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Depletion potential in colloidal mixtures of hard spheres and platelets
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The depletion potential between two hard spheres in a solvent of thin hard disclike platelets is investigated
by using either the Derjaguin approximation or density functional theory. Particular attention is paid to the
density dependence of the depletion potential. A second-order virial approximation is applied, which yields
nearly exact results for the bulk properties of the hard-platelet fluid at densities two times smaller than the
density of the isotropic fluid at isotropic-nematic phase coexistence. As the platelet density increases, the
attractive primary minimum of the depletion potential deepens and an additional small repulsive barrier at
larger sphere separations develops. Upon decreasing the ratio of the radius of the spheres and the platelets, the
primary minimum diminishes and the position of the small repulsive barrier shifts to smaller values of the
sphere separation.
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I. INTRODUCTION Il. DENSITY FUNCTIONAL THEORY

Depletion interactions between big colloidal particles in- e consider an inhomogeneous fluid consisting of thin
duced by smaller particles, which can be either the solveng|atelets of radiu, in a container of volum. The plate-
particles or a colloidal component of its own, are of signifi- |g(5 are taken to be hard discs without additional attractive or

cant current research interest because of the importance plyisive interactions. The number density of the centers of
these effective interactions in various colloidal processesSyass of the platelets at a pointwith an orientationw

For example, flocculation of colloids can be driven by the:((9 ) of the normal of the platelets is denoted piy , ).
addition of nonadsorbing polymers via the depletion mecha:l.he equilibrium density profile of the inhomogeneous liquid

nism[1]. Whereas experimental and theoretical studies havﬁnder the influence of an external potenti& ,w) mini-
focussed on binary hard-sphere fluids as well as on coIIoidamizes the grand potential functional '
mixtures of hard spheres and hard rods or polymers, less
attention has been paid to hard platelets acting as depletants

despite the great importance of colloidal platelets such a@[P(r'w)FJdrs dow p(r,0)[keT(IN[47A%p(r,@)] = 1) - p
blood platelets and clay minerals in both biomedicine and

geophysics. Very recently a colloidal mixture of silica +V(r,0)] +Felp(r,w)], 1)
spheres and silica coated gibbsite platelets has been Sta@\i/here/\
lized for the first timg[2], and the depletion potential due to

the presence of thin hard platelets has been derived theore

is the thermal de Broglie wavelength apdis the

chemical potential. The free energy functiofa){ p(r ,w)] in

cally for noninteracting platelets corresponding to the ”mitgxcess O.f the |d¢al gas cpntnbunon has nqt been taken into
account in previous studies on the depletion force due to

o promton o dopton poml i aoosoo 1 PIIEIES2.3. We express the excess re energy unciona
PP . > dep P aly . as an integral over all possible configurations of two platelets
sults for noninteracting platelets provided the ratio of the

radius of the spheres and the platelets is ld&je kgT 3 3

In this paper we focus on the depletion interaction in- Feip(f,w)]:—TJdrl do; dr; dw, p(ry, wy)
duced by thin hard platelets, taking into account the steric
interactions between the platelets in terms of a second-order X Fpp(I 12,01, 02) p(r 2, @), 2

virial approximation. On the basis of our recent theoretica

\.j,\}gd;s ggt ﬂtﬁgts g;ctlﬁlgega:/%lﬂlr%t:l?;‘:‘err]:;riomirdb\gt%igﬂe'n th of the interaction potential between two platelets. The Mayer
P function equals -1 if the platelets overlap and is zero other-

platelets influence the depletion interaction already at rather . L ) . .
low platelet densities due to their cumbrous shape as comy o€ Explicit expressions of the Mayer function for thin
latelets are documented in Ref4,7].

pared with spherical or rodlike depletants. Taking excluded ; : .

volume interactions into account is particularly interesting For_the hor_nogeneous and isotropic bulk fluid the grand
because correlation effects may cause repulsive features gP tential functiona[Eq. (1)] reduces to

depletion forces which are important in the context of colloi- Q, 5 e 5

dal stability [6]. In the present paper we use density func- v = pplkeT(IN[A%pp] = 1) = u] + ?RgpkaT, 3
tional theory(Sec. 1) to study the depletion potential be-

tween two hard spheres induced by thin hard platé®es.  where p,=V1[dr® dw p(r,w) is the total particle number
[lI). Particularly, we compare the results with the ones obdensity. The equation of state derived from the grand poten-
tained for noninteracting platelets. tial [Eq. (3)] takes the following form:

