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on the random multiplicative process
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Autoregressive conditional duratigACD) processes, which have the potential to be applied to power law
distributions of complex systems found in natural science, life science, and social science, are analyzed both
numerically and theoretically. An ACR) process exhibits the singular second order moment, which suggests
that its probability density functioPDF) has a power law tail. It is verified that the PDF of the A@Phas
a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the
random multiplicative process a relation between the model parameter and the power law exponent is theo-
retically derived. It is confirmed that the relation is valid from numerical simulations. An application of the
ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
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Power law distributions are observed in the field of natu-between thesth event and thés+1)th one. Then the PDF of
ral science, life science, and social sciefitg]. The power t pg(t) follows the exponential distribution:
law is utilized to characterize “complex system,” which has
been explained by self-organized criticali¢gOO [3]. In 1
fact, the SOC has succeeded in explaining power law behav- ps(t) = EQXD(— ti(TY). (1)
ior observed in various fields. Naturally the SOC cannot ex-
plain all the power law behavior, such as financial fluctua-Here it is assumed thal) is given by a conditional average
tions. Recently, financial fluctuations have been attracting thender past realizationg_¢(s'=1, ... K), expressed as
attention of many physicists. The movement is called K
“econophysics”[4] and advances collaborations between
economists and physicists. The successive studies make re- (T9=ao+ E aylsy, 2
markable progress in understanding the mechanism of power s=1

law behavior in financial fluctuation§s—7]. Specifically  where ay(s'=0, ... K) are positive coefficients. Equation

some researchers have been interested in time intervals bgy js called ACOK). It is obvious that Eq(2) is rewritten

tween two successive transactions. Takayatsal. have ex- g

amined time interval distribution of the yen/dollar exchange

rate. They have indicated that a probability density function K

(PDP of the time interval exhibits a power law distribution ts=| ap+ X agtsy |6 ©)

[8]. Engle and Russell have introduced autoregressive condi- s'=1

tional duration(ACD) processes in order to discuss the time

interval related to foreign currenci¢g]. Actually these pro-

cesses are useful in analyzing financial data that do not arri

in equal time intervals. However, theoretical investigation

has not yet been suff.|C|en.t. ' p.(e) = exH- e). (4)
The purpose of this Brief Report is to analyze the ACD

processes by using mathematical techniques developed in ti&¥ course, calculating the conditional average of &j.un-

random multiplicative proces®RMP). The fundamental idea der the realizationg,_o(s'=1, ... K) one gets Eq(2). Fur-

of the RMP was pointed out by Champernowé], and the  thermore, when all the, =1/K the ACD(K) is rewritten as

mathematical formalization is given by Kest¢hl]. The

RMP is a stochastic process with both multiplicative and ts= (ap + (D) €s, ©)

additive noises. The effect of the multiplicative noise repre- . . L

sents both positive and negative feedback originating fron¥_"here<t>K is a moving average ovef steps, which is de-

nonlinearity of a system. In the context of statistical mechanfined as

ics the RMP has been investigat¢ti2—15. It has been LK

widely applied as a model to understand aspects of the sin- (O = RE teg. (6)

s'=1

where g is a stochastic variable following an identical and
\)' dependent exponential distribution with a unit mean.
amely, the PDF ot is given by

gular behavior in nonlinear dynamics, such as the on-off in-

termittency[16—2Q and conformation of polymers in ran-

dom velocity fields[21]. This is the self-modulation proce$SMP) which is intro-
The ACD processes are formalized as follows. Let us conduced by M. Takayasu and H. Takaydf2], namely, the

sider a Poisson point process. ligtlenote the time interval ACD processes include the SMP as the special case.

