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We here discuss the results of three-dimensional Monte Carlo simulations of a minimal lattice model for
gelling systems. We focus on the dynamics investigated by means of the time autocorrelation function of the
density fluctuations and the particle mean-square displacement. We start from the case of chemical gelation,
i.e., with permanent bonds, and characterize the critical dynamics as determined by the formation of the
percolating cluster, as actually observed in polymer gels. By opportunely introducing a finite bond lifetimetb,
the dynamics displays relevant changes and eventually the onset of a glassy regime. This has been interpreted
in terms of a crossover to dynamics more typical of colloidal systems and a connection between classical
gelation and recent results on colloidal systems is suggested. By systematically comparing the results in the
case of permanent bonds to finite bond lifetime, the crossover and the glassy regime can be understood in terms
of effective clusters.
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I. INTRODUCTION

The gelation transition transforms a viscous liquid into an
elastic disordered solid. In general this is due to the forma-
tion in the liquid phase of a spanning structure, which makes
the system able to bear stresses.

In polymer systems, this is due to chemical bonding, that
can be induced in different ways[1,2], producing a polymer-
ization process. As first recognized by Flory, the change in
the viscoelastic properties is directly related to the constitu-
tion inside the sol of a macroscopic polymeric structure,
which characterizes the gel phase. In experiments[3] the
viscosity coefficient grows as a power law as a function of
the relative difference from the critical polymer concentra-
tion with a critical exponentk. The onset of the elastic re-
sponse in the system, as a function of the same control pa-
rameter, displays a power law increasing of the elastic
modulus with a critical exponentf. As implicitly suggested
in the work of Flory and Stockmayer[1], the percolation
model is considered as the basic model for the chemical ge-
lation transition and the macromolecular stress-bearing struc-
ture in these systems is a percolating network[2,4,5]. In
experiments the gelling solution typically displays slow dy-
namics: the relaxation functions present a long time stretched
exponential decay,e−st/t0db as the gelation threshold is ap-
proached. In particular, at the gel point the relaxation process
becomes critically slow, and the onset of a power law decay
is observed[6].

In many other physical systems where aggregation pro-
cesses and structure formation take place, gelation phenom-
ena can be observed. Typically, these are colloidal systems,
i.e., suspensions of mesoscopic particles interacting via short
range attraction. These systems are intensively investigated
due to their relevance in many research fields(from proteins
studies to food industry). Due to the possibility in experi-
ments of opportunely tuning the features of the interactions,
they also play the role of model systems.

In these systems strong attraction gives rise to a diffusion
limited cluster-cluster aggregation process and may produce
gel formation(colloidal gelation) at very low density as a
spanning structure is formed[7]. The latter is generally quite
different from the polymer gels case[8]; however, for the
viscoelastic behavior, this gelation transition closely re-
sembles the chemical one, observed in polymer systems[9].
With a weaker attraction at higher densities a gelation char-
acterized by a glasslike kinetic arrest[10,11] may be ob-
served. The relaxation patterns closely recall the ones ob-
served in glassy systems and are well fitted by the mode-
coupling theory predictions for supercooled liquids
approaching the glass transition[12]. On the theoretical side
the application of the mode-coupling theory to systems with
short range attractive interactions[13–15] (attractive
glasses) has been recently considered and the connection
with the colloidal glass transition has been proposed. The
short range attraction enhances the caging mechanism char-
acteristic of glassy regimes in hard sphere systems and pro-
duces a glassy behavior at lower densities, depending on the
attraction strength.

At lower densities, the role of the structure formation, as
directly observed in some systems[16], might be relevant in
the dynamics but it has not been clarified yet. Also the even-
tual crossover to the glassy regime[9], as the density is
increased, is not completely understood. In this paper we
investigate the connection among colloidal gelation, colloi-
dal glass transition, and chemical gelation. Some preliminary
studies have been reported in Ref.[17].

