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We theoretically analyze the real-time formation of holographic grating driven by laser-photochemical
deposition in liquid solutions. Considering the one-photon excitation of a two-level system, we present a
reaction/diffusion description of the species produced photochemically by the excitation of a continuous laser
wave. By assuming that a deposit is heterogeneously nucleated on the substrate when concentration of the
reaction product reaches solubility, we develop a thermodynamic analysis of its late-stage growth under laser
irradiation. A rate equation is proposed and used to describe the kinetics of three different types of patterning:
dot array, periodic line writing, and holographic grating formed by two interfering beams. In each case, the
predicted deposit growth laws show the emergence of scaling regimes that give rise to a universal picture of the
processes involved, whatever the initial photosensitive medium is. Due to the crucial role played by patterned
coatings in numerous practical applications(lithography or holography, for instance), this controlin situ of the
kinetics offers the opportunity to totally monitor the desired patterning. It also suggests the way to develop a
unified description for holographic grating formation driven by photochemical deposition.
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I. INTRODUCTION

Control over mesoscopic periodic structures or patterns of
solid materials is of great interest for the development of
functional devices, with applications going from organized
micro-reactors and microsensors to optics and photonics[1].
For a few years, aside from conventional[2] and advanced
[3] lithographic techniques, or assembling[4] and soft li-
thography[5] procedures, patterning based on diffusion pro-
cesses is being promoted because it exhibits many advan-
tages, such as single step writing and smart tailoring over the
induced arrangement at the desired mesoscopic length scale.
An appealing approach consists in using laser waves to build
these patterns. Among the diversity of media used(photo-
polymers[6], polymer-dispersed liquid crystals[7], or artifi-
cial suspensions of nanoparticles/microparticles[8], for in-
stance), those resulting from diffusion-driven phase
transitions or surface-directed spinodal decomposition[9]
are of particular interest for two main reasons. First, the ma-
terial becomes intrinsically inhomogeneous after a quench
within the miscibility gap, giving birth to growing domains
of the minority phase. Then, while the following organiza-
tion can be tailored by deposition on patterned surfaces that
definitively constrains the structure, in laser-induced phase
transitions the size of the nucleated domains and their ar-
rangement are monitored in three dimensions by the proper-
ties of the light pattern. Classically, these optically induced
transitions are driven by laser heating[10], solvent evapora-
tion [11], electrostrictive or thermodiffusive concentration
variations [12], or photopolymerization[13]. On the other
hand, reaction/diffusion processes also give birth to periodic
patterning via Turing instability[14] and Liesegang figures

[15], for instance. In this case, irreversibility comes from the
chemical reaction and spatially periodic patterns are driven
by diffusion of the reaction product. Photochemically stimu-
lated deposition belongs to this family. The technique uses
UV or visible light sources to efficiently break molecular
bonds and induce rapid thin film deposition. When driven by
laser radiation, patterning by photodeposition combines the
advantages of phase transitions triggered by a reaction/
diffusion process(here a liquid/solid transition) and laser
light, (i.e., strong localization in excitation), spectral selec-
tivity in molecule activation, and ease of manipulation. That
is why this technique represents nowadays a well established
alternative for direct writing on surfaces without mask-based
photolithography[16]. While many reported experiments use
thermal decomposition or photolysis[17] under strong laser
irradiation to create vapors of elemental atoms or molecules
that adsorb in a second step onto a foreign substrate, photo-
chemical deposition from excitation of photosensitive liquid
solutions has received an increasingly important attention
[18] because it can be applied to a much broader range of
precursors(including molecular compounds). Light energy
conversion is also stronger(the material density is larger
than that of a gas phase), and production is easy because
experiments are generally realized in simple homemade tight
cells. Consequently, as photoabsorption cross sections are
larger than in gas phase, the process generally requires very
moderate beam intensities and thermal decomposition is of-
ten prevented. This flexibility[19] offers the opportunity to
deposit a large variety of materials going from noble metals
[20], semiconductors[21], or dielectrics[22] to bioorganic
materials[23]. Moreover, by irradiating liquid solutions with
a well-defined light intensity distribution it is possible to
write in one step and contactless conditions various types of
patterns(such as dot[24] or line [25] assemblies, or more
structured architectures such as holographic gratings[26])*Email address: jp.delville@cpmoh.u-bordeaux1.fr
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onto a flat[27] or a curved[28] solid substrate in contact
with the photosensitive solution. Laser light behaves as an
optical pencil which can tailor the material deposition in a
very “smart” manner by simply modifying the wavelength
used, the intensity distribution, and its spatial extension.

Although the basic principles of photodeposition are
rather simple, any particular application requires to carefully
tailor the properties of the material deposited. However, pho-
todeposition involves the kinetics of a liquid/solid phase
transition under an external field, here an optical excitation.
While the dynamic coupling between phase transition and
ordering makes this morphogenesis problem rich and chal-
lenging, it also implies that control over these nonequilib-
rium processes is a difficult task, not only because the de-
posit growth needs to be tailored but also because
metastability is a key phenomenon of first-order phase tran-
sitions. A thermodynamic description of the kinetics of depo-
sition under laser exposition is then crucial to predict the
performances of the final devices since they strongly depend
on the size, shape, and distribution of these deposits. Under-
standing of these various phenomena is nevertheless at an
early stage[15] because their theoretical treatment involves
subtle couplings between photochemically stimulated
reaction/diffusion systems and coarsening by diffusion/
adsorption within properly fashioned inhomogeneous elec-
tromagnetic field.

The present study is devoted to the analysis of these cou-
plings. We theoretically describe the kinetics of surface pat-
terning by photochemical deposition driven by a continuous
laser wave in a reactive solution; confrontation of our model
to experiments is presented in a companion paper[29], re-
ferred to from now on as Part II. Starting from a reaction/
diffusion scheme involving the one-photon excitation of a
two-level system, we describe the thermodynamic behavior
of the field variation of the photoreaction product. Assuming
a low solubility onset of the produced species(a condition
required in any efficient deposition process) and considering
that growth is driven by a solute adsorption mechanism, we
deduce the coarsening of the resulting deposit as a function
of light intensity distribution. Beyond prediction of photode-
posit growth itself, our goal here is to understand how these
kinetic aspects can be efficiently used to build large periodic
patterns, such as holographic gratings, and tailor their optical
properties in terms of phase and amplitude objects. Indeed,
different sort of periodic structures can be created. Dot or
line arrays are generally realized according to a serial proce-
dure; they are built element by element. As control over the
entire pattern means that each element should be identical to
each other in both radial extension and height, this strategy
requires great efforts directed towards the growth of a single
elemental brick to ensure reliable duplication. On the other
hand, parallel procedures are usually implemented by using
the fringe pattern of several interfering pump beams. In this
case, the radial periodicity is forced by optical excitation
while the important quantity to be tailored becomes the
height of the deposit, generally constituted by two superim-
posed contributions, a modulation over a pedestal. As any
particular application requires all these controls, we recon-
sider these three procedures and predict the growth of dots,
lines, and periodic modulations as a function of the exciting

