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Slow dynamics in gelation phenomena: From chemical gels to colloidal glasses
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We here discuss the results of three-dimensional Monte Carlo simulations of a minimal lattice model for
gelling systems. We focus on the dynamics investigated by means of the time autocorrelation function of the
density fluctuations and the particle mean-square displacement. We start from the case of chemical gelation,
i.e., with permanent bonds, and characterize the critical dynamics as determined by the formation of the
percolating cluster, as actually observed in polymer gels. By opportunely introducing a finite bond lifgtime
the dynamics displays relevant changes and eventually the onset of a glassy regime. This has been interpreted
in terms of a crossover to dynamics more typical of colloidal systems and a connection between classical
gelation and recent results on colloidal systems is suggested. By systematically comparing the results in the
case of permanent bonds to finite bond lifetime, the crossover and the glassy regime can be understood in terms
of effective clusters.
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I. INTRODUCTION In these systems strong attraction gives rise to a diffusion

The gelation transition transforms a viscous liquid into anliMited cluster-cluster aggregation process and may produce

elastic disordered solid. In general this is due to the forma9€! formation(colioidal gelation at very low density as a
Spanning structure is formdd]. The latter is generally quite

the system able to bear stresses. different from the polymer gels cag8&]; however, for the

In polymer systems, this is due to chemical bonding thaliscoelastic behavior, this gelation transition closely re-

can be induced in different way4,2], producing a polymer- sembles the chemical one, observed in polymer sysi8ins

ization process. As first recognized by Flory, the change ifVith @ weaker attraction at higher densities a gelation char-
P g y Y 9 acterized by a glasslike kinetic arrggt0,11 may be ob-

the viscoelastic properties is directly related to the constitu* .
tion inside the sol of a macroscopic polymeric structure,serVEd'_The relaxation patterns closely recall the ones ob-
which characterizes the gel phase. In experimg@isthe  Served in glassy systems and are well fitted by the mode-
viscosity coefficient grows as a power law as a function ofcoUPling theory predictions for supercooled liquids
the relative difference from the critical polymer Concentra-approach'ng the glass tranS|t|@112]._ On the theoretical S|de_
tion with a critical exponenk. The onset of the elastic re- th€ application of the mode-coupling theory to systems with
sponse in the system, as a function of the same control p£0't range attractive interaction$l3-13  (attractive
rameter, displays a power law increasing of the elastidlasse$ has been recently considered and the connection

modulus with a critical exponerft As implicitly suggested with the colloidal glass transition has been proposed. The
in the work of Flory and Stockmayefl], the percolation short range attraction enhances the caging mechanism char-
' : @cteristic of glassy regimes in hard sphere systems and pro-

lation transition and the macromolecular stress-bearing strudUces @ glassy behavior at lower densities, depending on the
ture in these systems is a percolating netwf@k,5. In  attraction strength. _
experiments the gelling solution typically displays slow dy- At lower den3|t!es, the role of the str_ucture formatlor_l, as
namics: the relaxation functions present a long time stretchefliréctly observed in some systerfii$], might be relevant in
exponential decay-e U™ as the gelation threshold is ap- the dynamics but it has not been clarified yet. Also the even-
proached. In particular, at the gel point the relaxation proces&lal crossover to the glassy regini@], as the density is
becomes critically slow, and the onset of a power law decayncreased, is not completely understood. In this paper we
is observed6]. investigate the connection among colloidal gelation, colloi-
In many other physical systems where aggregation prodal glass transition, and chemical gelation. Some preliminary
cesses and structure formation take place, gelation phenoratudies have been reported in REgf7].
ena can be observed. Typically, these are colloidal systems, We have considered a minimal model for gelling systems
i.e., suspensions of mesoscopic particles interacting via shoaind performed extensive numerical simulations on three-
range attraction. These systems are intensively investigatatimensional cubic lattices. In Sec. Il we give the details of
due to their relevance in many research figlism proteins  the model and the simulations. In Secs. Il and IV the results
studies to food industyy Due to the possibility in experi- relative to relaxation and diffusion properties are presented
ments of opportunely tuning the features of the interactionsand discussed. In the last section some concluding remarks
they also play the role of model systems. are given.