We have considered a minimal model for gelling systems
and performed extensive numerical simulations on three-
dimensional cubic lattices. In Sec. II we give the details of
the model and the simulations. In Secs. III and IV the results
relative to relaxation and diffusion properties are presented
and discussed. In the last section some concluding remarks
are given.
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II. DESCRIPTION OF THE MODEL

A. Permanent bonds

Our model consists of a solution of monomers diffusing
on a cubic lattice. As in most experimental polymer gels, we
choose the monomers to be tetrafunctional. Each monomer
occupies a lattice elementary cell, and therefore eight verti-
ces on the lattice. To take into account the excluded volume
interaction, two monomers cannot occupy nearest neighbor
and next nearest neighbor cells on the lattice, i.e., nearest
neighbor monomers cannot have common sites. Att=0 we
fix the fractionf of present monomers with respect to the
maximum number allowed on the lattice, and randomly
quench bonds between them. This actually corresponds to
the typical chemical gelation process that can be obtained by
irradiating the monomeric solution. We form at most four
bonds per monomer, randomly selected along lattice direc-
tions and between monomers that are nearest neighbors and
next nearest neighbors(namely, bond lengthsl =2,3). Once
formed, the bonds are permanent.

For each value off there is an average valueNbsfd of the
fraction of formed bonds with respect to all the possible
ones, obtained by averaging over different initial configura-
tions.

Varying f the system presents a percolation transition at
fc=0.718±0.005[18]. The critical exponents found at the
transition agree with the random percolation predictions[19]
(e.g., for the mean cluster sizeg.1.8±0.05 and for the cor-
relation lengthn.0.89±0.01 in 3D[18]).

The monomers diffuse on the lattice via random local
movements and the bond length may vary but not be larger
than l0 according to bond-fluctuation dynamics(BFD) [20],
where the value ofl0 is determined by the self-avoiding walk
condition. On the cubic lattice we havel0=Î10 in lattice
spacing units and the allowed bond lengths arel
=2,Î5,Î6,3,Î10 [21]. We let the monomers diffuse to reach
the stationary state and then study the system for different
values of the monomer concentration.

This lattice model with permanent bonds has been intro-
duced to study the critical behavior of the viscoelastic prop-
erties at the gelation transition[22]. The relaxation time is
found to diverge at the percolation thresholdfc with a power
law behavior[18]. The elastic response in the gel phase has
been studied by means of the fluctuations in the free energy
and goes to zero atfc with a power law behavior as well
[23].

B. Bonds with finite lifetime

Colloidal gelation is due to a short range attraction and in
general the particles are not permanently bonded. To take
into account this crucial feature we introduce an ingredient in
the previous model by considering a finite bond lifetimetb
and study the effect on the dynamics.

The features of this model with finitetb can be realized in
a microscopic model: a solution of monomers interacting via
an attraction of strength −E and excluded volume repulsion.
Due to monomer diffusion the aggregation process eventu-
ally takes place. The finite bond lifetimetb is related to the

attractive interaction of strength −E, astb,eE/KT.
We start with the same configurations of the previous

case, with a fixedf where the bonds have been randomly
quenched as described above. During the monomer diffusion
with BFD at every time step we attempt to break each bond
with a frequency 1/tb. Between monomers separated by a
distance less thanl0 bonds are then formed with a frequency
fb [24]. In order to obtain monomers configurations that are
similar to the ones with permanent bonds, for each value of
tb we fix fb so that the fraction of present bonds coincides
with its average value in the case of permanent bonds,Nbsfd
[26].

With respect to the case of permanent bonds we notice
that as the finite bond lifetimetb corresponds to an attractive
interaction of rangel0, it actually introduces a correlation in
the bond formation and may eventually lead to a phase sepa-
ration between a low density and a high density phase: There
is no evidence of phase separation for the values oftb and fb
considered in this paper. This is evident in Fig. 1, where

FIG. 1. Two typical configurations obtained forf=0.6 with tb

=100 andfb=0.02(a), where there is no evidence of phase separa-
tion, and withtb=2, fb=1, and monomers of valence 6(b), where
the phase separation occurs.

