differences for the spatial derivatives. The
grid size and the time step used wereDx/W0=0.4 and
Dt /t0=0.018, respectively. Example results for the dendrite
evolution, using the model of Karma[5], are shown in Fig. 6.
The initial circular seed in the lower left corner grows into a
dendrite with branches along the horizontal and vertical axes.
The local radius of curvature at the tip of these branches is
denoted byr and the tip propagation velocity byV.

To simulate isothermal solidification of a binary alloy
with the present model the Lewis number could, in principle,
be set infinitely large. Needless to say, this is numerically
unfeasible. Instead, the temperature was set to a given value
usys in the entire computational domain and the heat equation
was not solved. In order to compare directly to the results of
Ref. [5], which are presented in terms of the solutal capillary
length d0,s=gTM / fLumus1−kdcl

0g, it is convenient to choose
the parameters in the present model such that the solutal and
thermal capillary lengths are equal, i.e.,d0,s=d0. The ratio of
the two capillary lengths is given by

d0,s

d0
=

sL/cpd
− ms1 − kdcl

0 =
1 − s1 − kdV

Mc`

, s72d

where the second equality follows from Eqs.(15) and (71).
Hence, whenMc` andusys are chosen as

Mc` = 1 − s1 − kdV s73d

and

FIG. 5. Comparison of predicted(interrupted lines) and exact
(solid lines) concentration profiles near the interface for the simu-
lation of Fig. 3. The dash-dot line is the predicted mixture concen-
tration that interpolates between the concentrations in the liquid and
solid.

FIG. 6. Predicted interface contours, every 20 000 time steps,
for two-dimensional, purely solutal(isothermal) dendritic solidifi-
cation into an undercooled melt. The dendrite tip velocity is the rate
at which the interface propagates along the horizontal axis and the
dendrite tip radius is the local radius of curvature of the tip of the
growing arm.
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usys= − Mc`

V

1 − s1 − kdV
, s74d

respectively, the solutal and thermal capillary lengths are
equal. For the case shown in Ref.[5], for which k=0.15 and
V=0.55, Eqs.(73) and (74) yield Mc`=0.5325 andusys=
−V=−0.55.

The dendritic growth simulations performed using the
present model correspond to a vanishing interface kinetic
coefficient. Therefore, the relaxation timet in the phase-field
equation must be calculated from Eq.(55), which shows that
t is a function ofU. As discussed above, the value ofU in
Eq. (55) is taken as a constant in Ref.[5], corresponding to
the liquidus concentration at the system temperaturecl

0. Us-
ing Eqs. (6) and (71) it is easy to show that this constant
value of U is given by V / f1−s1−kdVg. In summary, the
present model should produce the same results as that of Ref.
[5] if the temperature is set asusys=−V, the initial melt con-
centration is chosen asMc`=1−s1−kdV, andU in Eq. (55)
is taken asV / f1−s1−kdVg.

Simulations were performed to study the convergence be-
havior for decreasing values of the coupling constantl (and,
consequently, of the scaled interface widthW0/d0) and to
examine the differences in the convergence behavior for a
constant and variableU. The radius of the initial circular
solid seed was 44d0 in all cases considered. The grid spacing
was chosen asDx/W0=0.4, and the time step was varied
depending onl, to ensure numerical stability. For the values
of l=1.5957,3.1913,6.3826,9.574, and 12.765 the time
steps used wereDt /t0=0.016,0.018,0.008,0.006, and
0.0048, respectively. The computational domains were ad-
justed to have the same physical size in each case, resulting
in 160031600, 8003800, 4003400, 2673267, and 200
3200 nodal points forl=1.5957,3.1913,6.3826,9.574,
and 12.765, respectively.

Figure 7 shows the predicted variation of the dendrite tip
velocity with the coupling parameterl. The velocities in Fig.
7 are all evaluated at the same dimensionless elapsed time of
tD /d0

2=48 000. For the smallest three values ofl, this
elapsed time is sufficient to achieve a steady-state growth
regime. Forl=9.574 andl=12.765, however, a steady state
is not quite achieved because of the onset of interactions
between the diffusion field and the far-field boundary. The
cases withl=3.1913 andl=6.3826 were also simulated
with the model of Ref.[5] and the results were found to
agree exactly with those of the present model using a con-
stant U in Eq. (55). It can be seen from Fig. 7 that the
predicted dendrite tip velocities converge to a constant value
with decreasingl. Compared to using a constantU in Eq.
(55), the convergence behavior appears to be slightly worse
for a variableU. Nevertheless, the difference between the
two cases decreases with decreasingl.

