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Boundary conditions and defect lines in the Abelian sandpile model
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We add a defect line of dissipation, or crack, to the Abelian sandpile model. We find that the defect line
renormalizes to separate the two-dimensional plane into two half planes with open boundary conditions. We
also show that varying the amount of dissipation at a boundary of the Abelian sandpile model does not affect
the universality class of the boundary condition. We demonstrate that a universal coefficient associated with
height probabilities near the defect can be used to classify boundary conditions.
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[. INTRODUCTION tion between unit height variables on opposite sides of the

) ] ) defect. The Green function for an ASM with a defect line is

The Abelian sandpile modelASM) was introduced by calculated in Sec. IlI, and results for the height probabilities

Bak, Tang, and Wiesenfeld as a model of self-organized critiand correlations are presented in Sec. IV.

cality [1]. This well-known model was designed to demon-  For most models of interest in condensed matter physics,
strate how simple rules can drive a system to a critical pointthe bulk properties can be studied with the boundary playing

and thus produce power laws, without any fine tuning oflittle or no role. For example, the two-dimensional Ising
parameters. It has thus been used to explain power laws inraodel is often studied on a torus, so as to eliminate boundary

wide range of systems—see Refg,3] for a review. Since effects. However, this is not possible for the ASM. In the
the ASM was first introduced, a number of variations on thebulk of the ASM, the number of grains of sand is conserved
model have been introduced—see Rpf] for a review. during each toppling. If this was true for all sites, then even-
However, the original ASM still provides a simple, impor- tually we would reach a state where topplings continued
tant, and robust model for the generation of power laws. ~Without end. The ASM thus needs sites with dissipation—
The ASM is defined on a square lattice. Each aitsf the ~ that is, sites where the number of grains is not conserved.

lattice has a height variabldy,, which can be any integer T_h_e most natural way to do this is_with open boundary con-
from 1 to 4, inclusive, wheré, represents the number of ditions; sites at the open boundaries become unstable when
[l ’ a

grains of sand at that site. At each time step, a grain of san’ﬁjey havle rrr:ore the_nhLour gralr(;u(sjt as in the bulég b“td H
is added to a random site of the lattice. After the addition o foauvr(tahogr]]r;irﬁ [gfef ?heége dggs" t?er?w%r:/ingrﬁlr:‘rsoﬁr?’ tﬁg sjstr(]amt €
Lhnestgﬁlen, aB:lndy Cscl)t”eaF\)/\g(t:; n;g;ienéh%nurfogur;i?lrsalgfs S(gnzanvsh:lss_ince this dissipation is necessary for a well-defined sand-
? . P . ’ ile, the boundary plays a crucial role in the ASM, even
e_ach of its four neighbors gains one grain Qf sgnd. UnSthl hen we are focused at points in the bulk. Correlation func-
S|tes. are repeatedly collapsed, .untll every site is Sta}ble_"etrons far from the boundary are independent of the boundary
no site has more than four grains. Then, the next time steRyonditions, just as in other condensed matter statistical me-
another grain is added, and the entire process is repeated.chanical models; but the presence of dissipation somewhere
The original ASM is spatially homogenogsxcept for the  jn the ASM (e.g., at the open boundarig necessary for the
boundaries, which break translational invariagh@d most  model to be well defined.
modifications of the sandpile model have kept this feature. We consider the effects of varying amounts of dissipation
However, here we consider the effects of a crack, representedong a boundary, and show that any amount of dissipation at
by a defect line, along which grains of sand can be lost; inthe edge results in the open boundary universality class. The
other words, along which the number of grains is not con-Green function is calculated in Sec. V, and results for the
served. In previous studies, dissipation was added to the bulkeight probabilities and correlations are presented in Sec. VI.
of the ASM (not breaking translational invariancend was These results are intuitively reasonable, since dissipation
shown to take the ASM off its critical poii6—7]. Our defect ~ should be relevant in regions of the ASM where the particles
line of dissipation breaks translational invariance, and weave no other way to leave the ASM. However, it was also
show that it causes the two-dimensional plane of the ASM td?0ssible that such modifications could have resulted in new,
renormalize into two half planes with open boundary condi-2S Yet und|scovergd, boundary conditions or defect states.
tions. This shows that cracks in the ASM are highly relevant0r example, Bariev, and McCoy and Perk, added a line
and essentially cleave the sandpile into separate pieces. \i§fect of modified bond strengths to the Ising model, and

demonstrate this by looking at the universal coefficient asso-(;utrr‘]d that they weire a?le totﬁon(tjinfuotlstl)y vary the (tjri]mednsfiorl
ciated with the modification of unit height probabilities at of the spin operator along the detect by varying the detec