DEL GADO et al. PHYSICAL REVIEW E 69, 051103(2004)

051103-2



typical equilibrium configurations withf=0.6 are shown in
two different cases: in Fig. 1(a) we have the case considered
in this paper, obtained withtb=100 andfb=0.02; in Fig. 1(b)
with tb=2 and fb=1 the phase separation may occur. The
choice of monomers of functionality 4, also in this case of
finite bond lifetime, may correspond to a directional effect in
the interaction[27].

The case of extremely largetb gives rise to different situ-
ations depending on the initial condition and the bond cre-
ation process. We consider two extreme cases.

(i) Start with the initial configuration where the mono-
mers are randomly distributed, and the bonds are randomly
quenched. At later times the frequency of forming bonds is
zero. This case corresponds to the permanent bond case
(chemical gelation), described in Sec. II A.

(ii ) Start with a random configuration of monomers and
let the monomers diffuse and form bonds with infinite life-
time and frequencyfb. This phenomenon of irreversible ag-
gregation, with the occurrence of gelation after a spanning
cluster is formed, corresponds to cluster-cluster aggregation
class of models forfb=1 [28], with a tendency towards
cluster-cluster reaction limited aggregation process[29] for
fb,1. This out of equilibrium phenomenon can be represen-
tative of colloidal gelation and will not be considered here.
In chemical gelation and colloidal gelation the formation of
the critical cluster should produce the slow dynamics. The
main difference is due to the fact that the critical density and
the temperature are much lower in colloidal gelation than in
chemical gelation, moreover, the fractal dimension is related
to cluster-cluster aggregation models and not to random
percolation.

III. RELAXATION FUNCTIONS

In order to investigate the dynamic behavior we study, for
both the permanent bond and the finite bond lifetime cases,
the equilibrium density fluctuation autocorrelation functions
fqWstd given by

fqWstd =
krqWst + t8dr−qWst8dl

kurqWst8dul2 , s1d

where rqWstd=oi=1
N e−iqW·rWistd, rWistd is the position of theith

monomer at timet, N is the number of monomers, and the
averagek¯l is performed over the timet8. Due to periodic
boundary conditions the values of the wave vectorqW on
the cubic lattice areqW =s2p /Ldsnx,ny,nzd with nx,ny,nz

=1,¯ ,L /2 integer valuessin our simulations a cubic lat-
tice of sizeL=16 has been consideredd f30g. In the fol-
lowing we discuss the data obtained forq,1.36 fqW
=sp /4 ,p /4 ,p /4dg. Qualitatively analogous behaviors
have been observed forfqW =sp /2 ,p /2 ,p /2d andsp ,p ,pdg.
Undoubtedly, due to structure formation over different
length scales, a detailed study of the geometric properties
and the dynamics for different wave vectors might be rel-
evantf31g.

In the case of permanent bonds the system is considered
at equilibrium when both the diffusion coefficient has
reached its asymptotic limit, and the autocorrelation func-

tions have gone to zero. Forf,fc we are always able to
thermalize the system, instead forf.fc it remains out of
equilibrium, and it is possible that it is in an aging regime
[31]. In Fig. 2, fqWstd is plotted as a function of time for
different values of the monomer concentration. The data
have been averaged over 40 different initial configurations.
The different curves correspond to different values off,
ranging from 0.5 to 0.85. At low concentrations the system
completely relaxes within the simulation time; the relaxation
process becomes slower as the concentration is increased and
above the percolation thresholdfc the system is kinetically
arrested, in the sense that the relaxation functions do not go
to zero within the time scale of the simulations.