parameters to anticipate the properties of the resulting pat-
terning. Moreover, theories about coarsening[30] show that
growth phenomena are described by simple power laws, and
hence a scaled dynamics is quite common. Here, we extend
this scheme to laser-assisted photochemical deposition. We
demonstrate scaling behaviors and explain the origin of these
scalings within the general framework of coarsening theories
driven by solute diffusion and mass adsorption. Such an ap-
proach is not only of particular interest for fundamental pur-
pose but it has also important drawbacks toward very prac-
tical situations since it gives a unified view of
photodeposition driven by a one-photon absorption, what-
ever the photosensitive mixture used is.

The paper is organized as follows. Within the framework
of reaction/diffusion processes, we present in Sec. II the fun-
damental processes at the origin of the photochemical pro-
duction of a new species from a photosensitive mixture. We
also illustrate how this production can easily lead to photo-
deposition when concentration reaches solubility. Our pur-
pose is illustrated with experimental results presented and
quantitatively analyzed in Part II of the series. The growth of
a circular deposit is analyzed in Sec. III. We first describe the
thermodynamic behaviors of the produced species. Then, we
develop a growth model of the deposit based on solute ad-
sorption, including both radial and height growths. We illus-
trate the different growth regimes that can be observed de-
pending on the interplay between the optically active
properties of the initial solution and those of the deposit and
the exciting beam characteristics. Emphasis is also directed
towards a scaling description of the behaviors predicted.
These predictions are extended in Sec. IV to line writing by
considering excitation with a scanning beam. The main pur-
pose here is to analyze the influence of the scanning velocity
on the transverse line growth under illumination. Using the
same formalism, Sec. V is entirely devoted to the growth of
surface relief gratings monitored by two interfering pump
beams. While most of the existing theories are based on thin
sine profiles, we present here a full description of the depo-
sition process, and show then in which conditions these pos-
tulated sine profiles are acceptable. We finally conclude in
Sec. VI with the opportunity offered by the present work to
predict the properties of surface relief gratings driven by
one-photon excitation and probe the pertinence of models in
view of the experiments presented in Part II of the series.

II. PHOTOCHEMICAL REACTION AND DEPOSITION
FROM LIQUID SOLUTIONS

A. Variations in concentration driven by a one-photon
absorption photochemical reaction

Let us consider a stable liquid mixture composed of two
speciesA andB solubilized in an inert solvent. In the pres-
ence of continuous laser radiation, we assume that(i) the
speciesA is light activated at the wavelength used and(ii )
only activatedA (denotedA* in the following) reacts with the
speciesB to irreversibly give birth to a productC. This two-
step reaction scheme can be represented as

E. HUGONNOT AND J.-P. DELVILLE PHYSICAL REVIEW E69, 051605(2004)

051605-2



5A + hn

k↓

k↑
A* ,

A* + B→
k

C,

s1d

wherek↑, k↓, andk are the different reaction rates. Assuming
that the speciesC has a very low solubility, these equations
represent the starting point of photodeposition based on the
simplest reaction-diffusion process that can lead to photo-

deposition. Note that the reverse reactionC→
kC

A* +B can eas-
ily be considered[22], but as soon as we deal with surface
patterning by photodeposition, we require a reaction ratekC
as small as possible to preserve the induced pattern; we thus
assume in the followingkC<0. On the other hand, except for
special cases involving forbidden transitions, the kinetics of
excitation/relaxationA+hn
A* is generally much faster
than any molecular diffusion process involved in the mix-
ture. Then, the concentrationsNA in A and NA* in A* , ex-
pressed in number of particles per unit volume, can be esti-
mated independently of the second step of the reactionsA*

+B→Cd and at steady state. This adiabatic approximation
simply means that the production of the speciesC, which is
at the origin of photochemical deposition, is obviously the
slowest step of the reaction. In these conditions,NA andNA*
are simply related byNA* =sk↑ /k↓dNA. To calculate the ratio
k↑ /k↓, we suppose thatA+hn
A* is governed by the most
common situation consisting in a one-photon electronic tran-
sition. Then, using the standard Einstein coefficients for the
one-photon absorption, and the spontaneous and stimulated
emissions [31], we find k↑ /k↓= I / s2ISd / f1+I / s2ISdg and
dI /dz=−sAsNA−NA*dI along the propagation axisz. HereI is
the intensity of the exciting wave, andIS=hn / s2sAt*d a satu-
ration intensity related to the lifetimet* of the excited state
A* and to the one-photon absorption cross sectionsA. Fi-
nally, to avoid any direct or indirect disturbing coupling re-
sulting from saturation effects(self-induced transparency
and/or excess overheating, for instance) in the experiments
presented in Part II, we will always consider thatI ! IS. Sol-
ute transport other than diffusion is then eliminated, and the
concentrationNC in C is described by the following reaction-
diffusion equation:

] NC

] t
= DC¹W 2NC + kNA*NB, s2d

whereDC is the mass diffusion constant of the productC. To
work with dimensionless variables and reaction rates ex-
pressed ins−1, we use volume fractionsF instead of concen-
tration N. We consider the molecular volumeyA* , yB, andyC
of particlesA* , B, and C, and writeF=yN. The resulting
reaction rate becomeskA*B=kyC/ syA*yBd. On the other hand,
in experiments presented in Part II, the area illuminated by
the exciting beam is always small compared to the transverse
extension of the sample; the medium behaves as a sort of
reservoir. We can thus assume thatFA<FA

0 and FB<FB
0

(i.e., the initial volume fractions inA andB). Working with
I ! IS, we obtain

] FCsr,z,td
] t

= DC¹W 2FCsr,z,td + kA*BFA
0FB

0 Isr,zd
2IS

, s3d

wherer represents the radial distance from the beam propa-
gation axis. The first and the second terms of the right-hand
side (rhs) of Eq. (3) represent, respectively, diffusion and
production of speciesC. Since absorbing solutions are al-
ways heated by the exciting beam, Eq.(3) should also con-
tain a third term associated to the concentration variation
driven by the Soret effect[32]. As this is not the central point
of the present work, we neglect here this thermodynamic
cross coupling.