Ivvhererlzzrl—rz and f(rqp, w1, w,) is the Mayer function
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FIG. 1. The system under consideration consists of two hard 0 0 0.1 0.2
spheres of radiu®ks immersed in a solvent of hard platelets of 3
radius R,. The separation between the surfaces of the spheres is prp
denoted byh. Only the projection of the spheres on the plane of the
figure is shown. FIG. 2. The surface and finite-size contributiop+2w(h) to the

grand potential as obtained from Eq#$), (2), and(6) (solid lineg
- of a fluid consisting of thin hard platelets of radils confined in a
Py :pE,(l +—pt*)> (4) slit of width h and in contact with an isotropic bulk reservoir at
2 densitypy,. The dashed lines represent the corresponding results for

: x_ 3 . . . anideal gas of platelefsee Eq(7)]. The width of the slit increases
with py=p,R; andpy= pr3/(kBT) The same equation with from bottom to toph/R,=0.5, 1.5,

out the second term in parenthe5|s holds for the ideal gas
limit (i.e., noninteracting plateletsWith increasing particle
number densny the ideal gas equation of state on one sid@ersed in the solvent and at macroscopic separaton
and the second-term virial seri¢gq. (4)] as well as com- (€€ Fig. 1

puter simulation dat§7—9] on the other side deviate. Thus

for pp=0.1 the osmotic pressupg=0.15, as calculated from A. The Derjaguin approximation

Eq. (4), agrees exactly with simulation data, while the ideal  The depletion potentialM(h) between two hard spheres at
gas equation of state underestimates the osmotic pressure Pjpse distance due to the presence of small plateggs

a factor of 1.5. The comparison of the calculated equation o can be calculated from the finite-size contribution of
state with computer simulation data exhibits that the two- the grand potential functiom(h’) of the platelet fluid con-

term series in Eq(4) is a good approximation fop; <0.2, fined between two parallel hard walls at distahteising the
whereas the ideal gas model may be used for very low par. Derjaguin approximatiofi13]

ticle number densitiep;, <0.04. For a discussion of higher-

order virial terms for fluids consisting of hard platelets we c ,

refer to Refs[4,10-13. In the present study we restrict our Woerj(h) = WRSJ dh” w(h'), (5)

attention to particle number densitip<0.2 for which the "

second-order virial approximation is appropriate and thewhereh is the separation between the surfaces of the spheres.

platelet fluid is in the isotropic phase. For comparison, thgFor the subtle issue of the range of validity of the Derjaguin

isotropic-nematic phase transition is first order with coexist-approximation see Ref§l4,15.)

ence densities)b,Rf;:OAG andprRg:O.S according to a We first consider a hard-platelet fluid confined by two

computer simulatiori9]. parallel hard walls azt=0 andz=h, and calculate the surface
and finite size contributions to the grand potential defined via

IIl. THE PLATELET-INDUCED DEPLETION POTENTIAL O[p(z,6,$)] =V, + 2Ay + Aw(h), (6)

BETWEEN TWO SPHERES . . .
whereA is the area of a single surfacey, is the bulk grand

The results of the preceding section show that intermoeanonical potential density, anis defined as the volume of
lecular interactions between platelets increase the osmotite container with its surface given by the position of the rim
pressure of the bulk fluid already at low particle densities.of the particles at closest approach so thWatAh. vy is the
Now we study the influence of intermolecular interactions onwall-liquid surface tension in the absence of the second wall
the depletion potential between two hard spheres of rédjus and w(h) is the finite-size contribution. Figure 2 displays the
immersed in a fluid of hard platelets of radiBs The deple- calculated surface and finite-size contributions to the grand
tion potentialW(h) is the free energy difference between the potential together with the results for noninteracting platelets
configurations of two big spheres at fixed distaritém- [2,3]
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h h h \?
prp{arcsir<—)+— 1—(—) } 0shs=2R,
[27+ w(h)]ideal - ZRP ZRP 2Rp (7)
kgT m 2%Yideal
—ppR, = , h=2R,.
2P T T P