1539-3755/2004/69)/0471014)/$22.50 69 047101-1 ©2004 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B9, 047101(2004

nume'rical estimati'on o)
of B+ 1)=1

_k
<

s
S
)

cumulative distribution function
(e} (e}
- w
T
(o]
oOOOO
1

_k
()
[6,]
T
OQOO
o
pp=Yet
2oL
ree
Inmn
QOO0
N oK~
O e O
o
/.
1

-
S,
[

0.01 0.1 1 10 100 1000

FIG. 1. Typical examples of cumulative distribution functions in
a log-log scale of the ACQ) fixing ap=0.1. Unfilled circles rep-
resent a cumulative distribution function @=0.4, filled circles at
a,=0.8 and unfilled squares a4 =1.2. The calculation step to ob-
tain these CDFs is % 10°.

FIG. 2. The relation between the model parameigrand the
power law exponenB at ap=0.1. Unfilled circles represent the
power law exponents obtained from the slopes of the cumulative
distribution function in the log-log scale and a solid curve the the-
oretical relatlonaﬁl"(ﬂ+ 1)=1. Note that3=2 whena; = 1/72, and
that =1 whena;=1. For a; >€?, wherey is Euler’s constant, no
For simplicity ACIX1) is considered, namelit=1 on Eq.  stationary distribution exists.

(2)5
- From Fig. 1 it is found that each CDF has a straight-line
ts= a0+ arls1)&s ™ part in the log-log scale, namely, the CDF follows the power
If a stationary average satisfying E@) is assumed then one law distribution. It is also found tha8 is a function ofa;
has because each slope of the CDF depends-priurthermore,
Fig. 1 shows that the value of a cut in the CDF is nearly
) equal toay,.
1-a; Here a relation betwees; and B is theoretically derived.
From Eq.(7) one can immediately write the expressions of
Because it is clear thafl)>0 from the definition, Eq(8)  by=a;e, and f = aye, on the basis of the RMP,
shows a singularity fory,=1. Similarly, calculating a sta-

(M=

tionary second order moment of E{), one has ts=bgtsq + fs, (12
o 2031 +ay) where bs and fg are a multiplicative noise and an additive
(19 = (1- Zai)(l —ay) 9 one, respectively. In fact it is obvious that the multiplicative

noise and the additive noise have cross correlation. However,
From the definition of<T2) it is obvious that Eq(9) suggests here it is assumed that it is O for instance. From the equation
a singularity fora;>1/42, namely, it is expected that a Of the power law exponeng [12] one has
power law distribution appears. In order to verify that the
PDF follows the power law the cumulative distribution (mef)=1. 13
function (CDF) corresponding to the PDF of p(t), which

is defined as Substituting Eq.4) into Eq. (13) one gets the relation be-

tweenB and a;,
P(=t) = f p(t)dt’, (10) aAT(B+1)=1, (14
t

wherel'(-) represents the gamma function. In order to con-

firm the relation between, and g, one estimateg from the

slope of the CDF in log-log scale for various. As shown

in Fig. 2 the theoretical equation shows good agreement with
P(=t) o< 5, (11) estimation ofa; versusg. From Fig. 2 it is found that for

a;>1/V2 P(=t) follows a power law with the exponent

whereg is a power law exponen>0. If 0<B8<2thenthe less than 2. For;>1 it follows a power law with the

PDF is in the stable regime. When the power law exponent iexponent less than 1.

lower than 2 the second order moment diverges. Moreover, Furthermore, one considers the necessary and sufficient

when the exponent is lower than 1 the first order momentondition fort to have a stationary PDFR.2]. Then the in-

diverges. equality is required,

is numerically calculated.
Figure 1 shows the CDF df for variouse; at fixed oy If
pi(t) has a power law tail theR(=t) is written as
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log a;e) =loga;— y< 0, 15 1 LA T T T
(log a;€) gai—vy (15 s ..{{\
namely, a stationary PDF exists when glor Nt 1
2402 L . e i
a, < e’=178107..., (16) 10 N
=] -3 | ~~\\ [ ] o |
wherevy is Euler constanit23]. From Fig. 2 it is clarified that .-§10 e,
the CDF oft no longer has a stationary solution fey>e”. 210 + "\ .
In time series analysis of financial fluctuations it has been @ 5 ‘.
reported that the PDF both of time series and of their multi- 10~ [ T % ]
plicative inverse has a power law t@ifl,24]. That can be also 310_6 | ”3
explained by the ACIL). By inserting7s=1/tg into Eq. (7) 3
. ACD(1) o
one obtains 107 L L
1 10 100 1000 10000
Ts-1 t
= —— &, (17)