B. Photochemical deposition

According to Eq.(3), production inC should increase
versus light excitation. Then, at a given temperatureu0,
nucleation and precipitation occur in the illuminated area as
soon asFC reaches the solubilityFSsu0d, as illustrated in the
schematic phase diagram presented in Fig. 1. This optical
quenching in composition can be used to build surface relief
gratings and dynamically control their patterning. Indeed, to
illustrate our purpose and show the versatility of the tech-
nique, we show in Fig. 2 three examples, taken from Part II,
of glass plate patterning by laser-assisted photochemical
deposition of chromium hydroxide from a chromate solution.
In Fig. 2(a), a periodic structure is realized dot per dot under
finite exposition for each deposit followed by a substrate
translation perpendicular to the beam axis. On the contrary, if
now we let the beam on during a continuous computed dis-
placement of the substrate, stripes are directly written. The
grid presented in Fig. 2(b) was realized according to this
procedure. Finally, periodic patterning can as well be gener-
ated by interfering beams. Figure 2(c) gives an example of
such a photodeposited holographic grating.

III. GROWTH LAW OF A CIRCULAR PHOTODEPOSIT

A. Photochemical quench in concentration induced by
a cw Gaussian beam

To describe how light-induced variation in concentration
can drive photodeposition, let us consider that the electro-

FIG. 1. Schematic concentration/temperature phase diagram of
the mixture composed of the initial solution and the speciesC pro-
duced by the photochemical reaction.FC and FSsu0d are, respec-
tively, the local concentration inC generated by laser irradiation
and the solubility at the working temperatureu0.
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magnetic field is a classical continuous TEM00 Gaussian la-
ser beam propagating vertically along thez axis. For large
beam waista0 and thin samples[i.e., for l ! s2pa0

2nSd /l0

wherel is the sample thickness,nS the index of refraction of
the solution andl0 the wavelength in vacuum], the beam
intensity has almost a cylindrical symmetry. Therefore, at a
radial distancer from the propagation axis andz from the
entrance of the cell containing the photosensitive mixture, its
variation is given by the following expression:

Isr,zd =
P

pa0
2 expF− S r2

a0
2 + szDG , s4d

whereP ands are, respectively, the incident power and the
optical absorption of the mixture; note thats<sANA

0 be-
causeNA* !NA<NA

0 for I ! IS. Equation(3) is then solved
according to standard techniques involved in calculations of
laser heating in absorbing media[33]. At first, we use the
notationKAB=kA*BFA

0FB
0 / s2pISd and rescale the length(re-

spectively time) variables with the beam radius(respectively
mass diffusion time scale over the beam radius) asR=r /a0,
Z=z/a0, andW=sa0 (respectivelyT=DCt /a0

2). Then, we in-

troduce the Laplace transformF̃ssd=e0
`FsTdexps−sTddT for

the rescaled time, and the Fourier-Bessel transformFsRd
=e0

`FsQdJ0sQRdQdQ for the radial variable, considering the
cylindrical symmetry of the exciting laser wave;J0sxd is the
zeroth-order Bessel function andQ the conjugate mode as-
sociated toR. Since the wave is attenuated within the me-
dium, we seek a special solution of the form

F̃C
SpecsR,Z,sd = F̃C

RsR,sdexps− ZWd. s5d

On the other hand, the homogeneous solution is written in
the general form

F̃C
HomsR,Z,sd =E

0

`
o
i=1

2

Gi
HomsQ,sdexpfs− 1diZÎQ2 + sg

s+ sQ2 − W2d

3J0sQRdQdQ, s6d

whereGi=1,2
HomsQ,sd are functions to be determined from the

boundary conditions. At first, we considerF̃CsR,Z→` ,sd
=0 due to the wave absorption in the medium. We assume
here that the attenuation length 1/s is small enough to as-
similate the sample with a semi-infinite medium; generaliza-
tion of the model to finite sample can easily be implemented
[34], but is unnecessary here. We deduceG2

HomsQ,sd=0.
Moreover, the rigid boundary condition at the entrance of the
sample implies that no axial diffusive flux ofC particle is
present atZ=0. This meanss]FC/]ZdZ=0=0. The complete
solution that satisfies these conditions is

FCsR,Z,Td =
KABP

2DC
E

0

` J0sQRdexps− Q2/4d
Q2 − W2

3 HQh1 − expf− sQ2 − W2dTgjexps− WZd

+
W

2 o
i=1

2

s− 1dihexpfs− 1diQZgerfcfs− 1diQÎT

+ Z/s2ÎTdgj −
Q

2
expf− sQ2 − W2dTgo

i=1

2

s− 1dih

3expfs− 1diWZgerfcfs− 1diWÎT

+ Z/s2ÎTdgjJdQ. s7d

To illustrate the variation ofFCsR,Z,Td versus the different
variables, we plot in Fig. 3 the radial stationary solution
FCsR,Z=0,T→`d /FMax at the entrance of the medium, as
well as the axial stationary behaviorFCsR=0,Z,T
→`d /FMax on beam axis. The temporal behaviorFCsR
=0,Z=0,Td /FMax at the beam center and the entrance of the
medium is illustrated in Fig. 4. In these graphs,FMax

=ÎpKABP/ s2DCWd corresponds to the maximum concentra-
tion rise FCsR=0,Z=0,`dW→` when beam attenuation is
very largesW@1d. Note in Fig. 3 that the radial variation in
concentration is much wider than that of the exciting beam.
This fact comes from the intrinsic structure of Eq.(3), which
is completely analogous to a heat transfer equation. This
analogy implies that production of the speciesC is dissipa-
tive. As a consequenceFCsR,Z,T→`d is not only propor-
tional to the local field intensity but also strongly depends on
boundary conditions. From the mathematical point of view,
this nonlocal variation appears through the “1/sQ2−W2d”
term within the expression ofFCsR,Z,Td. The same broad-
ening effect also appears on beam axis.

