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Size of outbreaks near the epidemic threshold
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The spread of infectious diseases near the epidemic threshold is investigated. Scaling laws for the size and
the duration of outbreaks originating from a single infected individual in a large susceptible population are
obtained. The maximal size of an outbremk scales asN?® with N the population size. This scaling law
implies that the average outbreak s{n® scales ad\'/3. Moreover, the maximal and the average duration of an
outbreak grow as. ~ N3 and(t)~In N, respectively.
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Infection processes typically involve a threshgid-9. These scaling laws are demonstrated for the classic
Below the epidemic threshold, outbreaks quickly die out,Susceptible-Infected-RecoveredSIR) infection process
while above the threshold, outbreaks may take off. We study1-3]. In this model, the population consistso$usceptible,
epidemic outbreaks near the threshold. Such outbreaks arisénfected, and recovered individuals witiN=s+i+r. These
naturally. On the one hand, human efforts at disease prevesubpopulations change due to two competing processes: in-
tion reduce the infection rate thereby crossing the epidemitection and recovery. The disease is transmitted from an in-
threshold[2]. On the other hand, evolution may increase thefected individual to a susceptible one with ratéN, wherea
infection rate of diseases hovering just below the thresholds the infection rate
enhancing the likelihood of near-threshold outbrefk@).

Typically, detection, modeling, and eradication of infectious _ asilN _
diseases are subtle for outbreaks near the epidemic threshold. (8i,1) —— (s=Li+1r). (2)

The total number of infected individuals is a basic mea- o ) )
sure of the severity of an epidemic outbreak. We study out!nfected individuals recover with a unit rate
breaks originating from a single infected individual in a large _
susc_eptible population. Our main result is_that near the epi- (si.1) ' (si-1r+1). &)
demic threshold, the maximal outbreak sizegrows as a

power law of the population siz, The infection process starts with a single infected individual,

(s,i,r)=(N-1,1,0, and it ends with none(s,i,r)
n. ~ N2, @ =(N-n,0,n).
] ) ] The total size of the outbreak and the duration of the
In contrast, below the epidemic threshold, endemic outbreakgythreakt are the outcomes of a stochastic process. We study
involve a small number of infected individuals, while above gtatistical properties of these random variables, particularly
the epidemic threshold, pandemic outbreaks involve a fracejr average and maximal size, as a function of the popula-
tion of the populatiom..~N. Therefore, outbreaks near the {jon sjze.(We implicitly consider an average over infinitely
epidemic threshold have a distinct intermediate size betwee,rﬁany realizations of the infection process.
a pandemic and an endemic outbr¢ak Loosely speaking, In the infinite population limit, the epidemic threshold is
epidemics come in three sizes: large, medium, and small. =1 since infection occurs with probability/ (1+a) and
The scaling law(1) has several important implications recovery with probability 1(1+a), the average outbreak
concerning the statistics of both the size and the duration of;, satisfiesn)=[1/(1+a)]+2[a/(1+a)](n). Thus, below
the outbreaks. It implies that the average size of outbreaks, | threshold(a< 1), a finite number of individuayls is in-
(n) and the maximal duration of outbreaksboth scale as fected <n>=(1—a)‘1.’Above Fsseiei el

—t N3 i i
(n)~t.~N" near the epidemic threshold. Furthermore, thepandemic outbreak with a finite fraction of the population

average duration of the outbrealts scales logarithmically, infected: (n)=rN [1,11]. At the threshold(a=1), the prob-

(t)~In N. These behaviors hold in a sizable range of infec—ability that the outbreak size equals G,, is found recur-

tion raFes, namely in a window of the ordéX(N™*"%) around sively: Gn=%E”milleGn_m starting withG,=1/2.This recur-
the epidemic threshold. sion reflects the fact that the first infection event results in
two independent infection processgR?]. The generating
function underlying this standard branching process is
*Electronic address: ebn@Ilanl.gov Sn=1G,2"=1-y1-z, from which the size distribution is a
"Electronic address: paulk@bu.edu power law,
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FIG. 1. The average outbreak size versus the population size FIG. 2. The normalized cumulative distributidgy,(N)/U, ()
for the SIR infection process at the epidemic threshaid1). versus the normalized outbreak sizéN?3, The data corresponds to

Shown are Monte Carlo simulation results representing an averagen average over $andependent realizations.
over 10 independent realizations of the infection procésecles.