As is apparent from Fig. 2 the steric interaction between the=—2y and (%) =0. Upon increasing the platelet density, the
platelets increases the surface contributions with increasingttractive minimum ofu(h) ath=0 deepens and a maximum
density. Within our numerical precision, we found that ana; |arger values oh develops. The corresponding solvation
accurate evaluatlon of the waII—Ilqwd_ surface tensmou_ld force per unit areg(h)=—dw(h)/dh is attractive for small
be achieved for a fixed wall separatibr 4R, at all consid- slit widths h as is shown in Fig. @). Upon increasing the

ered densitiep,R><0.2. For much higher densities, a larger . X
value ofh might be required because of the wetting of theP/atélet density, the cusp of the solvation forcehat2R,
wall-isotropic liquid interface by a nematic film of diverging Sharpens. For comparison we note that the maximum at the

thickness[5]. On the other hand the wall-liquid surface ten- Cusp is more pronounced for the confined platelet fluid than
SION Yigeal/ (ksT)=pyR,7/4 for noninteracting platelets fol- for a corresponding rod flui§6] due to the relatively larger
lows from Eq.(7) for a wall separatiorh=2R,,. For a de- steric interactions between platelets as compared with those
tailed discussion of the surface tension and the excedsetween rods. Moreovefth) is a convex function for slit
coverage as well as the density and orientational order payidths smaller than two times the radius of the platelets,
rameter profiles of fluids consisting of thin hard plateletsyile the solvation force in a solvent of hard rods is a con-
near a single hard wall we refer to Rg#J. The results for - caye function for slit widths smaller than the length of the
the finite-size contributions(h) are shown in Fig. @). As rods [6]. Figure 4 displays the depletion potential together

functu_)n ofh the finite-size co_ntrlbutlon corresponds to theWith the results for noninteracting platelets which can be
solvation free energy for the immersed two plates acting as

the confining walls for the fluid and, by constructian(0) calculated analytically from Eqg5) and(7) [2,3]:

h h2

ideah | _ 7p R2R5<£arcsir<L) +2 1—(—)2(1+—) —lh) 0<h<2R
TD,;L = PR, 2R,/ 3 2R, 8R2) 2R,/ P (8
0

The depletion potential due to the presence of interactingerturbation approach for the Helmholtz free energy per
platelets exhibits a small barrier at larger sphere separatiorsphere is

h in addition to the primary minimum a&t=0. With increas-

ing platelet density the depletion potential deepens and the -

position of the maximum shifts to smaller valuestofThe ¢, 5.) = 19 ) + ZWP‘J dr r2W(r - 2R)g™(r, py),

small repulsive barrier will have minor effects on kinetic 2Rg

stabilization, although the repulsive features might still be (9)
measurable. For example, our numerical calculations exhibit

a maximum barrier height of 0.RBT relative to zero at a N . . o .

density of pyR2=0.2 in a system of size rati®/R,=3.5 where g"(r, py) is the radial distribution function of the
corresponding to the aforementioned mixture of silicaPure sphere fluid and"9(p) is the Helmholtz free energy
spheres and gibbsite plateld®]. In order to examine the Per sphere for the same homogeneous fluid of depsitin
influence of steric interactions between platelets on thermothe limit Ry> R the radial distribution functiog"(r, pg) is
dynamic properties of sphere-platelet mixtures, we treat th@lmost constant over the range of integration wheve
depletion potential as a perturbation to the hard-sphere po=2Ry) # 0 and we can approximate it by its constant contact
tential. The first-order approximation in this thermodynamicvalue g"¥(2Rs, pJ) [16]. Using Eq.(8) the resulting integral
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FIG. 4. Depletion potentiaipe,j(h) between two hard spheres
of radius Ry=3.5R, due to the presence of thin hard platelets of
radiusR, as obtained from the Derjaguin approximatify. (5)]
for various bulk densitiesp, of the platelets: pg:prS
=0.02 (top curve$, p;=0.08 (middle curvey p;=0.2 (bottom

f(h)/(kgTpy )

0 . 1 > 3 . 4 curves. The solid lines(with dots marking the maximaepresent
the calculations for interacting platelets and the dashed lines denote
h/R . . )
p the results for noninteracting platelets. For reasons of clarity, the

lower four curves are shifted down by -8z and —0.9gT, re-
spectively. The dashed lines are zero foiR,=2. Although the
interactions have only minor influence on the depth of the primary
minimum, the depletion potential becomes significantly less attrac-
tive for increasing densitieg,. This weakens the platelet induced
flocculation of a solution of big spheres.