FIG. 2. Holographic gratings generated by laser-assisted photo-
chemical deposition on glass slides in a chromate solution under the
excitation of a continuous Ar+ laser (wavelength in vacuuml0

=514 nm). (a) Dots deposited discontinuously by a serial procedure
consisting in a series of finite illumination time followed by a cell
displacement; exposition timeDt=2 s, beam waista0=0.9 mm, and
incident beam powerP=0.3 mW. (b) Line array generated under
continuous scanning; scanning velocityVS=5 mm/s, beam waist
a0=0.9 mm, and incident beam powerP=0.3 mW.(c) Holographic
grating photodeposited by two interfering pump beams; exposition
time Dt=20 s, fringe spacingL0=5 mm, beam waista0=156mm,
and total incident beam powerP=10 mW.
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B. Influence of laser-induced heating

Before discussing the domain growth induced by photo-
chemical deposition, we must note that the first observable
laser-driven effect is an increase in temperatureuE associated
to the light absorbed within the mixture at the wavelength
used. The calculation ofuE has already been performed[33];
it is analogous to that developed above for the field-induced
variation of the concentration of the speciesC. Thus, we just
recall here the main results necessary for our purpose. Using
the fact that the thermal diffusivity is much larger than the
solute diffusion constantDC, the overheating is almost in-
stantaneous compared to any concentration variation. In
these conditions the temperature rise is calculated in steady
state and its largest value is given by

uEsR= 0,Z = 0,Wd = uMaxNsWd, s8d

where uMax=uEsR=0,Z=0,W@1d=P/ s2Îpka0d is the
maximum value of the temperature rise andk is the thermal
conductivity of the solution.uE also depends on a nonlinear
function NsWd of the rescaled absorptionW given byNsWd
=WDsW/2d−sW/2Îpdexps−W2/4dEisW2/4d, where Dsxd
=e−x2

e0
xet2dt and Eisxd=e−`

x set / tddt are, respectively, the
Dawson and the exponential Integral functions. Considering
the generic phase diagram presented in Fig. 1, the main in-
fluence of the temperature variationuE is to increase the
value of the solubilityFS required to quench the solution
without changing any of the mechanisms involved. As we

have assumedI / IS!1 in the present model, and thin samples
are always used in experiments, we will neglect this second-
order effect.

C. Liquid/solid phase transition induced by a
photochemical reaction

The temporal variation presented in Fig. 4 illustrates
quantitatively how laser-induced variation in composition
can be used to induce a liquid/solid phase transition. Indeed,
asFCsR,Z,Td.0, the concentration inC increases upon la-
ser radiation in the high intensity region. Thus, as already
illustrated in Fig. 1, the system is optically quenched in com-
position whenFCsR,Z,Td reaches the solubilityFS at the
working temperature. As a result, solid domains constituted
by the minority phase(here the speciesC) are nucleated by
the field in the solution and grow during further illumination.
Since the mixtures used are classically far from criticality,
nucleation essentially occurs heterogeneously, either on bulk
impurities [35] or substrate defects[30] in the absence of
particular treatment. However, substrate defects are generally
much larger than bulk impurities present in analytical re-
agents. The corresponding activation barrier is thus smaller
and photodeposition on the substrate is favored. As
FCsR,Z,T=0d=0, this also means that a minimum intensity,
determined fromFCs0,0 ,̀ d=FS, is necessary to quench the
mixture, and that process requires an induction timeTind
given byFCs0,0,Tindd=FS.

D. Radial growth rate of the deposit

As in any classical experiment the spatial extension of the
deposit is always incomparably larger than any molecular

FIG. 3. Radial(respectively axial) behavior of the normalized
stationary concentrationFCsR,Z=0,T→`d /FMax [respectively
FCsR=0,Z,T→`d /FMax] of the speciesC produced photochemi-
cally at the entrance of the excited medium(respectively along
beam axis) for W=1. The normalized radial Gaussian shape of the
exciting laser beam as well as its axial decay inside the absorbing
medium are represented in dashed lines for comparison.FMax is the
maximum concentration rise when the beam attenuation is very
large.

FIG. 4. Temporal behavior of the normalized stationary concen-
tration FCsR=0,Z=0,Td /FMax of the speciesC produced photo-
chemically at the entrance of the excited medium on beam axis.
Inset: log-log plot of the same data to illustrate the early-stage pro-
duction. FMax is the maximum concentration rise when the beam
attenuation is very large.
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length scale involved in the process, we deal with the so-
called late-stage kinetics[36] of the light-induced liquid/
solid phase transition. Therefore, we completely neglect the
nucleation stage of the transition. We just suppose that a
single nucleus is nucleated on the substrate and we assume
that its growth results from adsorption of the diffusingC
particles that are photochemically produced in the solution.
Moreover, as pure diffusion-limited aggregation would result
in a fractal structure[37] which is not observed experimen-
tally (see the textures in Fig. 2) we assume internal reorga-
nization of the adsorbed particles inside the deposit; this
early-stage process will be illustrated in Part II. Then, we
implicitly incorporate this internal reorganization by consid-
ering a “droplet growth” model by diffusion. A sketch of the
growth geometry is presented in Fig. 5. The immobile de-
posit is represented by a spherical cap of heighthsr ,Rd,qd
where Rdstd denotes its radius on the substrate andq the
contact angle at the perimeter.q,90° is assumed because
efficient photodeposition requires a “wetting” situation. The
growth rate of the photodeposit is then obtained by equating
its volume change with the normal component of the diffu-

sive flux JWC=DC¹W FC over its surface[36]. This leads to

dRd

dt
= DCs¹W FC ·nWdh, s9d

wherenW is a unit vector perpendicular to the deposit surface.
At this stage of the calculation, we should notice that in the
previous sections the beam intensity was written asIsR,Zd
= I0e

−R2
e−WZ while now light will cross the deposit(of nor-

malized heightH=h/a0 and absorptionW8=s8a0) before
reaching the photosensitive solution; remember that we have
assumed a vertical upward beam in agreement with the ex-
periments presented in Part II. Then, we rewrite the beam
intensity inside the solution asIsR,Zd= I0e

−R2
e−W8Ze−WsZ−Hd

to take into account light absorption within the deposit. The
normal component of the diffusive flux is then obtained by
solving the diffusion/reaction equation given by Eq.(3) with
the appropriate boundary conditions. At first, we continue to
considerFCsR,Z→` ,Td=0 due to the wave absorption in
the solution. On the other hand, we already supposed that the
photodeposit grows by adsorption of the diffusingC particles
at its boundaries. Then, the second boundary condition is

given byFCsR,Z=h/a0,Td=0 at the surface of the deposit.
As the radius of the deposit is measured atr =Rd and z=h
=0, we finally find

drd

dT
= cossqd

KABP

2DC
E

0

`

J0sQrddFsT,Qdexps− Q2/4dQdQ,

s10d

whererd=Rd/a0 is the reduced radius and

FsT,Qd =
1

Q2 − W2h− W+ Q erfsQÎTd

+ W expf− sQ2 − W2dTgerfcsWÎTdj s11d

is a function that describes the temporal behavior of the dif-
fusive flux normal to the deposit. Note that, contrary to the
diffusive mechanisms that govern the kinetics of laser-
induced liquid/liquid phase transitions in nonabsorbing liq-
uid mixtures, where the droplet feeding is ensured by the
radial mass flux[38], the deposit growth is here totally con-
trolled by the diffusive flux along the beam axis
DCs]FC/]ZdH because the solute adsorption condition im-
plies s]FC/]RdH=0.