Aline of slope 1/3 is also shown as a reference. A least-square fit tQ, |15 represent an average over a remarkably large number of
(n)~N? in the range 1®<N<10° yields y=0.334+0.001. independent realizations

Statistical properties of the outbreak size are self-similar

G,~n?, (4) as they follow a universal, population-size independent law.
o Once the outbreak size distribution and the outbreak size are
for sufficiently large outbreaka> 1. properly normalized by the infinite population distribution

For a finite, yet large population, the outbreak size distri-anq the maximal outbreak size, respectively, a universal be-
bution (4) holds, but only up to the ma>_<|mal qutbreak Size€: havior emergesG,(N)/Gn(%2) — G(n/N?3). This universal-
1<n<n,. Outbreaks beyond the maximal size are practi-ity reminiscent of finite-size scaling in critical phenomena
cally impossible. TEerefore, tlr}ze average outbreak size grows 31 was confirmed numerically by studying the cumulative
according to(m)=Xz,nG,~n,’*. Naively assuming that a (gistribution U,(N)=X, -, G(N) (Fig. 2. This provides fur-
finite fraction of the population may become infected,her verification of the scaling lawd).
n.~N, would lead ton)~ N_llz- While consistent with the  The scaling laws characterizing the outbreak size hold not
generic statistical uncertainties, this law is in factoneous only at the threshold but also in a window around the thresh-
Instead, the outbreak size is much smaller because the epjtd. Equating the average outbreak si@gwith the behavior
demic outbreak weakens as more individuals become inin the endemic phasén)=(1-a)~%, we find that the thresh-
fected, and it finally dies out when the number of infectedo|d window (i.e., the range of infection rates for which the
individuals becomes of the order.. When there ard-n.jntermediate behavior holgisliminishes with the population
susceptible individuals, the total infection ra#€N-n,)i/N  gjze as
shows that the infection rate is effectively reduced,
ae=1-n,/N. Therefore, the epidemic becomes essentially |1-al ~ N5, (6)
endemic.(This is clearly a finite population effect: the sus-

ceptible population “reservoir” is never affected in the infi- 1NiS parameter range can t_)eogsizable for moderate
nite population limit) Equating the outbreak size in the en- Populations—for example, whem=10", the threshold win-

demic phase(n)~ (1-ag) L~N/n, with that estimated dow is roughly 0.%<a<1.1 and the maximal outbreak
from the size distributionn) ~ n%'2 size is smaller than the population size by a factor of 10.

+'%, gives the scaling la ; . . .
governing the maximal outbréak gsize. Hence ing thga\zvorse The behaylor of(_n) near the epldemlc threshold proyldes
case scenario, only a fraction of the orderl\bﬁl‘l’3 of the another manifestation of the scaling 18@). Indeed, plotting

entire population can ever be infected. _the average outbreak size versus .the infection rate normal-
As a byproduct we obtain the scaling law for the averag zed a909rd'”91t,‘§5) and(®), reipectn./ely, shows a universal
outbreak size ehavior:(ny/NY3— Q[ (1-a)N'?] (Fig. 3.
The threshold window is larger than the canonibal?
(n) ~ N3, (5) estimate arising either from the standard large-population
analysis[14,15 or from the widely used deterministic SIR
Large scale Monte Carlo simulations confirm this behaviorordinary differential equationgl6], describing the evolution
(Fig. 1). The simulations are a straightforward realization ofof the average susceptible and infected populatifiig.
the infection process. When there arsusceptible individu- Moreover, the related $sometimes also termed SiSodel,
als, with probability 1(1+as/N) a recovery event occurs, where a recovered individual immediately becomes suscep-
and otherwise, an infection event occurs. The simulation retible, is characterized by the simpler behavigr—~N and
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FIG. 3. The near threshold behavior. Shown is the normalized
outbreak size(n)/N3® versus the normalized distance from the
threshold(a—1)N3. The data corresponds to an average ovér 10
independent realizations.

FIG. 4. The average outbreak duration at the epidemic threshold
versus the population size. Simulation results, obtained from an
average over Hrealizations are consistent with the theoretical pre-
diction ((10)). A best fit to(ty=8 In N yields 8=0.32+0.01.