: : bond strengthi8,9]. This continual variation occurred despite
large distances from the defect, and at the correlation funcg "¢+ tha?t The ]Ising model only has three conformalls in-

variant boundary conditions.
The ASM has been associated with a conformal field
*Electronic address: mjeng@siue.edu theory (CFT). While CFT's are generally well understood,
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the ASM is a logarithmic CFTLCFT) (specifically, thec other, more complicated probabilitie20,21. The toppling
=-2 CFT), many aspects of which are still not well under- matrix is modified by removing specific bonds, and changing
stood[10]. In particular, our understanding of the boundarythe toppling condition at certain sites. For example, if we
states of LCFT’s is still fragmentary, and recent results orwant to force sitea to have height 1, we change the toppling
boundaries of the=-2 CFT have been partially contradic- matrix so thatA,,=1, and remove three of the bonds to
tory [11-15. Connections between the LCFT boundary neighboring sitegsettingA,,=A,=0 for those bonds With
states, and the ASM boundary states were made in[Rgff.  this modified toppling matriXA’ site a is now guaranteed to
but the ASM representation of some of tke—-2 LCFT  have height 1, and dgt’) gives the number of recurrent
boundary states is still unknown. Modifications to the ASM configurations withh,=1. While A and A’ are infinite-
such as those described in this paper, and searches for oth#imensional matricegor an infinite lattice, B=A'-A is 0
boundary conditions, could help eludicate these relationeutside of a 4<4 submatrix. So déA’)/defA)=de(1
ships. Our results provide some evidence that the open andBA™) is an easily computable 44 matrix determinant,
closed boundary conditions are the only possibilities for theyhich gives the probability that, in a randomly chosen recur-
ASM, although it is still possible that further calculations in rent configuration, the sita will have height 1. The same
this vein could uncover new boundary conditions. process, with a differer8 x 8) matrix B, can be used to find
The identification of boundary states as closed, or openyyo-point correlations of height 1 variables.

or in some new, as yet undiscovered class, uses arguments This process requires us to calculate the Green function
from CFT that the coefficients associated with the falloff OfGEA_l_ The Green function has |0ng been known for the

expectation valuegheight probabilities at large distances standard ASM, wherd is simply the lattice Laplaciaf22].
from the defect should be universal. Our results both use thigiowever, in the following sections we will be dealing with
expected universality, and confirm it, since we find, for ex-gifferent toppling conditions, and so will need to calculate
ample, that the coefficient is unaffected by varying a freehe Green function for these nets.

parameter corresponding to the amount of dissipation at the

boundary. This confirmation, while expected, is valuable,

given the anomalous and unsettled nature of boundary LCFT  1ll. GREEN FUNCTION FOR THE DEFECT LINE
associated with the ASM. This is a particularly important . . :
point in light of recent arguments that use this universality to We introduce a defect linor crack through the middle

argue that the four height variables in the ASM must corre—Of the ASM, allowing dissipation to take place along the

o : ; : defect, and not just along the open boundary conditions. We
spond with different fields in the corresponding CFI]. take the lattice to be sizil X (2L—1), with thex dimension

taking on the values=0,1, ... (M-1), and they dimension
Il. THE FORMALISM taking on the valueg=-(L-1),—-(L-2),...,(L-2),(L-12).

; s ; We take open boundary conditions along all edges, and put
Dhar pointed out that ASM is highly analytically tractable g}e defect along the ling=0. Along this line, the height

because of its Abelian nature—the same state results whether”.
grains of sand are added first at sitand then at sitd, or vangble can take on the valugs2 (‘”f")’ Wherem>0.
first at siteb and then at site [18]. This is the basis of a A site along the defect _topples if its he.'ght IS greater than
well-established formalism for analyzing the ASM—see Ref.(4f'm)' When it tOPP'e& it sends ong gr.aln t_o each of its four
[19] for a review. We only give a quick coverage of the neighbors, anm grains of sand are dissipatéck., disappear
essential points here. from the sandpile ,

It is useful to first generalize the above description of the ~ Whenm is a positive integer, the theory has its most ob-
ASM, to allow for more complicated topplings. The dynam- VioUs physical |_nter|c_)retat|on, put the theory can be moc_j|_f|ed
ics of the model are described by a toppling mathiy, to give a senS|pIe mterpretapon for any rational, positive,
wherea andb label sites of the lattice. The dimensionnf ~ Value ofm [S]. If in each topplingc, grains are toppled, and
is equal to the number of sites in the lattice, Sdecomes ~C2 9rains sent to each neighbor, whegeandc; are integers,
infinite dimensional as the size of the lattice goes to infinity."en the ratio of grains dissipated to grains moved
We say that sita is unstable if its heighb, is greater than M/4<[c1/(4c)]-1 can be any rational integer.