1539-3755/2004/68)/0511039)/$22.50 69 051103-1 ©2004 The American Physical Society



DEL GADO et al. PHYSICAL REVIEW E 69, 051103(2004)

Il. DESCRIPTION OF THE MODEL
A. Permanent bonds

Our model consists of a solution of monomers diffusing
on a cubic lattice. As in most experimental polymer gels, we
choose the monomers to be tetrafunctional. Each monomer
occupies a lattice elementary cell, and therefore eight verti-
ces on the lattice. To take into account the excluded volume
interaction, two monomers cannot occupy nearest neighbor
and next nearest neighbor cells on the lattice, i.e., nearest
neighbor monomers cannot have common sitest=A1 we
fix the fraction ¢ of present monomers with respect to the
maximum number allowed on the lattice, and randomly
quench bonds between them. This actually corresponds to
the typical chemical gelation process that can be obtained by
irradiating the monomeric solution. We form at most four
bonds per monomer, randomly selected along lattice direc-
tions and between monomers that are nearest neighbors and
next nearest neighbofeamely, bond lengthk=2,3). Once
formed, the bonds are permanent.

For each value of there is an average valig(¢) of the
fraction of formed bonds with respect to all the possible
ones, obtained by averaging over different initial configura-
tions.

Varying ¢ the system presents a percolation transition at
¢.=0.718+0.005[18]. The critical exponents found at the
transition agree with the random percolation predictifit§
(e.g., for the mean cluster size=1.8+0.05 and for the cor-
relation lengthv=0.89+0.01 in 3D[18]).

The monomers diffuse on the lattice via random local
movements and the bond length may vary but not be larger
thanly according to bond-fluctuation dynami@FD) [20],
where the value df, is determined by the self-avoiding walk
condition. On the cubic lattice we ha\lg:m in lattice
spacing units _and the allowed bond lengths dre
=2,15,16,3,/10[21]. We let the monomers diffuse to reach  FIG. 1. Two typical configurations obtained fg=0.6 with 7,
the stationary state and then study the system for different100 andf,=0.02(a), where there is no evidence of phase separa-
values of the monomer concentration. tion, and with7,=2, f,=1, and monomers of valence(b), where

This lattice model with permanent bonds has been introthe phase separation occurs.
duced to study the critical behavior of the viscoelastic prop-
erties at the gelation transitio22]. The relaxation time is  attractive interaction of strengthE: as 7, ~ eF/<T.

found to diverge at the percolation threshaidwith a power We start with the same configurations of the previous

law behavior[18]. The elastic response in the gel phase hagase, with a fixedp where the bonds have been randomly

been studied by means of the fluctuations in the free energyyenched as described above. During the monomer diffusion

and goes to zero ap; with a power law behavior as well yjth BFD at every time step we attempt to break each bond

[23]. with a frequency 14, Between monomers separated by a

distance less thalg bonds are then formed with a frequency

fy, [24]. In order to obtain monomers configurations that are

similar to the ones with permanent bonds, for each value of
Colloidal gelation is due to a short range attraction and inm, we fix f,, so that the fraction of present bonds coincides

general the particles are not permanently bonded. To takeith its average value in the case of permanent boNgisp)

into account this crucial feature we introduce an ingredient if26].

the previous model by considering a finite bond lifetime With respect to the case of permanent bonds we notice

and study the effect on the dynamics. that as the finite bond lifetime, corresponds to an attractive
The features of this model with finitg, can be realized in interaction of rangéy, it actually introduces a correlation in

a microscopic model: a solution of monomers interacting viethe bond formation and may eventually lead to a phase sepa-

an attraction of strengthE-and excluded volume repulsion. ration between a low density and a high density phase: There

Due to monomer diffusion the aggregation process eventus no evidence of phase separation for the valuesg, ahdfy,

ally takes place. The finite bond lifetimg is related to the considered in this paper. This is evident in Fig. 1, where

