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Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion
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A phase-field model is developed for simulating quantitatively microstructural pattern formation in solidi-
fication of dilute binary alloys with coupled heat and solute diffusion. The model reduces to the sharp-interface
equations in a computationally tractable thin-interface limit whigréhe width of the diffuse interface is about
one order of magnitude smaller than the radius of curvature of the interface but much larger than the real
microscopic width of a solid-liquid interface, ar) kinetic effects are negligible. A recently derived anti-
trapping currenfA. Karma, Phys. Rev. Lett87, 115701(2001)] is used in the solute conservation equation to
recover precisely local equilibrium at the interface and to eliminate interface stretching and surface diffusion
effects that arise when the solutal diffusivities are unequal in the solid and liquid. Model results are first
compared to analytical solutions for one-dimensional steady-state solidification. Two-dimensional thermo-
solutal dendritic growth simulations with vanishing solutal diffusivity in the solid show that both the micro-
structural evolution and the solute profile in the solid are accurately modeled by the present approach. Results
are then presented that illustrate the utility of the model for simulating dendritic solidification for the large
ratios of the liquid thermal to solutal diffusivitigkewis numberstypical of alloys.
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[. INTRODUCTION tern formation and has been the subject of several recent
) ) review articles[1,2]. Its most appealing feature is that ex-
Most cast metals typically contain one or more solutespjicit interface tracking is avoided by the introduction of an

and predicting the evolution of the microstructure and segreorder parameter, i.e., a phase-field variable, which takes on
gation patterns of solidified alloys is of great technologicalconstant values in the bulk phases and varies smoothly but
interest. Solidification of alloys differs in many respects fromsteeply in a diffuse interface region. The heat and solute
solidification of pure substances. The solidification rate isconservation equations are appropriately modified to account
limited by both heat and solute diffusion. The heat and solutdor the presence of heat and solute rejection inside the diffuse
diffusion fields are coupled at the solid-liquid interface by interface. Phase-field formulations involve new parameters
the relations for the interface temperatyeeg., phase dia- that must be related to physically measurable properties. This
gram) and by heat and solute flux balances. Furthermore, this often done through a “sharp-interface” analysis, which
solutal diffusivity in the liquid state is generally two to four considers the asymptotics of the model equations in the limit
orders of magnitude smaller than the thermal diffusivity. of vanishing interface width. Such a sharp-interface analysis
Therefore, solute diffusion is often on a length scale similaf€quires that the interface width be of the order of the capil-
to that of the microstructurée.g., dendrites and small sol- 1"y length, which makes computations intractable because
ute additions can strongly affect the interface pattern evolu@n €xorbitantly fine grid is needed to resolve the steep gra-
tion. Because of the low solutal diffusivity, larger solute ad-di€nts inside the diffuse interface.
ditions tend to slow the solidification rate relative to that in,, This problem is circumvented to a large extent by the

- .. . “thin-interface” analyses presented by Karma and Rappel
pure substances. Another characteristic of alloy s'olldllflcauc.) 3,4] for pure substances and by Karr& for isothermal
is the large contrast of solutal transport properties in soli

4 liauid- th lutal diffusivity is tvpically two to f olidification of dilute binary alloys. These thin-interface
and fiquid, the solutal diftusivity 1S typically two 1o Tour analyses assume that the interfacial region is small compared
orders of magnitude smaller in solid than liquid. This con-

4 . . . to the scale of the microstructural pattern but much larger
trast strongly influences the microsegregation pattern in t_hﬂwan the capillary length. Referenci5] illustrate the ad-

Yantages of the thin-interface analyses and also show that the

importance, direct numerical simulation of alloy solidifica- ,,5<e field parameters can be chosen such that interface ki-
tion controlled by both solute and heat diffusion has experi-

4 onlv limited netic effects are eliminated.
enced only limited progress. . Previous numerical studies of alloy solidification have of-
The phase-field method has become a widely accepteg

techni for th tational modeli f interfacial pat n omitted to solve the heat equation, but employed various
echnique for the computational modeling ot interfacial pa “assumptions for the temperature, i.e., isothermal domain,

constant cooling rate, “frozen gradient,” etf6—9. The

model presented here is intended for small concentrations
*Corresponding author. where, even though the thermal diffusivity may be much
Email address: becker@engineering.uiowa.edu larger than the solutal diffusivity, the solutal and thermal
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effects are still comparable and the solute and heat conser- To relate the sharp-interface and phase-field models later
vation equations need to be solved simultaneously. Recentlgn, it is convenient to define the dimensionless variables
a study of nonisothermal binary alloy solidification using the

phase-field method has been preserjt€d] but the authors - C7C 6)
report the presence of solute trapping and interface width (1-k)c.,’

dependent results. In Rgfl1], the model of Loginovaet al.

[10] is used together with an adaptive finite volume mesh T-T,—-mc,

that allows dendrites to grow without the thermal boundary 0= T (7)

layer reaching the boundaries. However, Réfl] also re-
ports the lack of convergence of results with interface widthwherec.. is the value ofc far from the interface that equals
and the presence of solute trapping. The phase-field mod#he initial concentration of the alloy. According to the above
set forth in the present work uses a computationally tractabldefinitions,U and 6 are dimensionless measures of the con-
thin-interface analysis that makes it possible to obtain resultsentration and the undercooling, respectively.

that are independent of the interface width and that provides In terms of these variables, the free-boundary problem
the freedom to choose the phase-field parameters such thagcomes
growth without kinetic effects or solute trapping can be

simulated. U =DV, (8)
This paper is organized as follows. In Sec. Il the sharp-

interface model of alloy solidification is reviewed. The a0=aV?o, 9

phase-field model is introduced in Sec. lll and the thin-

interface limit is presented in Sec. IV. A comparison of [1+(1-KU;]V,=-Dag,U|, (10

phase-field results with an analytical sharp-interface solution

for a one-dimensional solidification system is given in Sec. Vo= aldy 0ls— dn ), (12)

V. The model is further validated by comparing it to the

two-dimensional calculations of Karnj&] for purely solutal 6+ Mc, U, = — dox - BV, (12)

(isotherma) dendritic growth. Finally, several two-
dimensional dendritic growth simulations are presented fowhere the thermal capillary length is defined as
the case of coupled heat and solute diffusion with Lewis

numbers of unity and 50. Independence of the results on the 0= xr = L’VZICE (13)
diffuse interface width and the grid spacing is demonstrated. L/c, L

and vy is the excess free energy of the solid/liquid interface;
Il. SHARP-INTERFACE MODEL for simplicity, we takey to be isotropic to construct the
phase-field model and introduce anisotropy later on for the

Consider the solidification of a dilute binary alloy with yongrite growth simulations. Additionally, we have defined
equal thermal diffusivity(e) and specific heat at constant the kinetic coefficient

pressure(c,) in solid and liquid, and zero solid-state solutal
diffusivity. The standard set of sharp-interface equations con- _ S

h : (14
sists of wl
aqc=DV? (liquid), (1)  and the scaled magnitude of the liquidus slope
-m(1-Kk)
4T=aV?T (liquid and solid, 2 =T e (15
p

3) Note that the subscrigton 6 and U is present when these
guantities are being evaluated at the interf@be liquid side

] for U). In the following section a variablg is defined in the

LVy=Cpa(dn Tls= 3, Tl)  (heat conservation  (4)  phase-field model that is related to the chemical potential

(and hence is continuous at the interfpaed that is identical

T,=Ty+mg-T'x-V/u (Gibbs-Thomson (5 to the definition of Eq(6) in the liquid.