A, If site a is unstable, then every height changesHay The toppling matrixA is the same as for the standard
— hy,—Ay, (including at the sitdo=a). We have the standard ASM, except thatA,,=4+m for sitesa along the defect.
ASM, with open boundary conditions, &, is 4 whena Whenm:O it pecomes the standard ASM. The toppling ma-
=b, -1 whena andb are nearest neighbors, and 0 otherwise [fix can be written as

Dhar showed that the states of any sandpile, given certain
general conditions on the form d, are divided into tran- Ajjrirn = &i,AszH chj/Ai(il,), (1)
sient states, which occur with probability zero after long
amounts of time, and recurrent states, which all occur withyip,
equal probability after long amounts of time. The number of

possible recurrent configurations is given by(det[18]. 2 ifizi

Furthermore, Majumdar and Dhar also showed how to _ o
find the probability for a site to have height 1, and the joint Ajr=1-1ifi=i"£1 (2)
probability for two sites to both have height(as well as 0 otherwise,
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2 ifj=j' #0 K=2+3\nP+4. (10)
A@¢m* 2 ifj=j'=0 (3)  Go s the well-known bulk Green functiof22]
W -1 ifj=j*1 e o o , ,
0  otherwise. Goli,j) = J dp (*dp_codpilcosp) 1
o 2mJg 2m4 -2 cosp;—2 cosp;

SinceA is Hermitian, if we find all of its normalized eigen-

vectors, we can easily invert it. Suppose that the eigenvectors (1)
of A are g5z with eigenvalueshs. p and X are two- e have also defined
dimensional vectors and the number of possible valugs of 5
is equal to the dimension &, which is in turn equal to the 5G(i i) = (1 _ﬂ)G(za) i +mG@ii-1
number of sites in the lattice. Then (i.) 2 (1. + MG~ 1)
o= AL . 1 .
iy =A%y @ =G, j+ D= S[6*, -2
1 +G(i,j+2)]+cp, 12
:Z )\_eﬁieﬁ)? (5) ( J )] m (12
p P
2 2 H H
- Tdp dp; codpii)codpij)—1
The form of A in Eq. (1) implies that the eigenvectors &f G, j) = f Py 5714 P CIOS ‘_é coSD.
factorize into eigenvectors df” andA®@, 0 0 b by
We thus want the eigenvectors Af?. (The eigenvectors 1
of A® are not only simpler, but immediately follow from the X 4 s, sip.’ 13
eigenvectors oA, by settingm=0.) j andj’ range from J
—(L-1) to (L-1), soA® has 2. -1 eigenvectors. The eigen- 2 4o (27 d 1 2
vectors fall in three classes. There dile-1) oscillatory Cn= f ap ap; S| Pj .
eigenvectors that are antisymmetric abpei®, and have mo- o 2mJo 2m2-cosp - cosp; e + 4 sir? P

mentap evenly spaced between 0 amd[p=n7/L, ne Z, (14)

1=sn<(L-1)]. There are anothefl.—1) oscillatory eigen-

vectors that are symmetric abot0, and have momenga ~ We want the behavior o&(i,j,i,j’) for |j|+|j’| large. The

in the range B<p< , where thep solve a transcendental expansion of the bulk Green functid@y(0,j) for largej is

equation; in the limitL— o these moment@ also become well known[22]:

equally spaced between 0 amd Finally, there is one expo- 1 1 3

nentially decaying eigenvector, symmetric abpa0. Go(0,j) = = —In(j) - —<Z +=In 2) + =
SinceA is Hermitian, we can immediately obtain its in- 2 m\2 4 24

verse from these eigenvectors. The sums over the two oscil- (15)

latory sets of eigenvectors each produce integrals in the limit , ,

L — o0, M — oo, using the Euler-MacLaurin formula. The last, where y=0.577... is t.heEuIle—Magchero_m constant..We

exponentially decaying, eigenvector produces a single, dis2!S0 need the behavior @G'*¥(0,j) for j large. The mn-

crete contribution to the Green function. Writing the Greentegral overp; in Eq. (13) can be done exactly, and making

function as a sum of the contributions from the three classe¥)€ substitutiorz=e gives a contour integral around the
of eigenvectors gives unit circle. The integrand has two poles inside the unit

circle, but these give contributions which either decay ex-
3 ponentially with j, or are independent of, neither of
G(i,j,i",j") = 2 GAG,j,i"j"), (6)  which affects our height calculations; so these contribu-
a=l tions can be dropped. The algebrgiclependence comes
from the branch cut in the integrand, running fram3