We analyze more quantitatively the long time decay of
fqWstd in Fig. 3: As the monomer concentrationf approaches
the percolation thresholdfc, fqWstd displays a long time decay

well fitted by a stretched exponential law,e−st / tdb
with a

b,0.30±0.05. Intuitively, this behavior can be related to the
cluster size distribution close to the gelation threshold, which
produces relaxation processes taking place over different
length scales. At the percolation threshold the onset of a
power law decay(with an exponentc) is observed as shown
by the double logarithmic plot of Fig. 3[6]. As the monomer
concentration is increased above the percolation threshold,
i.e., in the gel phase, the long time power law decay of the
relaxation functions can be fitted with a decreasing exponent
c, varying fromc,1.0 atfc to c,0.2 well abovefc, where
a nearly logarithmic decay appears. This suggests that the
growth of the relaxation time is driven by the formation of
the critical cluster that actually determines the kinetic arrest.
On the whole, this behavior agrees well with the one ob-
served in gelling systems investigated in the experiments of
Ref. [6]. It is interesting to notice that this kind of decay with
a stretched exponential and a power law reminds the relax-
ation behavior found in spin glasses[32]. Many analogies in
the dynamics of gels and spin glasses have been recently
pointed out[33], but the underlying physics is rather unclear.

FIG. 2. The relaxation functions for permanent bondsfqWstd as a
function of time for q,1.36 and, from left to right, f
=0.5,0.6,0.68,0.718,0.75,0.8,0.85.
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In the model with finite lifetime bonds, the equilibration
time is an increasing function oftb. The system is considered
at equilibrium when both the average number of bonds has
reached its asymptotic limit and the autocorrelation functions
have gone to zero[34]. In this case very different behaviors
are observed. In Fig. 4fqWstd is plotted as a function of time
for a fixed value oftb=10,100,1000[respectively, Figs.
4(a), 4(b) and 4(c)] for increasing values of the monomer
concentration(f varies on the same range as the permanent
bond case). At low concentrations, the behavior of the auto-
correlation functionfqWstd is apparently very similar to the one
observed in the case of permanent bonds: the system com-
pletely relaxes within the simulation time scale and the re-
laxation time increases with the concentrationf. At high
concentrations, a two-step decay appears, closely resembling
the one observed in supercooled liquids. This qualitative be-
havior is observed for many different values of the bond
lifetime tb. As shown in Fig. 4, the two-step decay is more
pronounced for higher values oftb.

As we can see in Fig. 5, where the long time decay of
fqWstd for tb=100 is shown, the long time decays are well
fitted by stretched exponentials. The exponentb (b,0.7 for
the case of Fig. 5) does not seem to vary significantly as the
concentration varies, and this has been observed for all the
values oftb studied. It instead decreases astb increases: for
very small tb one recovers a long time exponential decay
whose behavior becomes less and less exponential as the
bond lifetime increases. This suggests that the stretched ex-
ponential decay is due to the presence of long living struc-
tures.

For high monomer concentrations we fit thefqWstd curves
using the mode-couplingb correlator[12], corresponding to
a short time power law,f +st /tsd−a and a long time von
Schweidler law,f −st /tldb. In Fig. 6 we show the agreement

between the fit(the full lines) and the data fortb=1000 in
the range of concentrationsf=0.8−0.9. The exponents ob-
tained area,0.33±0.01 andb,0.65±0.01. At long times
the different curves obtained for differentf collapse onto a
unique master curve by opportunely rescaling the time via a
factor tsfd (Fig. 7). The master curve is well fitted by a
stretched exponential decay withb,0.50±0.06. The char-
acteristic timetsfd diverges at a valuefg,0.963±0.005
with the exponentg,2.33±0.06(Fig. 8). This value well
agrees with the mode-coupling predictiong=1/2a+1/2b
[12].

The same behavior and the same level of agreement be-
tween the data and the mode-coupling predictions have
been obtained for different values oftb stb

=100,200,400,1000,3000d.
Neither the exponentsa and b obtained by theb correlator
nor the exponentb of the stretched exponential vary signifi-
cantly as a function off and oftb. The value offg, where
the characteristic timetsfd apparently diverges, seems in-
stead to vary withtb, but it is always close tofg=1.