¢(1-kV,=-Dd,c; (mass conservation

wherec i_s th_e_mc_JIe fraqtion 0113 (solute atoms,D is_ the Ill. PHASE-FIELD MODEL
solutal diffusivity in the liquid,T is the temperature fiela
is the concentration on the liquid side of the interfakés The objective is to construct a phase-field model that re-

the equilibrium partition coefficienty,, is the normal veloc- duces to the above set of sharp-interface equations in a com-
ity of the interfaceL is the latent heafT, is the temperature putationally tractable thin-interface limit whe(g the width

on the liquid side of the interfac@,, is the melting point of W of the diffuse interface is mesoscopic, i¥/,is about one
pure solventm is the liquidus slope of the dilute alloy phase order of magnitude smaller than the radius of curvature of
diagram,I” is the Gibbs-Thomson coefficient, is the local the interface(e.g., the dendrite tip radiudut much larger
curvature of the interface, ang is the kinetic coefficient.  than the real microscopic width of a solid-liquid interface,
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and (i) kinetic effects are negligibl¢3=0) as for many al- tional. Our main goal is to formulate the phase-field model in
loys solidified at small undercooling/supersaturation. We firssuch a way as to solve the sharp-interface equations written
motivate the phase-field equations from a thermodynamidown in the preceding section in some computationally trac-
viewpoint and then analyze the thin-interface limit of thesetable limit. A nonvariational formulation has proven to be
equations by a direct extension of recent results for the isomore flexible for this purposgb].
thermal solidification of a dilute alloy5]. A form of the free energy density appropriate for the di-
The starting point of the model is an expression for thelute limit c<1 is used that has the advantage that it leads to
total free energy of the system that can be written in the fornsimple analytical forms for the stationary phase-field and sol-
ute profiles across the diffuse interfadg@ and a constany.
- g 2 The bulk free-energy density of the alldyg(¢,c,T) is writ-
FléeT]= f dv{ 2|V¢)| *ias(4,CT | (16 ten as the sum of the free energy of the pure matéfia)T)
and the contribution due to solute addition. The latter is the
sum of the standard entropy of mixingTvy(c In c—c),
whereR is the universal gas constant amgl is the molar
volume assumed constant, and the chas@®c of the en-
ergy density due to solute addition. The choice

wherefg(¢,c, T) denotes the bulk free energy density of a

binary mixture of A and B atoms/molecules and denotes

the solute concentration defined as the mole fractioB.of
The phase-field equations considered are

9 oF _ _

—=-Ky—, 17 1+9(¢)  1-9(¢)

it ? 8¢ 17 s =" et e (20)
Jc - - SF . interpolates between the valugsande, < e in the solid and
ot =V KCVE lat/ (18)  Jiquid, respectively, wherg(#) is a monotonously increas-

ing function of ¢ with limits g(x1)=+1, with ¢=+1(¢=
-1) corresponding to solidiquid). Adding together the pure
— = VT + ——— (19) and solute contributions yields

RT, _
whereK, andK are constants. Equatiai8) is equivalent  fas(¢,¢.T) = (¢, Ty) + fr()AT + V—M(C Inc-c)+ec
to the mass continuity relation with= 6F/ &c identified as 0
the chemical potential. The solute current consists of two

parts. The first K.Vu is the standard flux driven by the
gradient of chemical potential that reduces to Fick’s law of
diffusion in the liquid. The secong’§ﬁlt is an “antitrapping” where
current that is only nonvanishing in the diffuse interface re- (¢, Ty) = H(= 12 + ¢14), (22)

gion [5], and hence does not affect the bulk thermodynamic

properties of the model that remain governed FayThis  has the standard form of a double-well potential with a bar-
current produces a solute flux from solid to liquid along arier heightH and e =(es+e)/2 and Ae=es—¢ have been
direction normal to the interfac®:—§¢/|§¢|) that coun- defined_. Moreover, the pure part has been expanded to first
terbalances the solute flux induced by the gradient of chemrder in AT=T-T, by defining the function fr(¢)

cal potential across a moving interface. The latter leads to thg 7f(#T)/dTlr=r,,, andRT/ v, has been replaced Ty / v
well-known effect of solute trapping that has been studiecfince terms~AT, can be neglected in the dilute limit. Other
experimentally[12] and reproduced previously in a phase- Phase-field models are derlv_ed with expressions 'for the bulk
field model[13]. The characteristic velocity for solute trap- free energy that are not restricted to the dilute lif@i©]. For
ping, which is proportional td/W [12,13, is reduced ab- €xample, the model introduced in R¢®] describes the so-
normally for a thick interfacglarge W) in the simulations lidification of a binary alloy with a lens-shaped phase dia-
[5]. The form and magnitude of the antitrapping current car@ram. Also, Kim and co-worker§] have shown that, in the

be chosen so as to eliminate this spurious effect and to relilute limit, their model reduces to that of Tiadenal. [6].
cover precisely local equilibrium at the interface. Further- Next, the equilibrium properties of the model follow from
more, this current provides sufficient flexibility in the choice the equations,
of functions in the phase-field model to eliminate corrections

— As
+g(¢)?c, (21)

to the mass conservation conditi@nterface stretching and oF = g, (23
surface diffusioin that arise in the thin-interface limit when o

the solute diffusivities are unequal in solid and liqU&j14]

(and Ref[15] for the two-sided thermal modelNote that it oF

is possible to write down the phase-field model in a form gj) =0, (24)

where the temperature equation is also derived variationally

by introducing the energy density as an auxiliary variable where ug is the spatially uniform equilibrium value of the
However, this is unnecessarily complicated here since thehemical potential. These two conditions uniquely determine
antitrapping current already makes the equations nonvaridhe spatially varying stationary profiles afand ¢ in the
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diffuse interface regiorgy(x) and ¢(x). Thec profile varies The vanishing of the right-hand side of E®0) implies
between the equilibrium concentrati@}(T)[c’(T)] in the  that ¢o(X) =—tanhx/(V2W)] whereW measures the width of
solid (liquid) phase, which define the equilibrium phase dia-the diffuse interface. In addition, for E¢18) to reduce to
gram of the alloy. These concentrations are determined bfick’s law of diffusion in the liquid, the form

the standard common tangent construction that follows di-

rectly from Eqgs.(23) and (24). The latter is equivalent to K = —D () (34)
requiring that the chemical potential and the grand potential ¢ RTy q

(i.e., thermodynamic potential for a varying number of solute

particleg be equal in the solid and liquid, or, respectively, is chosen, wherg(¢) is a dimensionless function that dic-
tates how the solute diffusivity varies through the diffuse

dfyc,T) _ 9ficT) - (25  interface. With all the above choices, Es7) and(18) be-
dC ez IC o= & come
¢ RTy In k_,
fo(co,T) = mecd = fi(cf, T) = pec?. (26) T EWVG - P g ()
Applying the first equilibrium condition(23), we obtain at T-T In k
once X{C‘ MGXP(7[1 @@])], (35
RT, _ _ A
“Min c+ 5+ gld) - = pe, (27)
VO 2