+ -

GM(i,j,i",i") = 3Goli =i",j =) = 3Goli =i",j+]), (7)  —\B toz=3+8, which gives
Y R IE 1 . . . . 2)/: . . . (2&) . 1 1 ZJ_l
G@i,j,i",)") = 3Goli =", [i| = [j']) + G2 =", |j| +[i']), G (0,1)—>7—T73 —dzz—lf(z)’ (16)
3-8
(8)
1 z

—1)iti’ f(z) = — ( ) 17
GO, j,injn= 2 M ki @= e i\@-v-m2) @7

2Vk? - 1\m?+ 4

whereP indicates that we take the principal part of the inte-
m  Jm+a\ D gral. We can use this to find the behavior @?(0,j) for
X\ = 27 o ' ©) largej, by separating out the contributions framnear 1, and
expanding in a Laurent series jn This then gives the ex-
where we have defined pansion of6G?(0,j),
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1 m? - 96 nonuniversal, depending continuously om We thus con-
-, (18 clude that the defect renormalizes to generate two separate
half planes with open boundary conditions.

dropping terms independent pf This is physically reasonable. Adding dissipation through-
out the bulk of the ASM is known to be relevant, driving the
system off criticality[5—7]. More recently, adding dissipation

IV. HEIGHT PROBABILITIES FOR THE DEFECT LINE in the bulk was identified with adding the integral of a di-
mension 0 variabléthe logarithmic partner of the identity

Now that we have the Green fl_,|nct|on for the defec_t IIne’throughout the bulk23]. It would thus appear that the local
we can use it to calculate the height correlations, using the

methods outlined in Sec. Il. We find that the probability for aadd't'on of dissipation should be represented by a dimension

. ; . ) ; 0 operator, which would mean that adding dissipation along
site a distancg from the defect to have height 1 is a defect line should be relevant, as we have found here. In
2(m-2) (1 1

short, cracks in the ASM cleave the plane into disconnected

Prolh ;) =1) = — 3 \1tgeT W*’) (19 regions with open boundary conditions. Similar separation

J J with relevant perturbations along a defect occurs in other
The constant term (2-—2)/ 7 is the bulk probability for a models—see, for example, R¢R7]. However, these results

site to have height 1, first calculated in REZ0]. It was also  were not inevitable; as already noted, line defects added by

found in Ref.[20] that the correlation function between two Bariev, and McCoy and Perk, to the Ising model, resulted in

1
8GR0, )= —Inj+—+——
©.)) 471'nJ mmj  48mnj?

height 1 operators is a continual range of defect lines, along which the dimension
2m-2)\? 1 of the spin operator could be continuously varied, despite the
- : .
Proﬁh(il,jl) = h<i2,iz> =1) :< - ) (1 -+ ) fact t_h_at the Ising model only has three possible boundary
iy 2r conditions.
(20
where V. GREEN FUNCTION FOR THE MODIFIED

BOUNDARY CONDITIONS

—Ji i 2. _i2

==+ (1712 29 The identification of a line of dissipation with open
Thus, the height 1 operator is a dimension 2 operator. Basdabundary conditions brings up the question of whether any
on the identification of the ASM as a conformal field theory other universality classes of boundary conditions with dissi-
[21,23, the coefficient of 1j2, in expectation values of di- pation are even possible. The open and closed boundary con-
mension 2 operators a distangedrom a boundary, is ex- ditions are the most natural to impose on the ASM, but other
pected to be a universal number characteristic of the boundsoundary conditions than these two conventional ones can be
ary condition[24]. And, in fact, this coefficient of +1/4 in written down. We create new boundary conditions by vary-
Eqg. (19) is exactly the coefficient seen for the height 1 prob-ing the amount of dissipation along the boundary, and show
ability at large distances from an open boundary conditionthat, regardless of the amount of dissipation, we stay in the
as shown by Brankov, Ivashkevich, and Priezzf#8]. This  open boundary universality clagso long as the amount of
indicates that, upon renormalization, the defect line becomegissipation is nonzero—that is, so long as the boundary is not
an open boundary. closed.