This glassy relaxation pattern suggests that also in this
case the relaxation takes place by means of a caging mecha-
nism: particles are trapped in a cage formed by the surround-
ing ones, the first relaxation step is due to movements within
this cage, whereas the final relaxation is possible due to cage
opening and rearrangement. We notice that, contrary to the
usual behavior observed in supercooled liquids and predicted
by the mode-coupling theory, the value of the plateau of the
relaxation functions, which is typically related to the size of
the cage, strongly depends on the monomer concentrationf.
This effect will be explained later in terms of effective clus-
ters.

IV. THE RELAXATION TIME AND THE ROLE OF
EFFECTIVE CLUSTERS

We study now the relaxation times that can be obtained
from fqWstd as the timet such thatfqWstd,0.1. In Fig. 9 the
relaxation timet is plotted as a function of the monomer
concentrationf for the permanent bonds and for the finite
lifetime bonds case at different values oftb. In the figure one
finds the data for the permanent bond case on the left, and
then from left to right the data for decreasing values of bond
lifetime tb.

In the case of permanent bonds(chemical gelation), tsfd
displays a power law divergence at the percolation threshold
fc. For finite bond lifetime the relaxation time instead in-
creases following the permanent bond case, up to some value
f* and then deviates from it. The longer the bond lifetime
the higherf* is. For higherf the further increase of the
relaxation time corresponds to the onset of the glassy regime
in the relaxation behavior discussed in the preceding section.
This truncated critical behavior followed by a glassylike
transition has been actually detected in some colloidal sys-
tems in the viscosity behavior[35,36].

In both cases of permanent bonds and finite lifetime
bonds, clusters of different sizes are present in the system. In
the permanent bond case, a cluster of radiusR diffuses in the
medium formed by the other percolation clusters with a char-

FIG. 3. Double logarithmic plot of the autocorrelation functions
fqWstd as a function of time forq,1.36 andf=0.6,0.718,0.8,0.87.
For f,fc the long time decay is well fitted by a function(full line)
,e−st / tdb

with b,0.3. At the percolation threshold and in the gel
phase in the long time decay the data are well fitted by a function
,s1+t /t8d−c.
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acteristic relaxation timetsRd. At the percolation threshold
the connectedness length critically grows in the system and
so does the overall relaxation time. In the case of a finite
bond lifetime tb, it will exist as a cluster sizeR* so that
tb,tsR*d. That is, clusters of sizeRùR* will break and lose
their identity on a time scale shorter thantsRd and their full
size will not contribute to the enhancement of the relaxation
time in the system. We can say that the finite bond lifetime
actually introduces an effective cluster size distribution with
a cutoff and keeps the macroscopic viscosity finite in the
system[37].

FIG. 4. fqWstd as a function of time forq,1.36 calculated on a
cubic lattice of sizeL=16: for f=0.6,0.7,0.8,0.85,0.87,0.9(from
left to right) and tb=10 MC step/particle; (a) tb

=100 MC step/particle;(b) tb=1000 MC step/particle;(c) the dot-
ted lines are a guide to the eye.

FIG. 5. The long time decay offqWstd in a log-log plot for q
,1.36. It has been calculated on a cubic lattice of sizeL=16 for
tb=100 MC step/particle(from left to right f=0.65,0.68,0.718).
The data are fitted using a stretched exponential function withb
,0.7 (full lines).