Figure 8 shows the results of a grid independence study
for the l=3.1913 case in Fig. 7. The values ofDx/W0 con-
sidered were 0.3,0.4,0.6,0.8, and 1.0. For those respective
cases the time steps wereDt /t0=0.01,0.018,0.03,0.06, and
0.1, and the domains were squares with 106031060, 800
3800, 5303530, 4003400, and 3203320 nodal points.

For both methods of computing the relaxation timet [i.e.,
variable and constantU in Eq. (55)], it can be seen that the
tip velocity at tD /d0

2=48 000 changes negligibly when
Dx/W0 is smaller than about 0.4.

FIG. 7. Predicted dimensionless tip velocities as a function ofl
(i.e., interface width) and two choices of computing the relaxation
time, for two-dimensional, isothermal dendritic solidification of a
binary alloy into an undercooled melt. All simulations have the
same physical domain and initial seed sizes, and the tip velocities
are evaluated at a time oftD /d0

2=48 000, which is near steady state.

FIG. 8. Predicted dimensionless tip velocities as a function of
grid spacing and two choices of computing the relaxation time, for
two-dimensional, isothermal dendritic solidification of a binary al-
loy into an undercooled melt. All simulations have the same physi-
cal domain and initial seed sizes, and the tip velocities are evaluated
at a time oftD /d0

2=48 000, which is near steady state.
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VII. SIMULATIONS OF THERMOSOLUTAL DENDRITIC
GROWTH

Next, the phase-field model is used to simulate noniso-
thermal dendritic growth in two dimensions of a binary alloy
into an undercooled melt with coupled heat and solute diffu-
sion. Only cases with vanishing interface kinetic coefficient
are considered, and the phase-field relaxation time is com-
puted using Eq.(55). Since the interfacial temperatures and
concentrations are unknown, the variableU must be used in
Eq. (55).

First, a convergence study is presented for Le=1. The
other physical parameters were chosen asMc`=0.5325,k
=0.15, «=0.02, andD=0.55. With these values, the terms
1/Le andMc`f1+s1−kdUg in Eq. (55) for the phase-field
relaxation time are of approximately the same order of mag-
nitude. As the initial condition, a quarter-of-a-circle solid
seed of radius 65d0 was placed in the lower left corner of a
square box with a side length of 1730d0. Symmetry boundary
conditions were applied at the bottom and left boundaries,
while the top and right boundaries had constant far-field val-
ues of −1, −D, and 0 prescribed forf, u, andU, respectively.
The governing equations were solved with finite differences
approximations and explicit time stepping. Four different
values of l (and hence, interface width) were examined,
namely,l=3.1913,6.3826,9.574, and 12.7653, correspond-

ing to D̃=2,4,6, and 8,respectively. The grid size was
alwaysDx/W0=0.4. In order to represent the same physical
length of 1730d0, the grid sizes used are 120031200, 600
3600, 4003400, and 3003300 for l
=3.1913,6.3826,9.574, and 12.7653, respectively, while the
time steps for these respective values ofl were taken as
Dt /t0=0.018,0.008,0.006, and 0.0048.

Figures 9(a) through 9(d) show the predicted time evolu-
tions of the dimensionless dendrite tip velocityVd0/D, tip
radiusr /d0, selection parameters* , and ratio of tip radius to
interface widthr /W0, respectively. The selection parameter
is defined here ass* =2Dd0/ sr2Vd, and should simply be
viewed as a dimensionless inverse product ofr2V; detailed
comparisons with available dendrite tip selection theories are
beyond the scope of the current study. Note that in Fig. 9 the
dendrite tip does not reach a steady-state growth regime be-
cause of the limited size of the domain. In particular, the tip
velocity [Fig. 9(a)] shows a marked increase when the ther-
mal and solutal boundary layers start to interact with the
far-field domain boundaries. The increase is due to the use of
fixed far-field temperature and concentration values as the
boundary condition. The different lines within the plots cor-
respond to simulations performed for different values of the
free parameterl. It is clear from Figs. 9(a)–9(c) that the
results converge for decreasingl. The plot of r /W0 [Fig.
9(d)] and the proximity of the curves forl=3.1913 andl
=6.3826 in Figs. 9(a)–9(c) suggest that the ratior /W0 should
be greater than about 10 to obtain converged results.