It is only sensible to talk about conventional boundary It is convenient to change the dimensions of the lattice
conditions at the defect line, if the two half planes on eitherfrom those of Sec. Ill. We take the lattice to be of side
side of the defect have somehow been separated. Evideneel, with the x dimension taking on the values
that the defect renormalizes to separate the half planes can b&,1, ... (M-1), and they dimension taking on the values
seen by looking at correlation functions of points on oppositg=0,1, ... (L-1). We impose a modified boundary condi-
sides of the defect. If, upon renormalizing the defect, the twdion alongj=0, and open boundary conditions on the other
sides of the defect were still “connected,” we would expectthree edges(In the end, we take the limitk —o and M
that height variables on opposite sides would still fall off as—c, so our results should anyway be insensitive to the
1/r4, since the height 1 operator has dimensioiCalcula-  boundary conditions on these three edpes.
tions of correlation functions along boundaries by lvash- We allow the height variable on the boundary0 to take
kevich have shown that the height one operator also has den valuesl, 2, ... b. Sites on the boundary become unstable
mension 2 along open boundarig6].) However, we find when their height is greater tham at which point they
that topple, giving one grain to each of their three neighbors, and

_ _ _ _ droppingb—-3 grains off the edge. Fdr=3 this is the closed

Protihg,j = 1.h-j = 1) - Prolth j = )Prokthg, -, = 1) boundary condition, and fdo=4 this is the open boundary

2(m-2)\? 1 1 condition. Forb<3, sand is generated with each toppling,
= ( i > - 82} + (J—7> (22 rather than dissipated, creating the possibility of never-
ending cycles of toppling. We therefore only consitier 3.
While the height variable is a dimension 2 operator, its cor-The system can be given a sensible interpretation for any
relations across the defect fall off asri/The coefficient of  rational value ob= 3 [5]. The toppling matrix between sites
the 1/* term renormalizes to zero, and theriterm is  (i,j) and(i’,j’) can be written as
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Ajirn = A + 8,40, (23)  Inspection shows thas is also a smooth function df for
R . ! all otherb in the range 3b< (including b=4).
whereA® was defined in Eq(2), and We need the Green function in two limits. First, fiori’
e, andj+j’ large, it is useful to write
2 ifj=j"#0
b-2 ifj=j'=0 G(i,j,i" i) =Ggli=i",j=j) = Goli=i"j +j’
A= fi=i (24 (5177 = Goli =17, ] =) = Goli =", ] +1]")
-1 ifj=j %1 +8G(Gi-i"j+ij"), (30)
0  otherwise.
. . . . 27 dp (%" dp, cogp;i)
As with the defect, if we can find all the eigenvectorsXof 8G(i,j) = f —- — !
we can easily invert itA®, being L dimensional, had. o 2mJg 2m2-COSp; ~COSp;

eigenvectors. When 8b<5, A® hasL eigenvectors that sinD:

are oscillatory functions of, with momentap, which satisfy X > b

a transcendental equation. In the linit-, the momenta (b=4)"+1+2(b-4)cosp

are evenly spaced over the range p< 7. Whenb>5, A® x[sinp; cogp;j) + (b - 4 + cospy)sin(p;j)].

only has(L-1) such oscillatory eigenvectors, and one last 31)

eigenvector that is exponentially decayingjin (
In the Green function, the summation over oscillatoryln §G(0,j), we can do the integral ovex exactly, and then

eigenvectors can be turned into an integral in the limitsetz=€Pi. As before, the main contribution comes from the

L — o0, M — oo, with the Euler-MacLaurin formula. Fdr>5, branch cut betweer=3-8 andz=1. Expanding the inte-