While Eq. (10) gives the general expression for the
growth rate after the nucleation stage, experiments in phase
transition dynamics often deal with the late-stage growth in
the adiabatic approximation[39]. In this case, one analyzes
growth over period much larger that the mass diffusion time
scale and considers that the solute concentration around the
growing deposit is almost stationary. According to the tem-
poral behavior ofFCsR,Z,Td, this approximation operates
for T.maxh1,1/W2j, i.e., forT larger than the largest of the
radial and the axial diffusion time scales. Consequently, one
hasFsT,Qduadiab=1/sQ+Wd which yields to

Udrd

dT
U

adiab
= cossqd

KABP

2DC
E

0

` J0sQrddexps− Q2/4d
Q + W

QdQ.

s12d

One of the major points of the general theory of coarsening
phenomena is a description in terms of scaled dynamics at
late stage[30]. We therefore work within this approximation
in the following section, and present the different growth
regimes that can be predicted from Eq.(12).

E. Radial growth laws in adiabatic condition

While an efficient photodeposition process requires in any
case a reasonably important optical absorptions, the res-
caled absorptionW can nevertheless be made large or small
compared to one depending on the beam size. When the
beam waista0 of the writing beam is close to the diffraction
limit, as in the patterning illustrated in Fig. 2(a), we are
clearly in theW!1 situation. Then,W can be neglected in
Eq. (12) and the growth rate becomes

FIG. 5. Shape of the deposit used for the theoretical description
of its growth on the substrate. A spherical cap is assumed, whereRd,
h, andq are, respectively, the radius on the slide, the height, and the
contact angle. The deposit growth is described in cylindrical coor-
dinatessr ,zd to take advantage of the laser beam symmetry.
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Udrd

dT
U

W!1
= cossqd

KABP

2DC

Îp exps− rd
2/2dI0srd

2/2d, s13d

whereI0 is the zeroth-order modified Bessel function. If we
rescale time by takingt=cossqdsKABP/2DCdÎpT, we see
that rdstduW!1 points out a single-scale dynamics versus op-
tical parameters. Moreover, asKAB~NA

0 / IS andIS~1/sA, we
find that KAB~s and thus,t behaves ast~ssPt/a0

2d. This
means that the kinetics of one-photon photochemical depo-
sition in theW!1 regime is driven by the light energy de-
posited in the unit interaction volumea0

2/s. For rd!1 one
has rduW!1~t, which is equivalent in real variables toRd

~WsPt/a0
2d. Using the relationI0sxd<expsxd /Î2px for rd

@1, we find a second asymptotic behaviorrduW!1~Ît,
which leads toRd~ÎssPtd. During the late stages of the
deposition, i.e., when the deposit radius is much larger than
that of excitation, the growth does not feel anymore the in-
fluence of the beam waista0 and simply depends on the
energy deposited in the medium. These behaviors are illus-
trated in Fig. 6 as well as the variation predicted by Eq.(13)
when the initial condition used for integration isrdsT
=0duW!1=0.

On the other hand, due to the exps−Q2/4d term appearing
in Eq. (12), the integral contribution forQ.2 is almost neg-
ligible. Consequently, the growth rate in theW@1 regime
reduces to

Udrd

dT
U

W@1
= cossqd

KABP

DCW
exps− rd

2d. s14d

We now rescale time by takingt8=cossqdsKABP/DCWdT,
instead oft, to see that the kinetics still continues to point
out a single-scale dynamics. This behavior is nevertheless
different from that predicted forW!1. Indeed, as the new
time scale behaves ast8~ Pt/a0

3, it is no more dependent on
optical absorption. Forrd!1, we find rduW@1~t8, which
leads toRd~ Pt/a0

2. At early stage, growth is simply driven
by the light energy per unit surface. This behavior is not
surprising because one can assume thatW@1 is equivalent
to the case of a highly absorbing mixture. Then, only the few
first layers of liquid close to the incident substrate feel the
beam excitation. The corresponding growth regimes are also
illustrated in Fig. 6, as well as the variation predicted by Eq.
(14), in order to compare the full set of behaviors predicted
by the model. To represent the different growth laws versus
W within the same plot, i.e., with the same reduced variables,
we have assumed a constant value ofs, considering that
changes inW are accomplished by modifyinga0. In addition,
we state cossqdKABP/DC=1 for the comparison. At first, as
deposit growth is driven by the axial concentration gradient,
we retrieve the fact that a decrease inW accelerates its ki-
netics(see the temporal shift towards largerT for increasing
W at the early-stage growth). Inversely, the slope ofrdsTd at
late stage varies from 1/2 to almost0 for increasingW be-
cause light is more and more absorbed by the solution.

F. Thickness of the deposit

If deposits are used in optical systems as phase or ampli-
tude objects[19] or as template for subsequent assembling
[40], another important feature is the control over their
height because the deposit thickness can strongly affect light
transmission properties. Considering our spherical cap
model, the heighthd of the deposit on beam axis is related to
its radiusRd and to the contact angleq by the relationhd
=fs1−cosqd /sin qgRd. Thus, when wetting and surface ten-
sion dominate the deposit shape, the temporal behavior ofhd
is simply proportional to the radial growth. Moreover, the
proportionality constants1−cosqd /sin q shows that the bet-
ter the wetting, the thinner the deposit. Therefore, when both
given radial and axial sizes of the deposits are required for a
particular application, the substrate should be treated to ad-
just the contact angle. However, if one can assume that radial
growth is controlled by wetting at the edges of the deposit
where its height vanishes, such an assumption is much more
debatable when dealing with axial growth because the excit-
ing beam is attenuated within the deposit. Consequently,
there is no obvious reason to suppose that the shape of large
deposits is still controlled by surface tension, particularly
close to beam axis where the deposit is the thickest. The
preceding determination ofhd is thus reasonable if and only
if deposits are thin and characterized by a weak absorption.
If these conditions are not fulfilled, we should take into ac-
count the optical absorption of the deposit and remove any
forcing driven by surface tension. In this case, we assume
that the shape of the deposit is represented by a beam-