FIG. 3. (a) The finite-size contributiom(h) to the grand poten-
tial as obtained from Eqg1), (2), and(6) of a fluid consisting of
thin hard platelets of radiuR, confined in a slit of widtt for three
values of the density of the isotropic bulk reservqizg:prg
=0.05 (dotted ling; p;=0.1 (dashed ling p;=0.2 (solid line). (b)
The solvation force per unit arééh) =—dw(h)/dh of the same fluid
[with the same line code as {@)] as a function oh. HS) )
-exg-W(r—2Ry/(kgT)]), whereB} ¥ =167R3/3 is the sec-
ond virial coefficient of the pure hard-sphere system. With

in Eq. n valuat nalytically for noninteracting . . X o o
g. (9 can be evaluated analytically for noninterac gmcreasmg platelet density, the second virial coefficient ex-

platelets: hibits a change of sign, signalling the possibility of a gas-
(idea) ° 2\/\/3%3?% -2R) liquid coexistence of a “liquid phase” rich in sphe(gsor in
= —noern » = ¥ “ ” H H : H
Aperj = ZWPsf drr T = platelet and a “gas phase” that is poor in sphe(gsh in
2R B platelety in agreement with a recent free-volume scaled-
64R R? particle approachi17].
—2772prgpSR§<7T+_—E +1—g> (10
45Rs  12RS B. Density functional approach
The integrated strength of the depletion potenﬁ%tjab is A general approach for calculating the depletion potential

negative, reflecting the fact the depletion potential is alway4s based on a density functional theqyFT) for a mixture
attractive(Fig. 4). A numerical calculation of the correspond- Of hard spheres and the particles acting as deplefa8{9.
ing quantity Ape,; for interacting platelets exhibits that the This approach avoids the Derjaguin approximation. The
steric interacting between the platelets weakens the intedepletion potentialW(r) is defined as the difference of the
grated strength of the depletion potential by 22% at a bullgrand potential between a configuration in which the sphere
densityprS:O.Z. Hence the influence of steric interactionsacting as test particle is in the vicinity of another fixed sphere
between platelets might be quite visible for phase equilibriaand one in which the former sphere is deep in the bulk. This
For example, the thermodynamic onset of flocculation of colgrand potential difference can be expressed in terms of the
loidal spheres induced by the depletion effect will be reducedlifference of one-body direct correlation functions:
due to platelet interactions.
: - (o W) _ W

In order to elucidate a possible depletion induced phase ——=¢g’() =¢cg(r). (11

separation, we have calculated the second virial coefficient kT

of the fluid mixture according t(1532=B(ZHS)+27-rf°2°RS drr3(1 DFT provides a route to the depletion potential since
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0.12 T T T T T T
C(l)(r) —_ LM (12)
° keT  dp(r) ,

where F. [ py,ps] is the free energy functional in excess of [\ [\

the ideal gas contribution to the grand potential of the 0.08
platelet-sphere mixture ang(r) denotes the number density -
of the spheres. For a given function@l,/ p,,ps], One can T
obtain the depletion potential from the one-body direct cor-
relation function in the limit of vanishing density of the 0.04
spheres. While for a binary hard sphere mixture a reliable '
fundamental measure functional is availaplég], at present

there is no similarly successful functional known for a
platelet-sphere mixture at arbitrary number densities. In view

of this state of the art we use the exact low-density, second- 0 01t
virial functional F¢{ py,, ps] [19], which leads to the following

approximate expression for the depletion potential: iR,

FIG. 5. Orientationally averaged density profilg) as obtained
_ _ from Eq.(14) for hard platelets of radiuR, in contact with a single
dr3 de[p(ry, %,0)]fsl(r =11, 0), : P \
f 1 dw[p(r 1, 0) = p(*,w)] sp( 1,0) hard sphere of radiuBg located atr=0. The radius of the sphere
(13) increases from left to righR/R,=0.5,1,3,5. Tharrows mark the
location of the surface of the sphereratR.. Since the platelets are

wheref(r-r,, ) is the Mayer function of the interaction arbitrarily thin their density is nonzero foe> Rg, All curves exhibit
potentia?lp betwéen a sphere and a platelet. The Mayer funé Z5°P ar =R+ R, followed by a decay towards the bulk density