apTs-1 T . o .
0fs-1 7™ FIG. 3. Log-log plots of the cumulative distribution function

whereé,=1/e. By transforming Eq(4) expressed in term of obtained from the ACQL). Filled circles represent the cumulative

€ into of £ one has the PDF o, distribution function calculated from the AGD at «y=2.0 and
a1=0.75. The dashed line shows a power law with the exponent
1 1.8.
Pe(§) = - exp(= 1/§). (18) . N .
§ The autoregressive conditional duration processes were

analyzed both numerically and theoretically. It is confirmed
that the CDF of the dynamical variable of the AQphas a
power law tail from numerical simulations. On the basis of
the theory of the random multiplicative process, the relation
between the model parametef and the power law expo-
P.(=17) =~ P{=ao?) (19) nent, B, is theoretically derived. It is verified that the theo-

T ' retical relation betweern; and g fits the estimation obtained
whereP(=¢) represents the CDF @ which can be calcu- from the CDF of the ACIL). The necessary and sufficient
lated by condition for a PDF to have a stationary distribution is given

by a,<e”. It was analytically verified that a PDF of the
1 multiplicative inverse of the dynamical variable of the
P(=§=1- exp(— E) (200 ACD(1) has the power law tail of which the exponent is 1. It
was confirmed that the CDF of time intervals between two
Substitution of Eq(20) into Eq. (19) yields successive transactions of the yen/dollar exchange rate has a
power law. These model parameters of the ACDwere es-
P (> ~1- 1 1 21 timated from the CDF calculated from the time intervals of
=7 ~1-ex agr) T (1) the real data. It was shown that the CDF obtained from the
ACD(1) is consistent with that estimated from the real data.
namely, the CDF ofr has the power law tail of which the It is coincidence that the theory of the RMP with the
exponent is 1. identical and independent noises is applicable to the A¢D
Here an application to financial time series is shown.because it is obvious that both the multiplicative and additive
Takayasuet al. empirically investigated time intervals be- noises have the same noise source. | think that the reason is
tween two successive transactions of the yen/dollar exchangechallenging open problem. The method based on the RMP
rate[8]. They reported that the CDF of the time intervals hasis only available to the AC[1). Hence forK=2 it is ex-
a power law tail with the exponent 1.8. From Ef4) «; is pected that development of an alternative method to derivate
given by the same relation ds=1.
The ACD processes can be applied to a power law distri-
a;=T(B+1)7YA. (22)  pution in various fields since they are very simple. Specifi-
cally, | believe that they should be useful in explaining the
power law distribution in complex systems found in natural
science, life science, and social science. The ACD allows us
to make a theoretical model of time series with an arbitrary
exponent and to compare statistical properties of their dy-

For largers Eq. (17) can be approximated by~ (1/ap)&s.
Therefore by usingp.(é) the PDF of 7 for large 7 is de-
scribed ag (1) = app 7). Here the CDF of for large ris
given by

Equation(22) yields that the parameter; can be estimated
from the power law exponerm. From the power law expo-
nentB=1.8 one getsy;=0.75.From the cut in value of the
CDF one getsyy=2.0. Figure 3 shows the CDF calculated
from the ACIO(1) at ¢p=2.0 anda;=0.75. The CDFcal-

culated from the ACIDL) agrees with that estimated from namics.

the real data. Therefore it is found that H§2) is useful The author thanks Professor T. Munakata, H. Takayasu,
in obtaining the model parametes; from the power law and M. Takayasu for useful comments and stimulating dis-
exponentg. cussions.
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