B. Bonds with finite lifetime
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typical equilibrium configurations witlp=0.6 are shown in Q)
two different cases: in Fig.(&4) we have the case considered .
in this paper, obtained with,=100 andf,=0.02; in Fig. 1b) 09 | 8
with 7,=2 and f,=1 the phase separation may occur. The 08 _ :
choice of monomers of functionality 4, also in this case of T
finite bond lifetime, may correspond to a directional effect in 0.7 F
the interaction27]. 06 Eoe
The case of extremely largg gives rise to different situ- T
ations depending on the initial condition and the bond cre- 0.5 |
ation process. We consider two extreme cases. o4 r °

(i) Start with the initial configuration where the mono-
mers are randomly distributed, and the bonds are randomly 0.3 [
quenched. At later times the frequency of forming bonds is

zero. This case corresponds to the permanent bond case 02 3
(chemical gelatiop described in Sec. Il A. o1 b

(ii) Start with a random configuration of monomers and 1 )
let the monomers diffuse and form bonds with infinite life- ° ‘ 10°

05
time and frequency,. This phenomenon of irreversible ag- toves)

gregatiqn, with the occurrence of gelation after a spanni_ng FIG. 2. The relaxation functions for permanent boffigls) as a

cluster is formed, corresponds to' cluster-cluster aggregatiopyction of time for q~1.36 and, from left to right, ¢

class of models forfb:]. [28], with a tendency towards =0.5,0.6,0.68,0.718,0.75,0.8,0.85.

cluster-cluster reaction limited aggregation procg for

fp,<1. This out of equilibrium phenomenon can be representions have gone to zero. F@§< ¢. we are always able to

tative of colloidal gelation and will not be considered here.thermalize the system, instead fgr> ¢. it remains out of

In chemical gelation and colloidal gelation the formation of equilibrium, and it is possible that it is in an aging regime

the critical cluster should produce the slow dynamics. Thg31]. In Fig. 2, f4(t) is plotted as a function of time for

main difference is due to the fact that the critical density anddifferent values of the monomer concentration. The data

the temperature are much lower in colloidal gelation than irhave been averaged over 40 different initial configurations.

chemical gelation, moreover, the fractal dimension is related’he different curves correspond to different values ¢of

to cluster-cluster aggregation models and not to randomanging from 0.5 to 0.85. At low concentrations the system

percolation. completely relaxes within the simulation time; the relaxation

process becomes slower as the concentration is increased and

above the percolation threshotf]. the system is kinetically

arrested, in the sense that the relaxation functions do not go
In order to investigate the dynamic behavior we study, forto zero within the time scale of the simulations.

both the permanent bond and the finite bond lifetime cases, We analyze more quantitatively the long time decay of

the equilibrium density fluctuation autocorrelation functionsfg(t) in Fig. 3: As the monomer concentratighapproaches

f5(t) given by the percolation threshold,, f4(t) displays a long time decay

{pg(t+t)p_¢(t')) well fitted by a stretched exponential lawe /" with a
WPt T Ep-g\t )/ (1)  B~0.30%0.05. Intuitively, this behavior can be related to the
(pgtHD* cluster size distribution close to the gelation threshold, which
produces relaxation processes taking place over different
length scales. At the percolation threshold the onset of a
power law decaywith an exponent) is observed as shown
by the double logarithmic plot of Fig. ®]. As the monomer
concentration is increased above the percolation threshold,

IIl. RELAXATION FUNCTIONS

fq(t) =

where pg(t) ==, &40, F(t) is the position of theith
monomer at time, N is the number of monomers, and the
averag€g---) is performed over the timg. Due to periodic
boundary conditions the values of the wave vedfoon

the cubic lattice areq=(2m/L)(n;,ny,n,) With n,ny.n; e 'in the gel phase, the long time power law decay of the
=1,---,L/2 integer valuegin our simulations a cubic lat- relaxation functions can be fitted with a decreasing exponent