Jc - - In k_ >
S -V \Dale)eV ne-—7g(e) | ~Jar).  (36)
from which the expressions for the equilibrium partition co-

efficient where 7=1/(K,H) has also been defined and EQ9) is

& oAe unchanged. To make contact with the results of Reiffor
k=—= exp( ) (28)  the isothermal limit wherd is constant, the above equations
G Rm are rewritten in terms of the dimensionless variable
and the stationary concentration profile
In k
u= —(,u W) =1In (clc,) — —[g(e) + 1], (37
RTy 2

o= oxp "Dt +gto00d). (29
which measures the departure of the chemical potential from
are obtained. Now, applying the second equilibrium condidts value w.. for a flat interface at the equilibrium liquidus
tion (24), yields temperature. In additiorg(¢) is eliminated in favor of the
functiong(¢), which has the same limif§(+1)=+1, using

2 .
. d;éo +H(do— 63 = (g AT+T (¢0) G, (30) the transformation
In k _ +k 1-k_
where the primes denote differentiation with respecitdf exp|—- [L+g(®)]] = > "3 a(¢). (39

the functionf(¢) is chosen of the form

RT After simple algebraic manipulations, E¢85) and(36) be-
M
fr(¢) = o P (-[l +g(¢>)]> (31 come
the right-hand side of Eq30) vanishes provided that (9¢> =WV2p+ p— > — www)
T=Ty+md. (32) -7
X (exp(u i ) , (39
It should be noted that E¢31) recovers standard thermody- mc,
namics of dilute alloys. Indeed, sincéy(+1)—f(-1)
=L/Ty [1], the right-hand side of Eq31) is such that the i - .
Van't Hoff relation T V - [Dy()cVU = jofl, (40)
L RTw(l-k) ~
E T (33)  where u=In(2(c/c..)/[1+k-(1-K)G(¢p)]). As discussed in
M 0

Ref. [5], additional freedom to obtain the desired thin-
is recovered by subtracting E@1) evaluated atp=+1 from interface limit can be gained by replacing the functaiip)
the same equation evaluateddst —1. This relation is a spe- in this last expression far by another functiorn(¢) that has
cial case of the Gibbs-Konovalov rule when applied to dilutethe same limits atb=+1. The simplest choice ib(¢)= ¢,
alloys[16]. which yields the new expression
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Van't Hoff relation for dilute alloys, Eq(33).
An asymptotic analysis of the thin-interface limit of this
model is needed to show that it reduces to the free-boundary

The phase-field model is how completely defined by Eqgsproblem defined by Eqg8)—(12). The basic results of this

(39+41) and(19), together with the additional choices

= _ C(1-KkW d¢ V¢
Jat= YA explu)— e | (42)
_ 1-¢
Q(¢)_1+k—(1—k)¢' (43)

analysis have already been summarized for the isothermal
limit in Ref. [5]. Given that the treatment of the isothermal
and the thermosolutal case are very similar, all the math-
ematical details of the analysis need not be repeated here.
The main difference between the two cases is the expression
for the interface kinetic coefficieng that is derived in the
Appendix for a one-dimensional interface. As in the isother-
mal limit, corrections to the mass conservation condition that
correspond to interface stretching and surface diffusion van-

The model defined by Eq§39)—43) yields the desired thin-

interface limit as discussed in the following section and the
Appendix. It is interesting to note that the present thermody-
namically motivated phase-field model is identical, with the
exception of the antitrapping current in the species equation.
and the choice of the functiog(¢) in Eg. (39), to that of 9l
Beckermanret al. [8], which was derived with a geometri-

ish in the present thermosolutal model. The expressions for
do and g3 that are necessary to carry out the simulations, are
given in the following.

The excess free energy of the solid-liquid interface is

ven by

cally motivated volume-averaging technique.

IV. THIN-INTERFACE LIMIT

7=WHf_ dy( d‘ilo) = IWH, (49)

To analyze the thin-interface limit of this model, as well Wherey is the coordinate along the direction normal to the
as to carry out simulations, it is useful to rewrite the phaseinterface scaled by, and1=2y2/3 is obtained by evaluat-
field equations in terms of the dimensionless thermal undedng the integral withg,=~tanty/(V2W)]. Note that the fact

cooling 6 defined by Eq(7), as well as the variable

exp(u) -1

U= ,
1-k

(44)

which reduces to the dimensionless concentration defined b

Eq. (6) on the liquid side of the interfacep=-1). The fol-
lowing final set of equations is obtained

LW+ - NG (DB ML), (@5)

ﬂ‘&:%.(Dﬂ§U+ —=[1+(1- k)U]a¢V¢)
2 ot 2 ItV ¢
149
+ 2 Hdl1+ (- kul), (46)
90 _ 2y, 196
= avV2e+ = >t (47)

where the coupling constantis defined as

_ _15RTy(1-KL _ 157
8 2yHc,m  16Hc, Ty’

(48)

thaty is independent of concentration in the present model is
a direct consequence of our choice of the free-energy density
that uncouples the equilibrium phase field and concentration
profiles in the diffuse interface. From the definitions of the
capillary length, Eq(13), and of\, EqQ. (48), one obtains at
¥nce that

do = a.l_ y (50)

W
A
wherea; =15/16=0.8839.... The equations of the present
phase-field model reduce identically to those analyzed by
Karma and Rappdl3,4] in the limit of vanishing concentra-
tion Mc,.— 0, as well as to those analyzed by Karipsd in

the isothermal case whetgis fixed.

The expression foB can be derived by applying the same
analyses as those presented in RE8s5| to derive a rela-
tionship between the planar interface velodityand the ther-
modynamic driving force at the interfagg+Mc.,.U; in the
present thermosolutal model. As detailed in the Appendix,
this analysis is considerably simplified by the fact that bth
andU have similar spatial variations in the diffuse interface
region at leading order in an asymptotic expansion where the
interface Péclet numbg=WV/D is the small parameter, or
equivalently at second order in an expansion whers the

andg(¢)=89(#)/15. The factor of 15/8 has been introduced small parametef4,14. This similarity is a direct conse-

such that for the choic@(¢)=15¢-2¢%/3+¢°/5)/8 and

9'(¢)=(1-¢%2,
those analyzed by Karma and Rappa}4] in the limit of

guence of the forms chosen for the antitrapping current, Eq.