FIG. 6. fqWstd as a function of time forq,1.36 calculated on a
cubic lattice of sizeL=16 for tb=1000 MC step/particle. From left
to right f=0.8,0.85,0.87,0.9. The full lines correspond to the fit
with the b correlator.
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At high concentrations the system approaches a glassy
regime and the relaxation time increases. In order to further
investigate the high concentration regime, in Fig. 10 we di-
rectly compare fqWstd at fixed f=0.85 for tb

=10,100,400,1000, and the permanent bond case. We ob-
serve that at a fixed value of the monomer concentrationf,
the relaxation functions calculated for finite lifetime bonds
coincide with the permanent bond case up to times of the
order oftb. This suggests that on time scales smaller thantb
the relaxation process must be on the whole the same as in
the case of permanent bonds, where permanent clusters are
present in the system, and gives an interpretation in terms of
effective clusters for the two-step glassy behavior of the re-

laxation functions: The first step is due to the relaxation of a
cluster within the cage formed by the other clusters, whereas
the second step is due to the breaking of clusters. This sec-
ond relaxation is the analog of the cage opening in an ordi-
nary supercooled liquid. In conclusion, on a time scale of the
order oftb, the effective clusters play the role of single mol-
ecules in an ordinary supercooled liquid or in a colloidal
hard sphere system.

Using this picture of effective clusters, we are able to
explain the increase of the plateau infqstd. In fact, since

FIG. 7. fqWstd obtained for q,1.36, tb=1000, and f
=0.85,0.87,0.9,0.91,0.92: by opportunely rescaling them by a
quantity tsfd they collapse into a unique master curve, well fitted
by a stretched exponential function withb,0.5±0.06.

FIG. 8. Log-log plot of the characteristic timetsfd obtained by
the rescaling of the relaxation functions. The points have been fitted
(full line) with the function 0.006sfg−fd−2.33, where fg

,0.96±0.01.

FIG. 9. The average relaxation time as a function of the density;
from left to right: the data for the permanent bond case diverge at
the percolation threshold with a power law(the full line); the other
data refer to finitetb=3000,1000,400,100 MC step/particle de-
creasing from left to right(the dotted lines are a guide to the eye).
The apparent divergence of the relaxation timet is observed at the
percolation threshold of the permanent bond case,fc=0.718, for all
the values oftb.

FIG. 10. fqWstd obtained forf=0.85 andq,1.36: the different
curves refer totb=10,100,400,1000, compared to the permanent
bond case(from left to right).
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different values of the monomer concentration correspond to
different effective cluster size distributions, for each value of
f one has a different glassy liquid of effective clusters. This
will change the first relaxation and should correspond to a
change in the plateau of the relaxation functions(Figs. 4 and
6). In particular, we find that for higherf one has a higher
plateau that is the first decay(the motion of clusters within
the cages) produces a smaller relaxation in the system.

V. DIFFUSION PROPERTIES

In order to obtain further information on the dynamics we
calculate the mean-square displacement of all the particles,
krW2stdl=s1/Ndoi=1

N kfrWist+ t8d−rWist8dg2l. In the model with fi-
nite lifetime bonds, clusters continuously evolve in time and
therefore the diffusion coefficient of a single cluster cannot
be defined.

In the model with permanent bonds the mean-square dis-
placement of the particleskrW2stdl presents a long time diffu-
sive behavior, and the diffusion coefficient decreases but re-
mains finite also abovefc. This is due to the fact that the
infinite cluster can be viewed as a net with a large mesh size,
through which monomers and small clusters can diffuse.

In previous papers[18] the diffusion coefficient of clus-
ters with a fixed size was studied. We found that clusters,
whose size is comparable with the connectedness length,
present a diffusion coefficient going to zero atfc (with the
same exponent as the relaxation time), whereas single mono-
mers present a finite diffusion coefficient also in the gel
phase. As we have already noticed, this is due to the fact that
small clusters are able to escape through the percolating clus-
ter having a structure with holes over many different length
scales close to the percolation threshold. It is therefore clear
that the behavior here observed for the mean-square dis-
placement is mainly due to the diffusion of single monomers
and small clusters. In Fig. 11,krW2stdl is plotted as a function

of time in a double logarithmic plot forf approachingfc in
the case of permanent bonds: particles can still diffuse, and
the diffusion coefficient apparently decreases with the mono-
mer concentration. At high concentrations the subdiffusive
regime stays longer, and the long time diffusive behavior is
hardly recovered.