lowing we discuss the data obtained for~1.36 [ a nearly logarithmic decay appears. This suggests that the
=(w/4,m/4,7/4)]. Qualitatively analogous behaviors growth of the relaxation time is driven by the formation of
have been observed fpg=(7/2,7/2,7/2) and(m,7,m)].  the critical cluster that actually determines the kinetic arrest.
Undoubtedly, due to structure formation over differentOn the whole, this behavior agrees well with the one ob-
length scales, a detailed study of the geometric propertieserved in gelling systems investigated in the experiments of
and the dynamics for different wave vectors might be rel-Ref.[6]. It is interesting to notice that this kind of decay with
evant[31]. a stretched exponential and a power law reminds the relax-
In the case of permanent bonds the system is considerestion behavior found in spin glassgg2]. Many analogies in

at equilibrium when both the diffusion coefficient has the dynamics of gels and spin glasses have been recently
reached its asymptotic limit, and the autocorrelation funcpointed ou33], but the underlying physics is rather unclear.
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between the fi{the full lines and the data for,=1000 in
the range of concentrations=0.8-0.9. The exponents ob-
tained area~0.33+0.01 antb~ 0.65+0.01. At long times
the different curves obtained for differett collapse onto a
unique master curve by opportunely rescaling the time via a
factor 7(¢) (Fig. 7). The master curve is well fitted by a
stretched exponential decay wih~0.50+0.06. The char-
acteristic timer(¢) diverges at a valuepy~0.963+0.005
with the exponenty~2.33+0.06(Fig. 8). This value well
agrees with the mode-coupling prediction=1/2a+1/2b
[12].

The same behavior and the same level of agreement be-
tween the data and the mode-coupling predictions have
been obtained for different values ofr, (7
=100,200,400,1000, 3000
‘ O | Neither the exponenta andb obtained by the3 correlator
10? 10° 10* 10° nor the exponenB of the stretched exponential vary signifi-

t(MCs) cantly as a function of and of 7,. The value of¢,, where

FIG. 3. Double logarithmic plot of the autocorrelation functions the characterlstllc tlme-(d?) _apparently dlverges_, seems in-
fd(t) as a function of time fog~1.36 and¢$=0.6,0.718,0.8,0.87. Stead. to vary withr, bl,Jt it is always close tqbg_l' . .
For ¢ < ¢, the long time decay is well fitted by a functigfull line) This glassy r_elaxatlon pattern suggests that al_so in this
~e"W7” \with B~0.3. At the percolation threshold and in the gel 25 the r_elaxatlon takes pl_ace by means of a caging mecha-
phase in the long time decay the data are well fitted by a functior{"sm: partICIeS. are trappgd Ina Cage formed by the surro.un.d-
~(1+t/ 7). ing ones, the first relaxation step is due to movements within

this cage, whereas the final relaxation is possible due to cage

In the model with finite lifetime bonds, the equilibration opening and rearrangement. We notice that, contrary to the
time is an increasing function of. The system is considered usual behavior observed in supercooled liquids and predicted
at equilibrium when both the average number of bonds haby the mode-coupling theory, the value of the plateau of the
reached its asymptotic limit and the autocorrelation functiongelaxation functions, which is typically related to the size of
have gone to zerfB4]. In this case very different behaviors the cage, strongly depends on the monomer concentration

are observed. In Fig. #;(t) is plotted as a function of time  This effect will be explained later in terms of effective clus-
for a fixed value ofr,=10,100,1000[respectively, Figs. ters.

4(a), 4b) and 4c)] for increasing values of the monomer
concentration(¢ varies on the same range as the permanent
bond casg At low concentrations, the behavior of the auto-
correlation functiorf4(t) is apparently very similar to the one
observed in the case of permanent bonds: the system com- We study now the relaxation times that can be obtained
pletely relaxes within the simulation time scale and the refrom f4(t) as the timer such thatfs(7)~0.1. In Fig. 9 the
laxation time increases with the concentratign At high  relaxation timer is plotted as a function of the monomer
concentrations, a two-step decay appears, closely resemblimgncentratione for the permanent bonds and for the finite
the one observed in supercooled liquids. This qualitative belifetime bonds case at different values#f In the figure one
havior is observed for many different values of the bondfinds the data for the permanent bond case on the left, and
lifetime 7,. As shown in Fig. 4, the two-step decay is more then from left to right the data for decreasing values of bond
pronounced for higher values aj,. lifetime 7,.