Egs.(45—(47) above reduce identically to (42), and of the diffusivity functionq(¢), Eq. (43), and is

key to recover the desired thin-interface limit without correc-
tions to the solute or heat conservation conditions at the in-

vanishing concentratioMc,,— 0. Also 1/\ is a dimension-
less measure of the barrier height of the double-well potenterface and with local chemical equilibrium at the interface.
tial, and the second equality in E@8) follows from the  The expression fop is given by
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Bzal(ﬁ—azvsv[g+Mcm[1+(1—k)u]D, (51) D =Aay. (56)

“« Measuring length and time in units &%, and 7y, respec-
where a, is a constant that depends on the choice of thdively, scales out these parameters from the phase-field equa-
function g(¢). In this paper the standard form(¢)=¢  tions, in which case the only parameters left &xe\, and
-2¢%13+¢°/5 will be used, which has vanishing first and Le. The results can be related to physical units using the
second derivatives ap=+1, for which a,=0.6267...[4].  relation Wy=do\/a; and 7,=(d3/D)a,\3/a? [which follow
The whole term multiplyinga, originates from the fact that from Egs.(50) and(53)]. The results should be independent
both 6 and U are spatially varying in the diffuse interface of A when they are converged. Note that decreaiingrre-
region, i.e.,8=ay7/ W\ with botha andD tending to infinity ~ sponds physically to decreasing the interface width while
and hence bott# andU constant through the interface. Note increasing at the same time the height of the double-well
that for a realistic value oD/ ¢, this term is largely domi- potential so as to keep the surface energy and hepfieed.
nated by the spatial variation &, or equivalently of the
chemical potential, through the interface. This is becafise
varies on a scale/V that is several orders of magnitude V. VALIDATION FOR ONE-DIMENSIONAL STEADY-
larger than the scal®/V over whichU varies. Henceg is STATE ALLOY SOLIDIFICATION WITH KINETICS
essentially constant inside the diffuse interface when both
a/D>1 andD/V>W. It should be pointed out that in Ref.
[5], theU appearing in the expression fﬁns taken to be a An analytical solution of the Sharp-interface model can be
constant rather than the actual field. The constant valu¢ of found for the steady-state propagation of a flat interface into
that was used in Ref5] to evaluateB was the value corre- @ hypercooled melt of a binary alloy with kinetics, which
sponding to a sharp, flat interface under equilibrium condiprovides a validation case for the phase-field model. The
tions at the interface temperature, which was known becausgoverning equations of the sharp-interface formulation are
solidification was assumed to occur isothermally. This standewritten in a moving frame attached to the interface, which
in contrast to a thermosolutal situation where there is no wapropagates with a constant velociyalong the sole coordi-

A. Analytical solution for a sharp interface

of knowing the interface temperatuaepriori. natex as
It follows from Eg. (51) that 8 can be made to vanish JU 2U
provided thatr is chosen to be a function &f in the phase- V-—+D— =0, (57)
field model, defined by ax. . dX
7(U) = a2>\V\—/2 b +Mc,[1+(1-kU]]|. (52 V&—H + adz—z =0, (58)
D|a ax ax

As in previous studies, crystalline anisotropy is included, bytogether with the interface conditions

letting W=WpA(), where A==V ¢/|V¢| is the unit vector [1+(1-KUV=-DaUl|, (59)
normal to the interface and(h)=1+¢ cos 4p is a function
that describes the anisotropy, whepe arctarid, ¢/ dyp) is

: : . V=- aﬁx0|l , (60)
the angle between the direction normal to the interface and
the x (horizonta) axis, ande is a dimensionless parameter _
that characterizes the anisotropy strength. To carry out the 6 +Mc.Ui ==V, (61)
simulations, it is useful to define the scaled diffusivity and the far-field boundary conditions
~ Dmny limU(x)=0, (62)
D=— 53 —
Wg ( ) X
and the Lewis number )I(iﬂlb’(x) =-4, (63)
_«a whereA denotes an externally imposed dimensionless under-
Le D (54) cooling. The solution of Eq957)—(63) is given by the fol-
lowing spatial distributions ot) and #
Following Eg.(52), B can be made to vanish by inputting
. . 1 VX
into the phase-field model U= Eex - B , (64)
{U,V ¢V ) = [ ACV $/|V ) "
1 H:exp<— ——) -A, (65)
X L_e+MC°O[1 +(1-kU]|, (55 Le D
in the liquid andU=1/k and #=1-A in the solid, and the
and expression for interface velocity
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Mcoo 06 T T T T T T T T T T T T T T T T T
pV=A-1- K (66) L Mc_=0.15, k=0.15, D=2, BW,/1,=1.5, Le=1 //.-
exact 7
Since the equilibrium freezing range corresponding to a melt 051 _ _,___ variable Uin Eq. (68) for A // 7
concentratiorc,, is given by -mc,(1-k)/k, the last term in | — —.— — constant Uin Eq. (68) for 7»// i

— ——— Afrom Eq. (69)

Eq. (66) represents the freezing range nondimensionalized

by the unit undercooling../c,. For the solution to be valid,

therefore, the imposed dimensionless undercooling must ex-

ceed unity. >03
Using Eqgs.(6) and(64), the concentration distribution in

the liquid is given by

c=c {1+ﬂexp<— V—Xﬂ (67) >
o k D/|

The concentration distribution in the soliddsc,. 0.1

B. Comparison of phase field with analytical sharp-interface 0
results

After nondimensionalization using=, as the time scale FIG. 1. Comparison of predicte@interrupted lines and exact
andW=W, as the length scale, one-dimensional versions 0fsolid line) interface velocities as a function of dimensionless ther-
Egs. (45—47) were solved numerically until a steady state mal undercooling for one-dimensional solidification of a binary al-
was achieved. The equations were discretized with finite diffoy into a hypercooled melt. The dashed and dash-dot lines are
ferences in space and explicit time stepping. The computasbtained with the thin-interface analysis; the long-dashed line cor-
tional domain consisted of 2000 equally spaced grid pointstesponds to the sharp-interface analysis.

The dimensionless grid spacing and time step used were

Ax/\Wo=0.4 and At/7=0.008, respectively. Zero-flux ryrthermore, the valuadc..=0.15 anck=0.15 were chosen
boundary conditions were imposed on both ends for the congych that the two terms in the curly brackets in E88),
centration field. For the temperature field, the left end was /| e andMc.[1+(1-K)U], are of a similar magnitude, and,
taken as insulated and on the right end a time dependegbnsequently, thermal and solutal effects have the same im-

temperature, known from the analytical solution, was prépact oni. The only free phase-field parameter is the scaled
scribed. The latter boundary condition allows one to choose 8iffusivit D=Dr/W2 which is varied below in a conver-
smaller computational domain for Le greater than unity be- y D=D7o/ Wo,

cause it eliminates the need to compute the entire therm&°NCe study.

boundary layer. The initial condition consisted of a thin solidin T?Oe Ea“aé'g n dogstgrevg(s)ufﬁl:?hgerpagtirar:ﬁrc?gw?og t%%czrig; le
shell of concentratiorc,, and dimensionless temperature 1 Y g. (68) ' P

—A at the left end of the domain, and liquid of concentrationprObIem considered here, the equilibrium valueLbgt the

C.. at a prescribed undercooling, i.85-A, in the remainder. (sharp interface is known to be equal to &/This provides