Another test of the accuracy of the present results is per-
formed by comparing the predicted frozen solute profile
along the dendrite axis with interfacial concentrations calcu-
lated from the Gibbs-Thomson relation during solidification.
Such a check is particularly important for verifying the ab-

sence of solute trapping. In the presence of anisotropy, the
Gibbs-Thomson relation can be written asUiMc`=−d0sn̂dk
−ui. When applied in the direction of the horizontal dendrite
growth axis[4], it becomes

Ui =
− d0s1 − 15«d/r − ui

Mc`

. s76d

By recording the dendrite tip radius and interface tempera-
ture during the simulations,Ui can be calculated as a func-
tion of distance along the dendrite axis and be directly com-
pared to the frozenU profile. The interface temperatureui

was evaluated atf=0.9, which can be seen from Fig. 4 to be
a reasonable approximation of the temperature of the corre-
sponding sharp interface. Numerical tests indicated that the
results are not sensitive to the exact value off at which ui

was evaluated. The results of this comparison are shown in
Figs. 10(a)–10(d) for the various values ofl. The agreement
of the concentrations calculated from Eq.(76) with the pre-
dicted solute profile along the dendrite axis is generally ex-
cellent. As expected, it deteriorates somewhat with increas-
ing l.

Figure 11 shows predicted phase field, solute concentra-
tion sUd, and temperature profiles along the central dendrite
axis at a time oftD /d0

2=470 000. The profiles illustrate the
importance of the coupled heat and solute diffusion in the
present simulation. The interface temperature is significantly
different from the far-field values−0.55d, and temperature
variations are present even in the solid. Since Le=1, the
solute and temperature boundary layers have approximately
the same width.

Since the value of the Lewis number for binary alloys is
typically much greater than unity, the growth of a dendrite
with Le=50 was also simulated. The other parameters were
chosen asMc`=0.1, «=0.02, D=0.55, k=0.15, and l
=1.5957. The equations were solved numerically on a grid of
8003800 nodal points with a grid spacing ofDx/W0=0.5
and a time step ofDt /t0=0.001. Figure 12 shows a snapshot
of the dendrite at a time oftD /d0

2=3500. As expected from
the large value of Le, the thickness of the thermal boundary
layer is much larger than that of the solutal boundary layer.
Even though the Lewis number is large, the initial melt con-
centration is chosen low enough that the interface tempera-
ture is significantly different from the far-field value. Some
temperature variations are present even in the solid. The di-
mensionless concentrationc/c` is plotted separately for the
solid and liquid regions in the left quadrants. A complex
microsegregation pattern can be observed in the solid. Re-
gions with high positive curvatures during solidification have
high solute concentrations, and vice versa. The liquid inside
the deep pockets near the center is virtually homogeneous.

Figure 13 shows the temporal evolution of various den-
drite growth parameters for the dendrite of Fig. 12. Note that
at about tD /d0

2=2400 a steady growth regime is almost
achieved. At later times, the effect of the interaction of the
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thermal boundary layer with the domain wall becomes no-
ticeable. Note, however, that the selection parameters*

=2Dd0/ sr2Vd appears to remain constant. The ratior /W0 is
approximately equal to 8 after the initial transient, indicating
that the results are close to but not fully converged(see Fig.
9). Figure 14 shows a comparison of the predictedU profile
in the solid along the dendrite axis with that calculated from
the Gibbs-Thomson relation, Eq.(76). In this case, the agree-
ment is not as good as in the Le=1 case, but the difference
always remains within 5%.

VIII. CONCLUSIONS

We have presented a computationally tractable phase-field
model to simulate the solidification of a dilute binary alloy
with coupled heat and solute diffusion. The thin-interface
analysis of this model makes it possible to carry out simula-
tions using interface widths larger than the capillary length
but smaller than the radius of curvature of the interface, as
well as for vanishing interface kinetic effects. The antitrap-
ping term in the solute conservation equation effectively

FIG. 9. Predicted temporal variation of various growth parameters for two-dimensional dendritic solidification of a binary alloy into an
undercooled melt with coupled heat and solute diffusion(Le=1, Mc`=0.5325,k=0.15, «=0.02, andD=0.55). The lines in each graph
correspond to differentl (i.e., interface width), while keeping the physical domain and initial seed sizes the same.
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eliminates the solute trapping effect and other spurious cor-
rections to the mass conservation condition corresponding to
interface stretching and surface diffusion[5,14]. In addition,
this term makes the model applicable to unequal solutal dif-
fusivities in the solid and liquid.