FIG. 6. Normalized late-stage growth of the photodeposit radius
in adiabatic conditions in low, intermediate, and high absorption
media. The regimerdsTdadiab~T (growth when the Gaussian shape
of the beam can be ignored) and the asymptotic late-stage behavior
rdsTdadiab~ÎT at low normalized absorption are depicted. We stated
cossqdKABP/DC=1 for the comparison.
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centered surface of revolution of heighthsrd. If the curvature
of the deposit is weak, i.e.,s]h/]rd2!1, the height growth
rate becomes

dh

dt
= DCs¹W FC ·nWdh. s15d

Then, since the height of the deposit is measured atr =0 and
z=hd, we find

dHd

dT
=

KABP

2DC
exps− W8HddE

0

`

FsT,Qdexps− Q2/4dQdQ,

s16d

whereHd=hd/a0 is the reduced deposit height. Integration of
Eq. (16) in the adiabatic approximation, with initial condi-
tion HdsT=0d=0, leads to

Hd =
1

W8
lnF1 +

KABW8P

2DC
SE

0

` exps− Q2/4d
Q + W

QdQDTG .

s17d

Even if we choose the beam waist as length of normalization
for harmonization purpose, note that Eq.(17) shows that the
emerging axial normalization isW8Hd=s8hd because the
axial length scale is 1/s8.Then, in the presence of highly
absorbing media, the growth of the deposit height at beam
center is at variance with that predicted from the radial
growth when surface tension governs the shape of the de-
posit: the temporal behavior becomes logarithmic at late
stage. Considering as before asymptotic cases, we find that
e0

`fexps−Q2/4d / sQ+WdgQdQ equalsÎp for W!1 and 2/W
for W@1. Then, if we rescale time by t
=sKABW8P/2DC

ÎpTd [respectively t8=sKABW8P/DCWdTg
when W!1 (respectivelyW@1), we see thatW8Hd also
points out a single-scale dynamics. Moreover, to link these
predictions with radial growth behaviors, it can be noticed
thatW8HduW!1~t andW8HduW@1~t8 for t ,t8!1, which are
equivalent in real variables tohduW!1~WsPt/a0

2d and
hduW@1~ sPt/a0

2d. Thus, as discussed above, we retrieve the
fact thathd behaves asRd at the early-stage growth(i.e., for
thin deposits when their thickness does not influence their
growth), but Eq. (17) also demonstrates that deviation irre-
versibly occurs at largerT. These behaviors are illustrated in
Fig. 7 as well as the general variation predicted by Eq.(17).
To represent the different growth laws versusW within the
same plot, i.e., with the same reduced variables, we have
assumeds8<s, considering that changes inW and W8 are
monitored by the variation in beam waista0. In addition, we
stateKABP/DC=1 for the comparison. At first, since growth
is driven by the axial concentration gradient, we retrieve the
fact that a decrease inW accelerates its kinetics(see the
temporal shift towards largerT for increasingW at the early-
stage growth). Moreover, contrary to radial growth the slope
of HdsTd at late stage does not vary withW; just its ampli-
tude is affected by the absorptions of both the deposit and the
photosensitive solution.

Finally, note that Eq.(17) is also known as the Elovich
growth equation[18], and has already been empirically used
by Peledet al. [41] to experimentally characterize, with rea-
sonable success, the growth of thin amorphous selenium film
photodeposited from colloidal solutions under continuous la-
ser excitation.

IV. APPLICATION TO CONTINUOUS WRITING
ON SURFACE

While in the preceding section the exciting beam was left
stationary, a simple and important extension of the model
consists in describing the effect of a scanning beam in order
to write lines on the substrate instead of dots. Indeed, in
numerous applications, the laser beam is used to generate
interconnects[42], to repair circuit defects in microelectron-
ics [43], or to create continuous microscale patterning on
surfaces[17,25] as an alternative to conventional lithogra-
phy. An example of such a surface patterning is presented in
Fig. 2(b). In the present section, we thus discuss the influ-
ence of the scanning velocity on the size of the lines depos-
ited. As the most appealing practical situation concerns the
deposition of narrow lines, we assume in the following that
the beam waist of the writing beam satisfies the condition
W!1. Moreover, ifVS denotes the beam scanning velocity,
the normalized characteristic time of deposition is now given
by TS=DCtS/a0

2, where tS=2a0/VS corresponds to the time
required to scan a distance equal to a beam diameter. For
reasonable scanning velocities, sayVS of the order of a few
microns per second, one hasTS!1 and deposition duringTS

FIG. 7. Normalized late-stage growth of the photodeposit height
in adiabatic conditions in low, intermediate, and high absorption
media. Note that the deposit height behaves in time and amplitude
as its radius(see Fig. 6) at the early growth stage. We assumedW
=W8 and statedKABP/DC=1 for the comparison.
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is described by the early-stage growth regime. One should
therefore take into account the time dependence ofFsT,Qd
in the growth rate equation[Eq. (10)]. As FsT,Qd
<

T!1

s2/ÎpdÎT, the line radius behavior obtained for the most

interesting narrow line case is

rS <
TS!1

cossqdKAB
8Î2

3Îp
ÎDC

P

sa0VSd3/2, s18d

which shows thatrS=rdsT=TSd~ PTS
3/2~ P/ sa0VSd3/2. Conse-

quently, if the beam waista0 is held constant as in most
experiments, the wideness of the written line can be con-
trolled in a very smart way because it is dynamically moni-
tored by two independent parameters, i.e., eitherP or VS,
depending on the experimental conditions. For highly ab-
sorbing liquid mixtures it is preferable to choose low laser
power excitations to prevent any alteration induced by ther-
mal decomposition and adjust the amplitude of the scanning
velocity, while in the opposite case variations inP are much
more easy to manage if required.

V. GROWTH OF A SURFACE RELIEF GRATING

In the preceding sections, we focused our attention onto
the growth of photodeposited patches and lines, considered
as elements of a larger structure. Periodic patterns are thus
generated via a serial procedure. Such a strategy, even nec-
essary in some specific situations, is time consuming because
patterning is build brick by brick. Deposition of surface re-
lief gratings by interfering pump beams circumvents this
problem because a parallel strategy is implemented.