. : - an opportunity to compare the performance of the phase-field
The interface was allowed to propagate to the right until the odel in the thin-interface limit foti) a variable U in Eq,

concentration boundary layer almost reached the right end (68) for \, whereU is taken from the solution of Eq46),

the domain(i.e., until the value olJ at the next-to-last grid and(ii) a constant U=1/k in Eq. (68) for A according to the

gﬁilchtadmtcorv?;?gs tthoe |I§]2t :‘r:dﬂgf tr?glr(]jtc;r'rt1g‘ien [;rr?gl(:l Ovv\(/eerc(ja tomethod used in Ref5] for isothermal alloy solidification, as
iscussed in Sec. IV. A third method to calculatés given

evolve in time again. This procedure was repeated until thg the sharp-interface limit. i.e
interface velocity reached a constant, steady-state value. y P T
The coupling parametex as obtained from Eq51) as

r
1 Asharp™ al,B_VV’ (69)

\= , (68)
% + 2 i +Mc[1+(1-KU] which does not consider any spatial variationslofand
am pLe ” within the diffuse interface. Equatiof®9) is obtained from
Eq. (68) by settinga,=0.
which implies that\ is a function of the concentratiaine., Figure 1 shows a comparison of the predicted interface
U). According to Eq(50), this causes the capillary length to speed as a function of undercooling with the analytical
be variable throughout the computational domain. Howeversharp-interface result, E¢66). It can be seen that for the
the capillary length plays no physical role in the one-thin-interface limit, both ways of computing the coupling
dimensional, flat interface problem considered here. Thearametefvariable or constart)) produce results that agree
value of the scaled kinetic coefficient was takeng¥s,/ y well with the exact solution, especially at lower undercool-
=1.5 and, in most cases, the Lewis number was set to unityngs. The sharp-interface limit result for the coupling param-
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FIG. 2. Effect of interface solutal Péclet numberpP&VV/D, FIG. 3. Predicted steady-state profiles from a phase-field simu-

on predicted interface velocities for one-dimensional solidification|ation of one-dimensional solidification of a binary alloy into a hy-
of a binary alloy into a hypercooled melt. The solid horizontal line percooled melt; the entire computational domain is shown.
corresponds to the exact solution given by E$); the interrupted

lines are from phase-field simulations using the thin-interface analysolute concentration in the bulk solid and liquid phases and
sis for the coupling constant varies continuously inside the diffuse interface. The phase-

eter, on the other hand, produces results that are not in qua(i'—eld and analytical profiles are seen to be indiscernible on

tative agreement with the exact solution. Equati®) he scale of Fig. 3. Figure 4 shows a closeup of the interfacial

indicates that the steady-state velocity of the interface is inzr;?'g;’uvl\t’zecr:ntgz %gg;n;e ?:;Y;?:g g.?\?:?i_ffrlg lnvdeglr; a:])g:,_\,
dependent of the Lewis number. This was verified numeri- bp : 9

clly by siulaing cases wih lrge Le, which i some in-1'° TPEIALTE 210 profes fom e prase et model
stances required using an implicit time discretization of theciated with thepshar Sinterface formulation. Figure 5 shows a
heat equation for numerical stability. P -9

Figure 2 presents the results of a convergence study fO§|m|lar closeup for various solute concentration profiles. The

one of the cases in Fig. M =2.3). Here, the predicted inter- 0.8
face velocity is plotted against the interfacial solutal Péclet 7} __ /—U exact
numberWV/D. This Péclet number was varied by changing i U from oh 71\: -0.9
. L~ . . . sk phase-tie

the scaled diffusivityD=D17,/W3 in the phase-field simula- |
tions. As expected from the thin-interface analysise Ap- 5k -
pendiy, the predictions approach the exact solution for small : 9 exact
interfacial solutal Péclet numbers. Physically, a small inter- 4 =4 11
facial Péclet number corresponds to a small interface width | @ from phase-field
relative to the diffusion length scale. If the interface width is = 3| 172
too large, the thermal or solutal boundary layers will be in-> | <
side the diffuse interface and cannot be accurately resolved i 13
Note that both a constant and a variablen Eq. (68) pro- 1 144
vide convergent results for smaller values \&6\/D. The ’
convergence behavior for a varialleis as good as or better 0 d.15
than for a constant). L A<2.1,Mc =015, B=2

A comparison of predicted and exact temperature and sol- "' [" k=0.15, Le=1.0, BW,/z,=1.5 d.46
ute concentration profiles is shown in Fig. 3. The interfaceis |
located atvx/D =0, withVx/D <0 being solid and/x/D >0 1 1 1 1 1 4.7
liquid; results for the entire computational domain are de- 02 -0.1 0 0.1 0.2

: . T . . : Vx/D
picted. The mixture concentration in the dimensionless ratio
c/c., also plotted in Fig. 3 is defined 48] FIG. 4. Closeup of the dimensionless temperature, concentra-
c=[(1-g)cy+ (1 +p)ci2, (70) tion, and phase-field profiles in Fig. 3 near the interface. Utand

0 profiles predicted by the phase-field model vary smoothly inside
and can be calculated frotd and phase-field profiles using the diffuse interface and match their sharp interface counterparts
Eqgs.(44) and(41). This mixture concentration is equal to the outside of it.
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FIG. 5. Comparison of predicte@nterrupted lines and exact FIG. 6. Predicted interface contours, every 20 000 time steps,

(solid liney concentration profiles near the interface for the simu-for two-dimensional, purely solutaisothermal dendritic solidifi-
lation of Fig. 3. The dash-dot line is the predicted mixture concen-<ation into an undercooled melt. The dendrite tip velocity is the rate

tration that interpolates between the concentrations in the liquid anat Which the interface propagates along the horizontal axis and the
solid. dendrite tip radius is the local radius of curvature of the tip of the

growing arm.

mixture concentration varies smoothly within the diffuse in- _
terface and approaches the concentration profiles in the bulikhich corresponds t®=2. The governing equations were
solid and liquid outside of it. The latter are obtained from thesolved on a grid of 808 800 node points, with explicit time
mixture concentration using the following relatioeg c,, stepping and finite differences for the spatial derivatives. The
=2(c/c,)/[1+k-(1-k)¢p] and cg/c,.=2k(c/c,)/[1+k-(1 grid size and the time step used wets/W,=0.4 and
-k)#], which follow from Eq.(70). These bulk-phase con- At/7,=0.018, respectively. Example results for the dendrite
centration profiles from the phase-field model are seen igvolution, using the model of Karnj&], are shown in Fig. 6.
Fig. 5 to agree well with the analytical predictions from the The initial circular seed in the lower left corner grows into a
sharp-interface model. dendrite with branches along the horizontal and vertical axes.
The local radius of curvature at the tip of these branches is
denoted byp and the tip propagation velocity by.
VI. SIMULATIONS OF ISOTHERMAL DENDRITIC To simulate isothermal solidification of a binary alloy
SOLIDIEICATION with the present model the Lewis number could, in principle,
o . N __ be set infinitely large. Needless to say, this is numerically
tion of a binary alloy into a constitutionally undercooled melt g in the entire computational domain and the heat equation
is simulated in two dimensions and the results are comparegas not solved. In order to compare directly to the results of
to those presented by Karnid]. The domain is a square box Ref. [5], which are presented in terms of the solutal capillary
with symmetry boundary conqmons applied on theT bottomjength dos=yTw/[LIM|(1-K)c?], it is convenient to choose
and left sides and a fixed far-field solute concentration at theg,e parameters in the present model such that the solutal and

right and top sides. The initial condition consists of a small,iharmal capillary lengths are equal, i.65x=d,. The ratio of
quarter-of-a-circle shaped solid seed in the lower left cornefhe two capillary lengths is given By ®

and undercooled melt in the remainder of the domain. The
far-field concentratiorc,, and the equilibrium liquidus con-

centration at the system temperatutp, are related via the dos = (L/cy) = 1-a —k)Q, (72
imposed solutal undercooling as do  -m(1-Kk Mc.,
_d-c.