As we can see in Fig. 5, where the long time decay of In the case of permanent bon@hemical gelation ()
f4(t) for 7,=100 is shown, the long time decays are well displays a power law divergence at the percolation threshold
fitted by stretched exponentials. The expongriB~0.7 for  ¢.. For finite bond lifetime the relaxation time instead in-
the case of Fig. bdoes not seem to vary significantly as the creases following the permanent bond case, up to some value
concentration varies, and this has been observed for all th¢" and then deviates from it. The longer the bond lifetime
values of7, studied. It instead decreasesmgsncreases: for the higher¢’ is. For higher¢ the further increase of the
very small 7, one recovers a long time exponential decayrelaxation time corresponds to the onset of the glassy regime
whose behavior becomes less and less exponential as tirethe relaxation behavior discussed in the preceding section.
bond lifetime increases. This suggests that the stretched eXhis truncated critical behavior followed by a glassylike
ponential decay is due to the presence of long living structransition has been actually detected in some colloidal sys-
tures. tems in the viscosity behavigB5,36.

For high monomer concentrations we fit thgt) curves In both cases of permanent bonds and finite lifetime
using the mode-coupling correlator[12], corresponding to  bonds, clusters of different sizes are present in the system. In
a short time power law~f+(t/7)™@ and a long time von the permanent bond case, a cluster of rafusffuses in the
Schweidler law~f - (t/7)P. In Fig. 6 we show the agreement medium formed by the other percolation clusters with a char-

IV. THE RELAXATION TIME AND THE ROLE OF
EFFECTIVE CLUSTERS
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FIG. 5. The long time decay of4(t) in a log-log plot forq
~1.36. It has been calculated on a cubic lattice of 4izel6 for
T,=100 MC step/particlégfrom left to right ¢$=0.65,0.68,0.718
The data are fitted using a stretched exponential function @&ith
~ 0.7 (full lines).

acteristic relaxation time{R). At the percolation threshold
the connectedness length critically grows in the system and
so does the overall relaxation time. In the case of a finite
bond lifetime 7, it will exist as a cluster siz&R" so that
< 7(R’). That is, clusters of sizB=R" will break and lose
their identity on a time scale shorter thafR) and their full
size will not contribute to the enhancement of the relaxation
time in the system. We can say that the finite bond lifetime
actually introduces an effective cluster size distribution with
0* a cutoff and keeps the macroscopic viscosity finite in the

1 N ;.O - 1’ ‘\0’ 10*
(b) b t(us) system[37].

fa(t)

09 K¢
0.8
0.7

0.6 |

0.4k
03 |

02 |

N 0.1 F
1 10 107 10° 10* 0° [

(©) c t (MCS 0 N SN

1 10 10°

10° 10 10°
t (MCS)
FIG. 4. f5(t) as a function of time fog~ 1.36 calculated on a
cubic lattice of sizd.=16: for $=0.6,0.7,0.8,0.85,0.87,0(&om FIG. 6. f4(t) as a function of time fog~1.36 calculated on a
left to righty and 7,=10 MC step/particle; (@ 7, cubic lattice of sizd.=16 for 7,=1000 MC step/particle. From left
=100 MC step/particle(b) 7,=1000 MC step/particleic) the dot-  to right ¢=0.8,0.85,0.87,0.9. The full lines correspond to the fit
ted lines are a guide to the eye. with the B correlator.
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fo(0) 800

700
600
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400
300 t
200 F

100 |

10° 10° 10*

t/7(®)

FIG. 7. fgt) obtained for q~1.36, 7,=1000, and ¢ FIG. 9. The average relaxation time as a function of the density;
=0.85,0.87,0.9,0.91,0.92: by opportunely rescaling them by drom left to right: the data for the permanent bond case diverge at
quantity 7(¢) they collapse into a unique master curve, well fitted the percolation threshold with a power ldtie full line); the other
by a stretched exponential function wigh~0.5+0.06. data refer to finiter,=3000,1000,400,100 MC step/particle de-