The model was first validated against an analytical sharp-
interface solution for the case of steady one-dimensional so-
lidification of a binary alloy into a hypercooled melt. Con-
vergence of the phase-field results was obtained with
decreasing interface Péclet numbers, as expected. Additional

validation was presented for the case of isothermal dendritic
solidification of a binary alloy in two dimensions by compar-
ing the results to the model of Karma[5]. The full model was
then applied to dendritic solidification with coupled heat and
solute diffusion. For the case of Le=1, convergence of the
results for decreasing values of the coupling parameterl (i.e,
the interface width) was demonstrated. The solute profile in
the solid along the dendrite growth axis is in excellent agree-
ment with concentrations calculated from the Gibbs-
Thomson relation, indicating that solute trapping is indeed

FIG. 10. Comparison of the predicted dimensionless concentration profile in the solid along the central dendrite axis with concentrations
in the solid at the interface computed from the Gibbs-Thomson condition, Eq.(76). The simulations correspond to the thermosolutal dendrite
of Fig. 9 sLe=1d; the four graphs are for different values ofl (i.e., interface width), while keeping the physical domain and initial seed sizes
the same.
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absent. A case where the Lewis number is largesLe=50d, but
the melt concentration is small enough that the system is
nonisothermal, was also simulated. These simulations re-
vealed complex microsegregation patterns and temperature
nonuniformities in the solid. Future studies include the ap-
plication of the present model to examine the operating state
of alloy dendrites for small solute concentrations where ther-
mal and solutal effects are both important.
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APPENDIX

A planar interface moving at velocityV in the +x direction
is considered. Defining the dimensionless variabley=x/W,

FIG. 11. Predicted phase fieldU andu profiles along the central
dendrite axis for the thermosolutal dendrite of Fig. 9(Le=1, l
=3.1913 only) at a time oftD /d0

2=47 000.

FIG. 12. Predicted results for
two-dimensional dendritic solidi-
fication of a binary alloy into an
undercooled melt with coupled
heat and solute diffusion for Le
=50 at tD /d0

2=3500. The upper
and lower right quadrants show
the dimensionless concentrationU
and temperature fields, respec-
tively; the left quadrants both
show concentrationc/c` fields,
with different scales used in the
upper and lower quadrants in or-
der to better visualize the concen-
tration variations in the solid and
liquid, respectively.

FIG. 13. Predicted temporal evolution of various growth param-
eters for the thermosolutal dendrite of Fig. 12sLe=50d.
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and rewriting the phase-field equations(45)–(47) in a frame
moving with the interface, the set

− pD̃]yf = ]y
2f + f − f3 − lg8sfdsu + Mc`Ud, sA1d

1 − k

2
]yU = ]yS1 − f

2
]yU +

p

2Î2
f1 + s1 − kdUg]yfD

−
p

2
]yhff1 + s1 − kdUgj, sA2d

− p]yu = Le]y
2u −

p

2
]yu, sA3d

is obtained, where the interface Péclet numberp=WV/D is
typically a small parameter in mesoscale simulations. Fol-
lowing the same steps as Karma and Rappel in Sec. III A of
Ref. [4], solutions of Eqs.(A1)–(A3) are seeked perturba-
tively by expanding the solutions in the diffuse interface re-
gion (inner solutions) in powers ofp:

f = f0 + pf1 + p2f1 + . . . , sA4d

U = U0 + pU1 + p2U1 + ¯ , sA5d

u = u0 + pu1 + p2u1 + ¯ . sA6d

Substituting these expansions into Eqs.(A1) and(A2), yields
for solutions at leading order the stationary phase-field pro-
file f0=−tanhfy/ sÎ2Wdg together with the equilibrium con-
dition u0+Mc`U0=0 that corresponds to a stationary inter-
face, whereu0 andU0 are constants. At first order inp, Eqs.