— _ (72) where the second equality follows from E@&5) and (71).
(1-Kkc? Hence, wherMc.,, and 6,,s are chosen as

The following values of the system parameters were adopted

from Ref.[5]: 2=0.55,£=0.02,k=0.15, and no kinetic ef- Mc.=1-(1-KQ (73
fect (i.e., B=0). For the calculation shown in Fig. 6, the

value of the coupling constant was chosenias3.1913, and
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0, _—MCL (74) o 1 2 3 465 6 7 8
SYS “1-(1-KQ’ 3 T T | — T T T T
£=0.02, 6,,.=-0.55, Mc_=0.5325
respectively, the solutal and thermal capillary lengths are 25 k=0.15,Le—eo
equal. For the case shown in Rg5], for whichk=0.15 and _ _
0=0.55, Eqgs.(73) and (74) yield Mc,,=0.5325 andds,= variable Uin Eq. (55)
-0=-0.55. 2r \ -

The dendritic growth simulations performed using the A
present model correspond to a vanishing interface kinetic <
coefficient. Therefore, the relaxation timeén the phase-field %
equation must be calculated from E§5), which shows that -
7 is a function ofU. As discussed above, the value Wfin .
Eq. (55) is taken as a constant in R¢8], corresponding to
the liquidus concentration at the system temperaﬂ:ﬁr&ls—
ing Egs.(6) and (71) it is easy to show that this constant 05
value of U is given by Q/[1-(1-k)Q]. In summary, the
present model should produce the same results as that of Ref.

[5] if the temperature is set a,=—(), the initial melt con- % 2 4 6 8 10 12 14
centration is chosen adc,,=1-(1-k)(2, andU in Eq. (55) A
is taken ad)/[1-(1-k)Q]. FIG. 7. Predicted dimensionless tip velocities as a function of

Simulations were performed to study the convergence bei.e., interface widthand two choices of computing the relaxation
havior for decreasing values of the coupling conshatand, time, for two-dimensional, isothermal dendritic solidification of a
consequently, of the scaled interface widtfy/d,) and to  binary alloy into an undercooled melt. All simulations have the
examine the differences in the convergence behavior for §ame physical domain and initial seed sizes, and the tip velocities
constant and variable). The radius of the initial circular are evaluated at a time t/d5=48 000, which is near steady state.
solid seed was 44, in all cases considered. The grid spacing
was chosen aax/Wy=0.4, and the time step was varied _ S
depending on, to ensure numerical stability. For the values FOr both methods of computing the relaxation timéi.e.,
of \=15957,3.1913,6.3826,9.574, and 12.765 the tim&/ariable and constaid in Eq. (55)], it can be seen that the
steps used wereAt/7,=0.016,0.018,0.008,0.006, and tip Vvelocity at tD/d;=48 000 changes negligibly when
0.0048, respectively. The computational domains were addX/Wo is smaller than about 0.4.
justed to have the same physical size in each case, resulting
in 1600x 1600, 800< 800, 400x 400, 267x 267, and 200

X200 nodal points forn=1.59573.1913,6.3826,9.574, 3 ! ! ! ! ! ! ! !
and 12.765, respectively.

Figure 7 shows the predicted variation of the dendrite tip o5l £700% 00055, Mc ~0.5325, Le—en k=015
velocity with the coupling parametar. The velocities in Fig. 2=3.1913
7 are all evaluated at the same dimensionless elapsed time of
tD/d§:48 000. For the smallest three values Xf this . .

elapsed time is sufficient to achieve a steady-state growth
regime. Fon=9.574 anch=12.765, however, a steady state S L k&
is not quite achieved because of the onset of interactions :>’1.5 B Tt~ -
between the diffusion field and the far-field boundary. The € T~ ~
cases withh=3.1913 and\=6.3826 were also simulated / .
with the model of Ref[5] and the results were found to 1 constant U in Eq. (55)

agree exactly with those of the present model using a con-

stantU in EqQ. (55). It can be seen from Fig. 7 that the
predicted dendrite tip velocities converge to a constant value
with decreasing.. Compared to using a constadtin Eg.
(55), the convergence behavior appears to be slightly worse 1 1 1 1 1 ] 1 1
for a variableU. Nevertheless, the difference between the %203 04 05 05 07 08 03 1 14

two cases decreases with decreasing Ax/W,

Figure 8 shows the results of a grid independence study FiG. 8. Predicted dimensionless tip velocities as a function of
for the A=3.1913 case in Fig. 7. The values d%/W, con-  grid spacing and two choices of computing the relaxation time, for
sidered were 0.3,0.4,0.6,0.8, and 1.0. For those respecti¥@o-dimensional, isothermal dendritic solidification of a binary al-
cases the time steps wesé/ 7,=0.01,0.018,0.03,0.06, and |oy into an undercooled melt. All simulations have the same physi-
0.1, and the domains were squares with 178@M60, 800 cal domain and initial seed sizes, and the tip velocities are evaluated
X 800, 530x530, 400400, and 32 320 nodal points. at a time oftD/d§:48 000, which is near steady state.

variable U in Eq. (55)

05 -1
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VII. SIMULATIONS OF THERMOSOLUTAL DENDRITIC sence of solute trapping. In the presence of anisotropy, the
GROWTH Gibbs-Thomson relation can be written dgVic.,=—dy(N) «

. ) ] ~ —6. When applied in the direction of the horizontal dendrite
Next, the phase-field model is used to simulate nonisoyrowth axis[4], it becomes

thermal dendritic growth in two dimensions of a binary alloy
into an undercooled melt with coupled heat and solute diffu-
sion. Only cases with vanishing interface kinetic coefficient (1 -1%)/p- 6,
are considered, and the phase-field relaxation time is com- U= 0 p L
puted using Eq(55). Since the interfacial temperatures and Mc.,
concentrations are unknown, the variablenust be used in

Eq. (55).