creasing from left to rightthe dotted lines are a guide to the gye

At high concentrations the system approaches a glasque apparent divergence of the relaxation timmis observed at the
regime and the relaxation time increases. In order to furthepereolation threshold of the permanent bond cae,0.718, for all
investigate the high concentration regime, in Fig. 10 we di-the values ofr,.
rectly compare f4(t) at fixed #=0.85 for
=10,100,400,1000, and the permanent bond case. We o
serve that at a fixed value of the monomer concentradipn
the relaxation functions calculated for finite lifetime bonds
coincide with the permanent bond case up to times of th
order of 7,. This suggests that on time scales smaller than
the relaxation process must be on the whole the same as
the case of permanent bonds, where permanent clusters
present in the system, and gives an interpretation in terms o
effective clusters for the two-step glassy behavior of the re

axation functions: The first step is due to the relaxation of a
Tuster within the cage formed by the other clusters, whereas
the second step is due to the breaking of clusters. This sec-
ond relaxation is the analog of the cage opening in an ordi-
‘?‘Iary supercooled liquid. In conclusion, on a time scale of the
order of 7, the effective clusters play the role of single mol-
Ktules in an ordinary supercooled liquid or in a colloidal
&rd sphere system.
Using this picture of effective clusters, we are able to
explain the increase of the plateau fig(t). In fact, since
fo(8)

7(®)

0.5 A 4
0.8 0.9 ® 1 10 102 10° 10° 10°
t (MCS)

FIG. 8. Log-log plot of the characteristic tim&¢) obtained by
the rescaling of the relaxation functions. The points have been fitted FIG. 10. f4(t) obtained for¢=0.85 andg~ 1.36: the different
(full line) with the function 0.006py—#)">33 where ¢,  curves refer tor,=10,100,400,1000, compared to the permanent
~0.96+0.01. bond casefrom left to righ).
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FIG. 11. The mean-square displacemé&gitt)) of the particles FIG. 12. The mean-square displacem&Rtt)) of the particles
as a function of time in a double logarithmic plot for permanentas a function of time in a double logarithmic plot for,
bonds: from top to bottong=0.4,0.5,0.6,0.7, approaching. =1000 MC step/particle: from top to bottom ¢

=0.8,0.82,0.85,0.87,0.9, approachifig(n,). In the inset, the dif-

different values of the monomer concentration correspond t§'sion coefficient: the full fine is the fit with the function
different effective cluster size distributions, for each value of (096347

¢ one has a different glassy liquid of effective clusters. This =~ o ] )

will change the first relaxation and should correspond to #£f time in a double logarithmic plot fo$ approachings in
change in the plateau of the relaxation functiofgs. 4 and  the case .of permanent bonds: particles can Stl!| diffuse, and
6). In particular, we find that for highep one has a higher the diffusion coc_afﬂuent apparently decrgases with thg mono-
plateau that is the first decaghe motion of clusters within Mer concentration. At high concentrations the subdiffusive

the cagepproduces a smaller relaxation in the system. ~ '€gime stays longer, and the long time diffusive behavior is
hardly recovered.

In Fig. 12, we plot the data obtained witj=1000 and
V. DIFEUSION PROPERTIES ¢:08,082,085,09 According to the results jUSt dis-
cussed, for low concentratiodg?(t)) shows a simple diffu-

In order to obtain further information on the dynamics wesjye behavior. The diffusion does not change significantly
calculate the mean-square 9isplacement of all the particlegjose to ¢, and for high concentrations the behavior ob-
(F()=(L/N)ZE, ([Fit+t)=F(t")]?). In the model with fi-  served, characterized by a plateau, is similar to glass forming
nite lifetime bonds, clusters continuously evolve in time andsystems. This onset of a glassy regime has been obtained for
therefore the diffusion coefficient of a single cluster cannotdifferent values ofr,, and again it indicates a caging mecha-
be defined. nism in the dynamics. The asymptotic diffusion coefficient

In the model with permanent bonds the mean-square digjoes to zero asp approachesp, (inset of Fig. 13, as a
placement of the particle§(t)) presents a long time diffu- power law, with an exponent close to(Sec. IV) in agree-
sive behavior, and the diffusion coefficient decreases but rement with the mode-coupling theory predictions.
mains finite also above.. This is due to the fact that the As already done for the relaxation functions we directly
infinite cluster can be viewed as a net with a large mesh size&sompare the mean-square displacement obtained in the cases
through which monomers and small clusters can diffuse. of permanent bonds and finite bond lifetime. Figure 13