A. Quench in concentration induced by two interfering beams

To build surface relief gratings, we consider two linearly
polarized cw TEM00 Gaussian lasers of same intensity that
interfere on the substrate with an anglec. Thus, three wave
vector distributions of width 2/a0 are excited in the medium;
a0 is the waist at beam intersection.L0=lM / f2 sinsc /2dg,
wherelM is the laser wavelength in the medium, denotes the
resulting fringe spacing andq0= uqW0u=2p /L0; these three dis-
tributions are, respectively, centered on the wave vectorsqW

=0W, qW =qW0=kW2−kW1, andqW =−qW0=kW1−kW2; kW1 andkW2 are the wave
vectors associated to the pumps. The distribution centered

aroundqW =0W (denotedq=0 in the following) represents the
contribution of the Gaussian intensity shape of the pumps
while those centered aroundqW0 and −qW0 (denotedq=q0 in the
following) describe the modulationL0 of the fringe pattern.
Assuming q0a0@1 to use the plane wave approximation
close to the beam crossing, we write the exciting intensity in
the liquid phase as

IsX,Zd =
P

pa0
2f1 + cossQ0Xdgexps− WZd, s19d

whereQ0=q0a0 andX=x/a0, represent, respectively the res-
caled wave vector and variable along the direction of the
modulation. We choose to writeI0 as I0=fP/ spa0

2dg to ex-
press the fact thatP continues to represent the total power

injected in the medium. Then, we reiterate the procedure
described in Sec. III B to determine the variation in concen-
tration driven by a one-photon absorption photochemical re-
action, except that now the spatial decomposition over
Fourier-Bessel modes is replaced by the spatial Fourier trans-
form FsXd=s1/2pde−`

+`FsQdexps−iQXddQ due to the plane
wave excitation assumption. In these conditions, we find

F̃C
SpecsX,Z,sd =

1

2p

KABP

DC
e−WZE

−`

+` fsQd
sfs+ sQ2 − W2dg

e−iQXdQ,

s20d

where fsQd=e−`
+`f1+cossQ0XdgeiQXdX=2pfdsQd+1/2dsQ

−Q0d+1/2dsQ+Q0dg represents the optical excitation in
Fourier space anddsxd is the Dirac distribution. On the other
hand, the homogeneous solution of Eq.(3) is written in the
general form:

F̃C
HomsX,Z,sd =

1

2p
E

−`

+`
o
i=1

2

Gi
HomsQ,sdexpfs− 1diZÎQ2 + sg

s+ sQ2 − W2d

3e−iQXdQ. s21d

ConsideringFCsX,Z→` ,Td=0 and rigid boundary condi-
tions at the entrance of the samplefs]FC/]ZdZ=0=0g, the
complete solution forFCsX,Z,Td is

FCsX,Z,Td =
1

2p

KABP

DC
E

−`

+` fsQde−iQX

QsQ2 − W2d

3 SQh1 − expf− sQ2 − W2dTgjexps− WZd

+
W

2 o
i=1

2

s− 1dihexpfs− 1diQZgerfcfs− 1diQÎT

+ Z/s2ÎTdgj −
Q

2
expf− sQ2 − W2dTg

3o
i=1

2

s− 1dihexpfs− 1diWZgerfcfs− 1diWÎT

+ Z/s2ÎTdgjDdQ. s22d

To discuss the behavior ofFCsX,Z,Td, let us assumeZ=0
for the sake of simplicity. Then the stationary variation in
concentration induced by the photochemical reaction be-
haves asFCsX,Z=0,T=`d,e−`

+`hfsQde−iQX/ fQsQ+WdgjdQ.
Thus, the contribution of theQ=0 mode (i.e., the back-
ground in the plane wave approximation) diverges. Consid-
ering the Gaussian shape of the pump waves instead of plane
waves, this divergence atQ=0 means that at late stage, the
pumps mainly drive the variation in concentration. Conse-
quently, the contrast of the modulation forced by the fringe
pattern is progressively blurred by the contribution of the
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Q=0 mode. This behavior is typical to a nonlocal process
[44]. To go further on this analysis we solve Eq.(22) for Z
=0. We obtain

FC„X,Z = 0,Td =
KABP

DC
S 1

W2F 2
Îp

WÎT − 1

+ expsW2TderfcsWÎTdG
+

cossQ0Xd
W2 − Q0

2 H W

Q0
erfsQ0

ÎTd − 1

+ expfsW2 − Q0
2dTgerfcsWÎTdJC .

s23d

The first term of the right-hand side of Eq.(23) corresponds
to the contribution of theQ=0 mode. The time scaleTQ=0
=1/W2 drives its kinetics. The second term describes the
dynamics of the forced modulation. It is characterized by the
time scaleTQ=Q0

=1/Q0
2. Since typical fringe spacing is of the

order of a few microns and manageable absorption of pho-
tosensitive mixtures smaller than 1 m−1, we see that
TQ=Q0

/TQ=0!1. Thus, the early-stage variation in composi-
tion is totally driven by the fringes while the contribution of
the pump waves starts to influence the dynamics at later time
to finally dominate the full process.

B. Photochemical deposition driven by two interfering beams
and deposit growth rate

As for the single beam configuration described in Sec. IV,
these variations in composition can monitor a periodic
liquid/solid phase transition. When solubility of speciesC is
reached, spatially modulated precipitation occurs. Since such
deposits are usually used in optical systems as phase or am-
plitude gratings, the important feature here is the control
over their thickness. As discussed above, a deposit is char-
acterized by a normalized absorptionW8, which is generally
different from that of the solutionsWd. Then, looking for
axial growth, the exciting intensity in the liquid phase in the
presence of a photodeposit becomesIsX,Zd=fP/ spa0

2dgf1
+cossQ0Xdge−WsZ−Hde−W8H for Z.H, instead of Eq.(19) used
to determine the variation in speciesC before the optical
quenching in composition. Moreover, Eq.(15) gives the tem-
poral behavior of the deposit relief, where the concentration
FC is calculated from Eqs.(20) and(21) with the appropriate
boundary conditions: complete attenuation at infinity
FCsX,Z→` ,Td=0 and solute adsorptionFCsX,Z=H ,Td
=0 on the deposit. Reassembling these points, we find that
the scaled heightHd of the modulated deposit is given by

Hd =
1

W8
lnF1 +

KABW8P

DC
E

0

T

fFsT8,Q = 0d

+ cossQ0XdFsT8,Q = Q0dgdT8G . s24d

As a result, the temporal behavior of the deposit height is

described by a logarithmic variation of the sum of two con-
tributions: the background corresponding to the pumps and
represented by theQ=0 mode, and the modulation driven by
the forcedQ=Q0 mode. Let us assume the typical values
Q0=10 andW=1. As FsT,Qd <

T!1

s2/ÎpdÎT does not depend

on Q, we see that theQ=0 and theQ=Q0 modes contribute
equally to the kinetics at the early stage of the deposition
process. On the other hand, asFsT→` ,Q=Q0d /FsT
→` ,Q=0d=W/ sW+Q0d, we expect that the dynamics at
late stage is monitored by the background contributionQ
=0. These behaviors are illustrated in Fig. 8 that shows the
temporal variations of the mean deposit heightW8fsHddMax
+sHddMing /2 and the half amplitude of its modulation
W8fsHddMax−sHddMing /2; we stateKABW8P/DC=1 for the
sake of simplicity.