N2 Fimita o _ _

() N ; finite size effects are not as pronoun_ced because The maximal duration of outbreaks greatly exceeds both

there is no depletion of the susceptible reservoir. — he typical duration that is of the order of one and the aver-
The scaling laws for the outbreak size have direct 'mp“'age duration of an outbredk) which exhibits an interesting

cations concerning the dynamics and, in particular, the durgy, g ishmic growth. To derive the logarithmic law, we first

tion of infection processes near the epidemic threshold. TQ ote that, by definition, the average duration of an outbreak

obtain these scaling laws, we again consider first the infinitges (y=/7 dt t(d/dDP(t,N). Using the infinite population re-

population limit. At the epidemic threshold,=1, infection : .
and recovery occur with equal probabilities and, thereforesvuelté?tand integrating up te, that plays the role of a cutoff,

the average number of infected individuals is conserved,
[(t)=1. The probabilityP;(t) that there are infected indi-

viduals at timet satisfies ()= %m N. (10)
api =i+ P+ (i - 1P - 2iP (7)  Numerical simulations confirm this behavi¢Fig. 4). The

probability distribution for the duration of outbreaks also fol-

together with the initial conditiorP,(0)=4,,. The distribu- 10WS @ population-size independent lav(t,N)/P(t)

tion is geometricP;(t)=t~Y(1+t)=*Y [17,1g for i=1, and

Po(t)=t(1+t)™* for i=0. Therefore, the survival probability 1.0 Tﬁ\. T
of the outbreak, i.e., the probability that the outbreak is still " 7
active at timet is simply % ¢ N=108
. = N=10
P(t) = (1+t)™ (8) = . * N=10°
o ‘s
since P(t)=1-Py(t). Restricting attention to active out- = 05 } . ]
breaks, the average number of infected individuals grows = i)
linearly with time (i)=I(t)/P(t)=1+t. Consequently, the a .
typical number of recovered individuals~ [{dt’'(1+t") “_
grows quadratically with timer ~ t2. -
For finite populations, the probability that the outbreak is -,
still alive at timet decays a®(t,N) ~t™* up to the maximal 0.0 . -q"*-o-n--o
time scalet<t,. The survival probability is sharply sup- 0 2 4 6
pressed for times larger than the maximal time. The maximal '[/N“s

duration of outbreaks is estimated by equating the time de-
pendent outbreak size~r ~t? with the maximal outbreak

FIG. 5. The survival probability at the epidemic threshold.
sizen, ~N?3, Therefore,

Shown is the normalized survival probabili(t,N)/P(t) versus
the normalized duration timé&/N3. The data corresponds to an
t, ~ N3, (9)  average over Forealizations.
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—P(t/N*3) as shown in Fig. 5. However, the convergence
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Several questions arise, e.g., what is the shape of the scal-

to this law is not uniform: it is slow for short durations but ing functionsG(n/N?3) andP(t/N'3) characterizing the size

fast at large durations.

and duration of outbreaks near the epidemic threshold? Nu-

In summary, we found that outbreaks in the vicinity of the merically, we observe the both distributions have stretched
epidemic threshold have a distinct size, characterized by @xponential tails, and tha(w) ~ exp(-w°) with 6~2. Ana-
distinct power-law dependence of the population size. Thidytical determination of these functions is very challenging
behavior describes a range of infection processes in the v@s it requires treatment of the full master equations describ-
cinity of the epidemic threshold. The size of this thresholdind the stochastic infection procefH, that is, the distribu-
window is larger than expected from the traditional largetion Pi (t,N) is needed17]. _
system size analysis techniques or from the deterministic de- Further related problems include the corresponding near-

scription. We conclude that statistical fluctuations and finit
population effects are most pronounced and may be qui 31

subtle near the epidemic threshold.

The scaling laws have concrete implications regarding th
computational complexity of near-threshold infection pro-

cesses. Typically, one has to compuRg, the probability

that there are infected individuals and removed individu-

als from the master equations. Although there Mfesuch

ghreshold scaling laws for spatial epidemic models, where

ithe geometry and the spatial structure of the infected domain

play a role[19-22, and infection processes on networks

é23,24]. We anticipate that finite size effects should be rel-
évant in these systems as well.
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