the single, exponentially decaying eigenvector produces gral nearz=1 gives

separate, discrete contribution to the Green function. The

ion i - _ 1 1 b?-8b+19
Green function is then given by 5G(0,]) = __ o+ gy
S -~ S m(b-3)] w(b-3)° 2m(b-3)
G(i.,j,i",j") = G(i,j,i",j") + 6(b = 5)GN, },i", "),
(25 32
We also need the expansion of the Green function along the
where defect—that is, forj=j’=0 and|i—i’|>0. Using similar
- w S, methods as before, we find
&(,j,i J")Ef2 dp (*7dp_codp(i=i")]
Il o 2mJg 2m2-cosp;—cosp, é(X:|i—i'|j:j':O)z 1
1 ' (b - 3)°?
X
(b—4)2+ 1+ 2(b - 4)cosp, _ D18+ 57 18b+57+o<i 39
o 2m(b - 4)%* X8/
x{(b= Asin(p;]) + sirfpy(j + 1)} b4
X{(b=4)sin(p;j") +sinp;(j’ + 1]},
(26) VI. HEIGHT PROBABILITIES FOR MODIFIED
BOUNDARY CONDITIONS
and
Using the Green function for modified boundary condi-
.., ., (b=3)(b-5) —isitep o fi-i] tions, we can calculate unit height probabilities with the
GoHi,J.i" ") = k-1 (4 =D k=K"= DL ethods described in Sec. 1. We find that the probability for
(27) a site a distancg from the boundary to have height 1 is
. 2(mw - 2)( 1 1 1 )
We have defined Prokh;,=1)= 1+— - =+
K (i.j) ) 3 4j2 2(b—3)j3
b-3)?
k=1+ ;(b - :) , (29) (34
As discussed earlier, the coefficient of thejdferm is ex-
and pected to be a universal number characteristic of the bound-
, ary condition[24], and is equal to +1/4 for the open bound-
o(x) = 1 ifx>0 (20  ary condition[25]. We see here that the coefficient is +1/4,
0 if x=0. and independent db for b>3. This both confirms the ex-

At first sight. thi tion for the G funci ¢ pectation that the coefficient should be universal, and indi-
ALTIFSt signt, this equation for the foréen TUnclion SEemSs 10q o that the boundary is in the open boundary universality
indicate thatG has a slope discontinuity &=5. However,

o . "2 class for any amount of dissipatidh> 3).
this is not the caseG is not smooth ab=5, and expandinG Note that the coefficient of % is nonuniversal, and di-
as a function ob nearb=5 shows that the combinatioa verges a9 — 3, indicating thatb=3 is a special point as we
+6(b—5)G®*P is actually smooth to all powers db-5).  vary b. b=3 corresponds to the closed boundary condition,
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and it is already known that the coefficient of the2lterm is coefficient
different (-1/4) for the closed boundary conditions; this is 0.02
appropriate, since the closed and open boundary conditions
are clearly in different universality classgzs]. 0.015
Boundary correlations along the 0 boundary can be cal-
culated, and contain no surprises. The correlation function 0.01
between sitei,0) and (i’,0) falls off as 1/i—i’|* for all
values ofb: 0.005
PrOHh(iyo) = 1,h(ir'0) = 1) - Prot(h(ivo) = 1)Pr0lih(iryo) = 1) N
__<(1‘Co+02)(‘1+3Co_401+02)>2 1 4 > e 7 8 95 10
(b=-3)7 li—i'[* FIG. 1. Coefficient of the Ir# term in the two-point correlation
1 function.
O(—___,6>. (35
ji=i] number of grains, and never topple—the sandpile thus acts

We have defined c,=G(x=|i-i’|,j=j’=0). Equations @S if j=1 was the boundary, with an open boundary condi-

(25)—(27) can be used to find analytic expressionsdgrfor  tion, where grains fall “off the edge” tp=0.
x=0,1,2.However, the expressions are long and not particu- V& have shown that the addition of dissipation along a
larly enlightening, so are not presented here. Tatesolute defect line separates the ASM into two half planes, each with
value of the coefficient of the 1fi—i’|* term is plotted in open boundary conditions. This brought up the question of
Fig. 1. It falls off smoothly with increasing. whether there are other universality classes of boundary con-
The coefficient of 1)i-i’|* in Eq. (35) diverges as ap- ditions, with varying amounts of dissipation along the

proaches 3, reflecting the fact that 3 is a fixed point of the ~Poundary. We find that any amount of dissipation along a

renormalization groupRG) flows, leading to nonsmooth be- Poundary results in the open boundary universality class at
havior in physical properties. However, the Green function,large distances. Classes of boundary conditions were identi-

and height correlations calculated from it, are perfectlyﬁEd by the universal coefficient of the unit height probability,

smooth as we varp through 4. It would appear that the RG @ from the boundary or defect.

floyvs take us fromb=3 to b=, aDd t.ha_lb:4 is not a fixed ACKNOWLEDGMENT

point of the RG flows. Howeveh=x is in a sense the same
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