(A1) and (A2) yield the system of linear equations

f]y
2 + s1 − 3f0

2dgf1 ; L f1 = ]yf0 − lg8sf0dsu1 + Mc`U1d,

sA7d

D̃]yfs1 − f0d]yU1g − f1 + s1 − kdU0gs]yf0 − ]y
2f0/Î2d = 0,

sA8d

Le]y
2u1 − 1

2]yf0 = 0. sA9d

Explicit expressions forU1 andu1 can be obtained by inte-
grating twice with respect toy the last two equations and by
using the fact that]yf0=−s1−f0

2d /Î2. This yields

U1syd = Ū1 − y +
1 + s1 − kdU0

2
E

0

y

dyf0syd, sA10d

u1syd = ū1 + Ay+
1

2Le
E

0

y

dyf0syd, sA11d

where the first constant associated with integrating once Eq.
(A8) is easily obtained by examining the limit in the solid
where the diffusivity vanishes. A crucial feature here is that
the same functione0

ydyf0syd appears in the expressions for
U1 andu1 by virtue of the choice of the antitrapping current
that yields the combinations]yf0−]y

2f0/Î2d in Eq. (A8), as
opposed tos]yf0d without this current. This feature makes
the thin-interface limit of the isothermal solidification of a
dilute alloy [5] essentially identical to the thin-interface limit
for the nonisothermal solidification of a pure melt[4]. The
same is true here for the thermosolutal problem because of
the additive property thatu1+Mc`U1 has a similar
asymptotic behavior on the two sides of the interface asu1
alone whenc`→0 or asU1 for fixed temperature. Namely,
the largey asymptotic behavior of the innerUsud solution on
the liquid side of the interface is the sum of a gradient term,
which represents the normal flux of solute(heat), and a con-
stantUisuid that is equal to the value of the outer diffusion
field (i.e., field that appears in the sharp-interface equations)
on the liquid side of the interface. Adding the zeroth and first
order inp solutions, the constants for the two fields are

Ui = U0 + pSŪ1 +
1 + s1 − kdU0

2
FD + ¯ , sA12d

ui = u0 + pSū1 +
1

2Le
FD + ¯ , sA13d

where

F =E
0

+`

dyff0syd + 1g. sA14d

These constants are the same on the solid side of the inter-
face owing to the property thatf0 is an odd function ofy,
and hence thate0

+`dyff0syd+1g=e0
−`dyff0syd−1g [4]. Thus,

both the temperature and the chemical potential are continu-
ous at the interface, as illustrated for theU field in Fig. 15.

FIG. 14. Comparison of the predicted dimensionless concentra-
tion profile in the solid along the central dendrite axis with concen-
trations in the solid at the interface computed from the Gibbs-
Thomson condition, Eq.(76), for the thermosolutal dendrite of Fig.
12 sLe=50d.
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To complete the derivation, note thatb is defined by the
relationshipui +Mc`Ui =−bV. Adding Eq. (A12) multiplied
by Mc` to Eq. (A13), and using the equilibrium condition
u0+Mc`U0=0 together with the relationp/V=W/D, yields

b = −
W

D
sū1 + Mc`Ū1d −

WF

2D
S 1

Le
+ Mc`f1 + s1 − kdU0gD .

sA15d

The combinationū1+Mc`Ū1 is now obtained from the con-
dition that Eq.(A7) must have a physically admissible solu-
tion. Since]yf0 is a homogeneous solution ofL]yf0 andL
is a self-adjoint linear operator, the left-hand side of Eq.(A7)
must be orthogonal to]yf0 for a solutionf1 to exist. This
yields the solvability condition

E
−`

+`

dy]yf0hD̃]yf0 − lg8sfdfu1syd + Mc`U1sydgj = 0.

sA16d

Substituting the earlier expressions foru1syd andU1syd in the
above relation, and noting that the terms linear iny give zero
contributions because]yf0 is an even function ofy, the final
expression,

b =
I

J

t

Wl
−

WsK + JFd
2DJ

S 1

Le
+ Mc`f1 + s1 − kdU0gD ,

sA17d

is obtained, where the same integrals as in Sec. 3A of Ref.
[4] have been defined:

I =E
−`

+`

dys]yf0d2, sA18d

J = −E
−`

+`

dy]yf0g8sf0d, sA19d

K =E
−`

+`

dy]yf0g8sf0dE
0

y

dy8f0. sA20d

It is now simple to check thatb defined by Eq.(A17) is
identical tob defined earlier by Eq.(51) with the additional
definitions

a1 =
I

J
, sA21d

a2 =
K + JF

2I
. sA22d
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FIG. 15. Schematic plot ofU in the diffuse interface region
illustrating howUi is defined.
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