First, a convergence study is presented for Le=1. Thdy recording the dendrite tip radius and interface tempera-
other physical parameters were chosenMis,=0.5325,k  ture during the simulationd); can be calculated as a func-
=0.15,£=0.02, andA=0.55. With these values, the terms tion of distance along the dendrite axis and be directly com-
1/Le andMc.[1+(1-k)U] in Eq. (55) for the phase-field pared to the frozemJ profile. The interface temperatuig
relaxation time are of approximately the same order of magwas evaluated ap=0.9, which can be seen from Fig. 4 to be
nitude. As the initial condition, a quarter-of-a-circle solid a reasonable approximation of the temperature of the corre-
seed of radius & was placed in the lower left corner of a sponding sharp interface. Numerical tests indicated that the
square box with a side length of 140 Symmetry boundary results are not sensitive to the exact valuegot which 6;
conditions were applied at the bottom and left boundariesyas evaluated. The results of this comparison are shown in
while the top and right boundaries had constant far-field Va'Figs. 1@a)-10(d) for the various values of. The agreement
ues of -1, A, and 0 prescribed fap, 6, andU, respectively. o the concentrations calculated from E@6) with the pre-
The governing equations were solved with finite differencesyjotaq solute profile along the dendrite axis is generally ex-

approximations and exphqt time stepping. Four d.'ﬁerentcellent. As expected, it deteriorates somewhat with increas-
values of A (and hence, interface widthwvere examined,

- ing \.
namely,A=3.1913,6.3826,9.574, and 12.7653, correspond Figure 11 shows predicted phase field, solute concentra-

ing to D=2,4,6, and 8,respectively. The grid size Was tion (U), and temperature profiles along the central dendrite
alwaysAx/Wp=0.4. In order to represent the same phySICaIaxis at a time otD/d3=470 000. The profiles illustrate the

length of 1730y, the grid sizes used are 1280200, 600 importance of the coupled heat and solute diffusion in the

X 600, 400x 400, and 306¢300  for A resent simulation. The interface temperature is significantly
=3.1913,6.3826,9.574, and 12.7653, respectively, while th ifferent from the far-field valug—0.55, and temperature

time steps for these respective valuesiofvere taken as - ) . .
At/ 7,=0.018,0.008,0.006, and 0.0048. variations are present even in the solid. Since Le=1, the

Figures a) through 9d) show the predicted time evolu- solute and temperature boundary layers have approximately
tions of the dimensionless dendrite tip velociyl,/D, tip ~ the same width. . . .
radiusp/do, selection parameter’, and ratio of tip radius to ~ Since the value of the Lewis number for binary alloys is
interface widthp/W,, respectively. The selection parameter typically much greater than unity, the growth of a dendrite
is defined here as"=2Dd,/(p?V), and should simply be with Le=50 was also simulated. The other parameters were
viewed as a dimensionless inverse producp®df; detailed chosen asMc.=0.1, £=0.02, A=0.55, k=0.15, and A
comparisons with available dendrite tip selection theories are 1.5957. The equations were solved numerically on a grid of
beyond the scope of the current study. Note that in Fig. 9 th800X 800 nodal points with a grid spacing &fx/W,=0.5
dendrite tip does not reach a steady-state growth regime bend a time step oAt/ 7,=0.001. Figure 12 shows a snapshot
cause of the limited size of the domain. In particular, the tipof the dendrite at a time dD/d§=3500. As expected from
velocity [Fig. 9a)] shows a marked increase when the ther-the large value of Le, the thickness of the thermal boundary
mal and solutal boundary layers start to interact with thelayer is much larger than that of the solutal boundary layer.
far-field domain boundaries. The increase is due to the use &ven though the Lewis number is large, the initial melt con-
fixed far-field temperature and concentration values as theentration is chosen low enough that the interface tempera-
boundary condition. The different lines within the plots cor- ture is significantly different from the far-field value. Some
respond to simulations performed for different values of thetemperature variations are present even in the solid. The di-
free parametei. It is clear from Figs. @a—-9(c) that the  mensionless concentratiaic,, is plotted separately for the
results converge for decreasing The plot of p/W, [Fig.  solid and liquid regions in the left quadrants. A complex
9(d)] and the proximity of the curves for=3.1913 and\ microsegregation pattern can be observed in the solid. Re-
=6.3826 in Figs. 8)—9(c) suggest that the ratjo/ W, should  gions with high positive curvatures during solidification have
be greater than about 10 to obtain converged results. high solute concentrations, and vice versa. The liquid inside

Another test of the accuracy of the present results is perthe deep pockets near the center is virtually homogeneous.
formed by comparing the predicted frozen solute profile Figure 13 shows the temporal evolution of various den-
along the dendrite axis with interfacial concentrations calcudrite growth parameters for the dendrite of Fig. 12. Note that
lated from the Gibbs-Thomson relation during solidification. at abouttD/d§=24OO a steady growth regime is almost
Such a check is particularly important for verifying the ab- achieved. At later times, the effect of the interaction of the

(76)
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FIG. 9. Predicted temporal variation of various growth parameters for two-dimensional dendritic solidification of a binary alloy into an
undercooled melt with coupled heat and solute diffusipe=1, Mc,,=0.5325,k=0.15, £=0.02, andA=0.55. The lines in each graph
correspond to different (i.e., interface width while keeping the physical domain and initial seed sizes the same.

thermal boundary layer with the domain wall becomes no- VIIl. CONCLUSIONS
ticeable. Note, however, that the selection parameter
=2Dd,/ (p?V) appears to remain constant. The raiio\, is We have presented a computationally tractable phase-field

approximately equal to 8 after the initial transient, indicatingmodel to simulate the solidification of a dilute binary alloy
that the results are close to but not fully convergeee Fig. with coupled heat and solute diffusion. The thin-interface
9). Figure 14 shows a comparison of the predidtegrofile ~ analysis of this model makes it possible to carry out simula-
in the solid along the dendrite axis with that calculated fromtions using interface widths larger than the capillary length
the Gibbs-Thomson relation, E(.6). In this case, the agree- but smaller than the radius of curvature of the interface, as
ment is not as good as in the Le=1 case, but the differenceell as for vanishing interface kinetic effects. The antitrap-
always remains within 5%. ping term in the solute conservation equation effectively
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FIG. 10. Comparison of the predicted dimensionless concentration profile in the solid along the central dendrite axis with concentrations
in the solid at the interface computed from the Gibbs-Thomson conditior(YBy.The simulations correspond to the thermosolutal dendrite
of Fig. 9(Le=1); the four graphs are for different valuesXofi.e., interface width, while keeping the physical domain and initial seed sizes
the same.

eliminates the solute trapping effect and other spurious cowvalidation was presented for the case of isothermal dendritic
rections to the mass conservation condition corresponding tsolidification of a binary alloy in two dimensions by compar-
interface stretching and surface diffusif®14]. In addition,  ing the results to the model of Karnfig]. The full model was
this term makes the model applicable to unequal solutal difthen applied to dendritic solidification with coupled heat and
fusivities in the solid and liquid. solute diffusion. For the case of Le=1, convergence of the
The model was first validated against an analytical sharpresults for decreasing values of the coupling parametee,

interface solution for the case of steady one-dimensional sahe interface widthwas demonstrated. The solute profile in
lidification of a binary alloy into a hypercooled melt. Con- the solid along the dendrite growth axis is in excellent agree-
vergence of the phase-field results was obtained witiment with concentrations calculated from the Gibbs-
decreasing interface Péclet numbers, as expected. Addition@homson relation, indicating that solute trapping is indeed
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FIG. 11. Predicted phase fieldl and 6 profiles along the central . ) )
dendrite axis for the thermosolutal dendrite of Fig(l®=1, X FIG. 13. Predicted temporal evolution of various growth param-