While Eq. (24) gives the general formula for the deposit
height, its nonlinear behavior prevents any further analytical
description of the resulting optical properties in terms of dif-
fracted amplitudes. Indeed, when working with holographic
gratings it is important to separate as much as possible the
background to the modulation contribution because the
former usually acts as an amplitude pedestal(its phase shift
is constant) while the latter gives the phase shift required to
characterize the diffraction properties. To do so we use the
properties of the function FsT,Qd. Since FsT,Qd
<

T!1

s2/ÎpdÎT!1 at the early-stage growth andFsT,Q=Q0d

!FsT,Q=0d at later time, the influence of the nonlinear

FIG. 8. Temporal behaviors of the mean deposit height
W8fsHddMax+sHddMing /2 and the half amplitude of its modulation
W8fsHddMax−sHddMing /2 forced by theQ=Q0 mode. For compari-

son, also presented areW8H̄dsTd andW8DHdsTd corresponding, re-
spectively, to theQ=0 and Q=Q0 modes in the approximation

W8HdsX,Td<W8H̄dsTd+fW8DHdsTd /2gcossQ0Xd. Note the differ-
ence in amplitude between these two contributions. The parameters
used areQ0=10, W=1, andKABW8P/DC=1.
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logarithmic behavior is in fact weak, andHd can be decom-

posed asHdsX,Td< H̄dsTd+fDHdsTd /2gcossQ0Xd, where the
contributions of the modesQ=0 andQ=Q0 are

H̄dsTd =
1

W8
lnF1 +

KABW8P

DC
E

0

T

FsT8,Q = 0ddT8G ,

DHdsTd =
2KABP

DC

E
0

T

FsT8,Q = Q0ddT8

1 +
KABW8P

DC
E

0

T

FsT8,Q = 0ddT8

.

s25d

For comparison,H̄dsTd and DHdsTd are also represented in
Fig. 8. It can be noticed that the explicit separation in spatial
Fourier modes fairly well reproduces the general expecta-
tions. As a consequence, this very good approximation facili-
tates the dynamical interpretation of the resulting diffraction
pattern and allows us to separately determine the kinetics of
the pedestal and the modulation of the induced surface relief
grating [45].

VI. CONCLUSION

In the present paper we have theoretically investigated the
kinetics of periodic surface patterning resulting from laser-
induced photochemical deposition in liquid solutions. This
study was undertaken in view of understanding the different
steps involved in the optical excitation of photosensitive liq-
uid mixtures to form surface relief gratings. Due to its tech-
nologic significance in material science, particularly in pat-
terning diffractive elements, and to the diversity in materials
deposited, it is particularly appealing to build models that are
system independent as much as possible. Therefore, one can
avoid to continuously repeat the same tedious characteriza-
tion when excitation or material is changed. Preliminary re-
sults needed a theoretical background to understand the dif-
ferent mechanisms involved and to investigate the resulting
potentialities in material processing. To analyze the kinetics
properties of the induced patterning, we started from the very
beginning of the optical excitation process by describing the
optical quenching mechanisms driven by a photochemical
reaction. We derived the laser-induced photodeposit growth
for different significant experimental configurations. Three
main stages are involved in photochemical deposition. At
first, a new species has to be generated by a photochemical
reaction. We described this production by building a
reaction/diffusion analysis in presence of light excitation.
The important point concerning the evolution of the induced
species is that production is intrinsically nonlocal due to light
absorption within the medium. This means that the spatial
distribution of the produced species does not follow exactly
the electromagnetic field excitation; it is wider due to dissi-
pation. Then, as soon as concentration reaches solubility, a
deposit is heterogeneously nucleated on the substrate. We did
not describe this second stage. Instead we focus our attention

on the third stage that consists in the photodeposit growth
under illumination. Indeed, in this regime we reach deposit
length scales that are particularly attractive for optical appli-
cations. Moreover, the deposition kinetics does not depend
anymore on the substrate roughness and thus, as for the ki-
netics of phase transitions[36], one expect growth to be
described by universal scaling behaviors. That was our main
motivation in developing this study.

We have investigated this aspect in three distinct cases
that represent the main classes of surface patterning used in
applications. We first analyzed the most simplest case repre-
sented by the deposition of a patch(in fact a deposit with a
spherical cap shape) under the excitation by a classical
Gaussian laser wave. We have seen that its late-stage radial
growth is characterized by different scaled laws depending
on the ratio between the beam waist and the optical absorp-
tion length associated with the mixture; light absorption in
the medium brings a second length scale that can compete
with the beam size and, thus, modify the medium response to
excitation. So, we extended coarsening theories, used for the
description of the kinetics of first-order phase transitions at
late stage, to laser-assisted photochemical deposition. We ex-
plain the origin of these scaling behaviors according to the
general picture of coarsening phenomena driven by solute
diffusion and adsorption. Since a spherical cap growth model
obviously fails for thick deposits(spherical shapes are gen-
erally sustained by surface tension), we also described the
height growth to provide a description of the deposit mor-
phology as complete as possible. We recover an Elovich’
formulation of the height growth dynamics that was used to
analyze experimental data[41]. We then extended the model
to dynamic line writing by photochemical deposition. This
aspect is also important because lines are often deposited to
repair circuits and build electric contacts[42,43], for in-
stance. The scanning velocity appears as a new variable to
dynamically control at the same time the wideness and the
thickness of the deposited line. Finally, using two interfering
pump beams, we describe the dynamic building of a photo-
deposited holographic grating. Strictly speaking, it does not
follow exactly the electromagnetic field distribution because
the nonlocal response of the medium has an important con-
tribution around theq=0 Fourier mode. However, as far as
the evolving time is not too large, the background contribu-
tion, represented by theq=0 mode, can be decoupled from
the modulation driven by the forced modeq=q0. This sepa-
ration is of particular interest when dealing with dynamic
control of amplitude and phase shifts of diffracted waves
associated to periodic patterning. In terms of phase shift, the
pedestal associated with theq=0 mode is constant in space
while the beam attenuation associated to the modulation is
clearly negligible compared to that of the background.

As a conclusion, the present work shows how the dynam-
ics of periodic patterning by photochemical deposition can
be theoretically investigated. A major point is the emergence
of scaling regimes that can be used to predict the properties,
as well as the optical performances, of the induced pattern-
ing. Due to the crucial role played by photodeposition and its
control in numerous practical applications(surface pattern-
ing, lithography, or holography, for instance), this universal
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picture may represent a first step toward a unified description
of the processes involved. That is why the confrontation of
predictions to experiment is explored in a companion paper
using the photoreduction of chromates by continuous Ar+

laser waves in liquid solutions. The experimental data we
obtain show excellent agreement with our model, giving
valuable insights into the underlined physics for the design
of photodeposited holographic elements.
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