In previous paper$l8] the diffusion coefficient of clus- shows for a fixed value of the concentratiap+0.85, that
ters with a fixed size was studied. We found that clustersthe two quantities coincide up to time scales of the order of
whose size is comparable with the connectedness length,. For longer times in the system with nonpermanent bonds
present a diffusion coefficient going to zero @t (with the  the final diffusive regime is recovered. These results are co-
same exponent as the relaxation tjimghereas single mono- herent with the behavior of the relaxation functions dis-
mers present a finite diffusion coefficient also in the gelcussed in the preceding section. The first regime is appar-
phase. As we have already noticed, this is due to the fact thantly related to the diffusion of effective clusters. Here again
small clusters are able to escape through the percolating cluthe value of the plateau in the diffusion pattern, which is
ter having a structure with holes over many different lengthrelated to the size of the cage, varies with the concentration
scales close to the percolation threshold. It is therefore cleap. For higher values of the monomer concentration, the size
that the behavior here observed for the mean-square disf the cage apparently decreases. This corresponds to larger
placement is mainly due to the diffusion of single monomerseffective clusters, which have less free space compared to
and small clusters. In Fig. 1{7%(t)) is plotted as a function their size. By means of the qualitative argument used in Sec.
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<) > (chemical gelationthe divergence of the relaxation time is
: due to the formation of a macroscopic critical cluster and the
decay of the relaxation functions is related to the relaxation
of such cluster. In the case of finitg there is an effective
cluster size distribution, with a size cutoff. Note that the
clusters cannot be easily defined as in the case of chemical
gelation: The effective clusters do not coincide with pairwise
bonded particles. A cluster can be identified in a statistical
sense as a group of monomers which keeps its ideitéy,
the bonds are unbrokgnwvhen diffusing a distance of the
order of its diameter. The formation of effective clusters
leads to an apparent divergence of the relaxation time which

2 . is characterized by exponents corresponding to the case of
100 o random permanent bond&andom percolation As the
P monomer density increases the presence of effective clusters
L . . . further slows down the dynamics, until a glass transition is
I T - R LS . reached.

In the caser,— =, starting with a random configuration

of unbonded monomers one obtains an out of equilibrium

as a function of time in a double logarithmic plot, obtainedgat state as In FIUSt?r'ClllljS.:jerl aggl;re_gatl(l)g mlfdehl.s" Whlcr; can.be
=0.85. The different curves, from top to bottom, refer tp r_ep.resentatlve ,O colloidal gelation. e,a y this Ol_Jt orequi-
=10,100,1000 and the case of permanent bonds. librium system is co_nnec_:ted to the two lines Qescrlbed above,
the pseudopercolation line and the glassy line. The pseudo-
. \ percolation line can be detected if the effective cluster size is
IV, one expects that for a longeg, the conditions, < «(R’) large enough and it is quite distinct from the glassy line.

will be fulfilled by a larger sizeR', and on average larger o ever, both lines interfere at low densities and low tem-
clusters will persist. For the same value of the Concemrat'orberatures with the phase coexistence curve

the size of the cage should be the same, whereas the particles
of this glassy systen.e., the effective clusteysare longer We would like to thank K. Dawson, A. de Candia, G.
trapped in the cage as the bond lifetime increasés. 13. Foffi, W. Kob, F. Mallamace, N. Sator, F. Sciortino, P. Tarta-
glia, and E. Zaccarelli for many interesting discussions. This
VI. DISCUSSION AND CONCLUSION work was partially supported by the European Community
under Contract No. MRTN-CT-2003-504712, by MIUR-
We have studied a model for gelling systems both in thePRIN 2002, MIUR-FIRB 2002, CRAC-AMRA, and by the
case of permanent bonds and finite bond lifetime. The studyNFM Parallel Computing Initiative. E. D. G. was supported
of the dynamics shows that when bonds are permanerdy contract No. HPMF-CI2002-01945.
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FIG. 13. The mean-square displacem@gtt)) of the particles
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