=3.1913 only at a time oftD/d2=47 000. eters for the thermosolutal dendrite of Fig. A2=50).
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plication of the present model to examine the operating state

of alloy dendrites for small solute concentrations where ther- A planar interface moving at velocity in the +x direction

mal and solutal effects are both important. is considered. Defining the dimensionless variajpte/W,
u
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3.25
3.00
c/c. 275
0.60 250
0 2.25 FIG. 12. Predicted results for
0.45 3(7)2 two-dimensional dendritic solidi-
e 150 fication of a binary alloy into an
0.30 1.25 undercooled melt with coupled
g5 :)-‘7’2 heat and solute diffusion for Le
015 0.50 =50 at tD/d3=3500. The upper
0.25 and lower right quadrants show
0:00 the dimensionless concentratibhn
and temperature fields, respec-
0 ; .

c/c. 0.29 tively; the left quadrants both
3.75 -8-2; show concentrationc/c,, fields,
ggg 034 with different scales used in the
3.00 -0.36 upper and lower quadrants in or-
i g der to better visualize the concen-
225 s tration variations in the solid and
f:gg 045 liquid, respectively.
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] L S e R S B —— (A1) and(A2) yield the system of linear equations
35 — _ _ _ Gibbs-Thomson condition - [(95 +(1- 3‘1’%)]‘1’1 =L ¢1=dyho~ N’ (¢g) (6, + MC,.Uy),
U profile from dendrite axis (A7)
3 -
Day[(1 - )3, Us] — [1 + (1 ~K)Uql(dybo — 2b/\2) = O,
25
(A8)
o 2} - ) 1
Le&yﬂl - E&y(ﬁo =0. (Ag)
15 A=1.5957, Le=50, Mc_=0.1 . Explicit expressions folJ; and ¢, can be obtained by inte-
k=0.15, £=0.02, A=0.55 . . ; )
grating twice with respect tg the last two equations and by
1 . using the fact that, ¢o=—(1-¢3)/\2. This yields
— 1+(1-kUq (Y
05 7 Uy(y) =U;-y+ TOJ dydo(y), (A10)
0
0 L I L I L I L I L I L I

0 100 200 300 400 500 600 o 1 y
X/d, O(y) = 0, + Ay + = J dyo(y), (A11)
2Lel,

FIG. 14. Comparison of the predicted dimensionless concentra- ] ] o )
tion profile in the solid along the central dendrite axis with concen-where the first constant associated with integrating once Eqg.

trations in the solid at the interface computed from the Gibbs-(A8) is easily obtained by examining the limit in the solid
Thomson condition, Eq76), for the thermosolutal dendrite of Fig. where the diffusivity vanishes. A crucial feature here is that
12 (Le=50. the same functiorf{dy¢o(y) appears in the expressions for
U; and 6, by virtue of the choice of the antitrapping current
and rewriting the phase-field equatiof@5)—(47) in a frame  that yields the combinatiofv, ¢y~ d; o/ \2) in Eq. (A8), as
moving with the interface, the set opposed ta(dy¢g) without this current. This feature makes
B the thin-interface limit of the isothermal solidification of a
—pDdy¢ = df,d) +¢->-\g'($)(6+Mc.U), (A1) dilute alloy[5] essentially identical to the thin-interface limit
for the nonisothermal solidification of a pure mg#]. The
1 -k 1-¢ p same is true here for the thermosolutal problem because of
—— U= ay<—ayu +—=[1+(1- k)U]&YQS) the additive property thaté,+Mc,U; has a similar
2 2 2\2 asymptotic behavior on the two sides of the interface&as
p alone whenc,,— 0 or asU; for fixed temperature. Namely,
-5 W[l +(1-KU]}, (A2)  the largey asymptotic behavior of the inn&r(6) solution on
the liquid side of the interface is the sum of a gradient term,
which represents the normal flux of solyteea), and a con-
- poyf= Leaie— gr?yﬁ, (A3) s.tantl_Ji(ei).that is equal to t_he value of t.he outer diffus?on
field (i.e., field that appears in the sharp-interface equations

. . . . _ on the liquid side of the interface. Adding the zeroth and first
IS qbtamed, where the mterfgce Péclet ”“mPG'WV_/D IS order inp solutions, the constants for the two fields are
typically a small parameter in mesoscale simulations. Fol-

— 1+(1-kUq

lowing the same steps as Karma and Rappel in Sec. Il A of

Ref. [4], solutions of Eqs(A1)—(A3) are seeked perturba- Ui=Uo+ p<U1+ TF) +o, (AL2)
tively by expanding the solutions in the diffuse interface re-
gion (inner solutiong in powers ofp:

— 1
i = St A13
6= do+ Py + PPyt ..., (Ad) b 0O+p(01+2Le)+ (AL3)
where
U=Ug+pUy+p?Us+ -, (A5)
+o0
F:J d + 1]. Ald
0= 0+ pby+p2O + - . (AB) o W o(y) +1] (A14)

Substituting these expansions into Egsl) and(A2), yields  These constants are the same on the solid side of the inter-
for solutions at leading order the stationary phase-field proface owing to the property that, is an odd function ofy,
file ¢o=—-tanHy/(V2W)] together with the equilibrium con- and hence thaf; dy ¢o(y) +1]=[o7dy] po(y) — 1] [4]. Thus,
dition 6,+Mc.,,Uy=0 that corresponds to a stationary inter- both the temperature and the chemical potential are continu-
face, wherefy andU, are constants. At first order io, Eqs.  ous at the interface, as illustrated for tbefield in Fig. 15.
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U +o0 ~
\ f dydyo{Ddydo = NG () 61(y) + Mc, Uy (y)]} = 0.

(A16)

Substituting the earlier expressions fafy) andU(y) in the
above relation, and noting that the terms lineay mive zero
contributions becausg ¢, is an even function of, the final

expression,
| WK+JF)[ 1
=- - ¥(— +Mc.[1+(1 —k)Uo]>,
JWA 2DJ Le
(A17)
y is obtained, where the same integrals as in Sec. 3A of Ref.
_ _ _ _ _ [4] have been defined:
FIG. 15. Schematic plot ob) in the diffuse interface region o
illustrating howU; is defined. | :f dy(o7y¢o)2, (A18)
To complete the derivation, note thatis defined by the
relationshipé,+Mc,,U,=-BV. Adding Eq.(A12) multiplied _ - ,
by Mc., to Eq. (A13), and using the equilibrium condition J= . dyadybeg’ (o). (A19)
6,+Mc,.Uy=0 together with the relatiop/V=WI/D, yields
+o0 y
W — —  WF(1 K= f dydybog’ (o) f dy’ o. (A20)
,3:—5(91+MC°CU1)—5 L_e+MC°O[l +(1-k)Uq] |- - 0

It is now simple to check thaB defined by Eq.(A17) is

(A15) identical toB defined earlier by Eq’51) with the additional
_ _ definitions
The combinatiord; +Mc..U, is now obtained from the con- |
dition that Eq.(A7) must have a physically admissible solu- a; =, (A21)
tion. Sinced, ¢, is a homogeneous solution @, ¢, and £ J
is a self-adjoint linear operator, the left-hand side of &)
must be orthogonal té, ¢, for a solutiong; to exist. This g, = KHIF (A22)
yields the solvability condition 2l
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