. . . . R3=0.085, which is essentially reachedratR.+2R,. When the
tion _equals “1if the part|cle_s |ntersect_or tout_:h each othe gnter of a platelet is located Ie);s thanfrom Tksle sp?]ere surface,
and '_S Z€ero otherW|s¢1(r1,w_) . the_denS|_ty profile of plate- there are fewer possible orientations available to the platelet.
lets in the external potential of single fixed hard sphere

located at the origin of the coordinate system afd, ) is
the corresponding density profile of the bulk fluid. We em-
phasize that the density profile entering E§3) depends
only on equilibrium properties of the depletant fluid in the p(r) = J dw p(r,w) (14)
absenceof the second hard sphere to be inserted at position

r. This observation simplifies the calculation\dfr) consid-  of the platelet fluid in contact with one fixed hard sphere is
erably, because the symmetry of the density profile is deteishown in Fig. 5 for various radiR; of the sphere. Upon
mined solely by the symmetry of the external potential of aincreasing = R, from the surface of the sphere the averaged
single sphere fixed at the origin of the coordinate system. number density increases and exhibits a cusp=d® + R,

Apart from possible surface freezing at high densitiesyhere platelets with their normal perpendicular to the radial
nonuniformities of the density depend only on the radial disdirection touch the surface of the sphere with the rim. The
tancer=[r|, so thatp(r ,w) =p(r,w). Hence, calculating den- maximum at the cusp is about 25% above the bulk value
sity profiles before insertion of the second hard sphere i§;bR3:0.085 for a size rati®;/R,=5 and is less pronounced
much easier than after insertion, when the presence of thigr smaller size ratios. The averaged density close to the
second sphere leads to a more complex spatial variation &urface of the sphere is larger for a small sphere than for a
the densities. A detailed discussion of E4§3) and its appli-  big one. Figure 6 displays the calculated depletion potential
cation to the analogous case of noninteracting hard rods acfor two size ratiosRy/R, as a function of the separation
ing as depletants is given in R¢fL9]. between the surfaces of the sphelies - 2R,. With decreas-

For an ideal gas of platelets in contact with a fixed harding size ratio the range and the depth of the primary mini-
sphere the density profile reduces fr;,w)—p(*,®)  mum shrinks and the position of the small repulsive barrier
=p(>,w)fsr1,w) so that the integral in Eq(13) has a observed at higher densities shifts to smaller value$.of
purely geometrical meaning and measures the excluded voMoreover, the height of the repulsive barrier decreases upon
ume of a platelet confined between two hard spheres locatetkcreasing the size ratio. These results are due to the fact that
at the origin of the coordinate system and at positiome-  the number of platelets contributing to the depletion potential
spectively. decreases as the ratio of the radius of the spheres and the

In order to take intermolecular interactions between theplatelets becomes smaller at a fixed bulk den&@ge Fig. 5.
platelets into account we first calculate numerically the den- In agreement with a recent theoretical sti@ybased on
sity profile p(r, w) of platelets in an external potential of one an evaluation of the excluded volume of a single platelet
fixed hard sphere of radiuR.. Thereafter the integral in Eq. confined between two hard spheres, we find that the Der-
(13) is evaluated by inserting this density profile. To ourjaguin approximation for the depletion potential in the pres-
knowledge, this technique has not been used beforénfor ence of noninteracting platelets yields accurate results for
teractingnonspherical colloids acting as depletants. large size ratioR;/R,>1. However, there are substantial