In Fig. 12, we plot the data obtained withtb=1000 and
f=0.8,0.82,0.85,0.9. According to the results just dis-
cussed, for low concentrationskrW2stdl shows a simple diffu-
sive behavior. The diffusion does not change significantly
close to fc and for high concentrations the behavior ob-
served, characterized by a plateau, is similar to glass forming
systems. This onset of a glassy regime has been obtained for
different values oftb, and again it indicates a caging mecha-
nism in the dynamics. The asymptotic diffusion coefficient
goes to zero asf approachesfg (inset of Fig. 12), as a
power law, with an exponent close tog (Sec. IV) in agree-
ment with the mode-coupling theory predictions.

As already done for the relaxation functions we directly
compare the mean-square displacement obtained in the cases
of permanent bonds and finite bond lifetime. Figure 13
shows for a fixed value of the concentration,f=0.85, that
the two quantities coincide up to time scales of the order of
tb. For longer times in the system with nonpermanent bonds
the final diffusive regime is recovered. These results are co-
herent with the behavior of the relaxation functions dis-
cussed in the preceding section. The first regime is appar-
ently related to the diffusion of effective clusters. Here again
the value of the plateau in the diffusion pattern, which is
related to the size of the cage, varies with the concentration
f. For higher values of the monomer concentration, the size
of the cage apparently decreases. This corresponds to larger
effective clusters, which have less free space compared to
their size. By means of the qualitative argument used in Sec.

FIG. 11. The mean-square displacementkrW2stdl of the particles
as a function of time in a double logarithmic plot for permanent
bonds: from top to bottomf=0.4,0.5,0.6,0.7, approachingfc.

FIG. 12. The mean-square displacementkrW2stdl of the particles
as a function of time in a double logarithmic plot fortb

=1000 MC step/particle: from top to bottom f
=0.8,0.82,0.85,0.87,0.9, approachingfgstbd. In the inset, the dif-
fusion coefficient: the full line is the fit with the function
,s0.963−fd−2.3.
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IV, one expects that for a longertb the conditiontb,tsR*d
will be fulfilled by a larger sizeR* , and on average larger
clusters will persist. For the same value of the concentration,
the size of the cage should be the same, whereas the particles
of this glassy system(i.e., the effective clusters) are longer
trapped in the cage as the bond lifetime increases(Fig. 13).

VI. DISCUSSION AND CONCLUSION

We have studied a model for gelling systems both in the
case of permanent bonds and finite bond lifetime. The study
of the dynamics shows that when bonds are permanent

(chemical gelation) the divergence of the relaxation time is
due to the formation of a macroscopic critical cluster and the
decay of the relaxation functions is related to the relaxation
of such cluster. In the case of finitetb there is an effective
cluster size distribution, with a size cutoff. Note that the
clusters cannot be easily defined as in the case of chemical
gelation: The effective clusters do not coincide with pairwise
bonded particles. A cluster can be identified in a statistical
sense as a group of monomers which keeps its identity(i.e.,
the bonds are unbroken) when diffusing a distance of the
order of its diameter. The formation of effective clusters
leads to an apparent divergence of the relaxation time which
is characterized by exponents corresponding to the case of
random permanent bonds(random percolation). As the
monomer density increases the presence of effective clusters
further slows down the dynamics, until a glass transition is
reached.

In the casetb→`, starting with a random configuration
of unbonded monomers one obtains an out of equilibrium
state as in cluster-cluster aggregation models, which can be
representative of colloidal gelation. Ideally this out of equi-
librium system is connected to the two lines described above,
the pseudopercolation line and the glassy line. The pseudo-
percolation line can be detected if the effective cluster size is
large enough and it is quite distinct from the glassy line.
However, both lines interfere at low densities and low tem-
peratures with the phase coexistence curve.
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