WO _
keT

The orientational averaged density profile
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FIG. 6. Depletion potentialM(h) between two hard spheres of
radiusRs=3R; in (a) and Rg=0.5R,; in (b) due to the presence of
thin hard platelets of radiuR, as obtained from Eq13). The bulk
densities of the platelets areigzprgzo.OZ (top curvey;, pp
=0.08(middle curvey p;=0.2 (bottom curves Hereh=r-2Rg is

the separation between the surfaces of the spheres. The solid a

dashed lines represent the calculations for interactibigT) and
noninteracting plateletgideal ga$, respectively. In addition the

depletion potential as obtained from the Derjaguin approximatio

[Eq. (5)] for interacting platelets is displayed by dotted linegan : e !
For the smallest bulk density the solid and dotted line nearly coinintegrated strength of the effective interaction between the

cide in (a). Since in(b) the spheres are only half as big as the SPheres becomes significantly weaker and thus reduces the
platelets, in this case the Derjaguin approximation is unsuitable anthermodynamic onset of flocculation.

therefore not shown. Only for sufficiently large densities a maxi-

PHYSICAL REVIEW E69, 051501(2004

deviations at higher densities as can be seen from k&). 6
The absolute valuBM(h=0)| of the DFT solution at contact

is smaller than the one obtained from the Derjaguin approxi-
mation, and the repulsive barrier is less pronounced. For
RJ/Ry<1 and higher densitiep, the DFT results deviate
strongly from the predictions for noninteracting plateleise
pp=ppR5=0.2 in Fig. Gb)].

In view of the significant difference between the DFT
results and the Derjaguin approximation shown in Fi@) 6
one may wonder if this is partly due to the fact that we have
used the low-density functiondEq. (13)] within the DFT
framework. At the present stage we cannot answer this ques-
tion since the next higher-order virial term contributing to
the depletion potential would require the numerical evalua-
tion of a ten-dimensional integral, which is beyond the scope
of this study.

IV. SUMMARY

We have applied a density functional theory to fluids con-
sisting of thin hard platelets confined between two hard
spheres(Fig. 1). Within the framework of a second-order
virial approximation of the excess free energy functional, the
depletion potential between the two spheres due to the pres-
ence of the platelets is determined numerically and compared
with the corresponding results for noninteracting platelets.
The main conclusions which emerge from our study are as
follows.

(1) Figure 2 demonstrate that steric interactions between
thin platelets of radiui, confined between two parallel hard
walls increase the sum of the surface and finite-size contri-
bution to the grand potential significantly already at rather
low platelet densitiep,R>=0.025.

(2) As function of the slit widthh the finite-size contri-
bution to the grand potential of a slap of platelets exhibits a
minimum ath=0 [Fig. 3@)]. A maximum at larger values of
h is found for higher platelet densities. The corresponding
solvation force is attractive for small slit widths and exhibits
a cusp ah=2R, [Fig. 3b)].

(3) The depletion potential between two spheres as cal-
culated from the Derjaguin approximation exhibits an attrac-
tive primary minimum at contact which deepens upon in-
creasing the platelet density. Moreover, a small repulsive
barrier at larger sphere separations develops with increasing
density(Fig. 4). We find that the depletion barrier relative to
zero is typically less than the thermal eneigyl, and there-
fore unlikely to significantly alter the kinetics of aggregation
of the hard spheres at platelet densities smaller than one half

(fhe density of the isotropic phase at bulk isotropic-nematic

coexistence. Nonetheless, with increasing platelet density the

(4) The orientational averaged density profile of a platelet

mum denoted by a dot occurs. For reasons of clarity, the lower sefduid in contact with a single fixed hard sphere decreases
of curves are shifted down by —&gTI and —0.%gT, respectively, in
(a) and by —0.0&gT and —0.15gT, respectively, inb).

towards the surface of the sphere because the range of acces-
sible orientations is reduced when the particle approaches the
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sphere. It exhibits a cusp at the position where the plateletseparation of the surfaces of the spheifelg. 6). From our

lose contact with the surface of the sph&Fég. 5. The  numerical results based on a density functional theory for a
maximum at the cusp decreases and the averaged densityixture of spheres and platelets we found that the Derjaguin
close to the surface increases as the ratio of the radius of theproximation is valid for large size ratio and very small

sphere and the platelets becomes smaller. platelet density, but there are substantial deviations from the

(5) With decreasing ratio of the radius of the spheres andlensity functional results at higher densit[€sg. 6a)]. For

the platelets, the primary minimum at contact and the smalémall size ratios and high platelet densities the ideal gas ap-

repulsive barrier of the depletion potential diminish and theproximation for the platelets becomes unsuitalitay. 6b),
position of repulsive barrier shifts to smaller values of thep;=0.2].
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