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Autoregressive conditional duration(ACD) processes, which have the potential to be applied to power law
distributions of complex systems found in natural science, life science, and social science, are analyzed both
numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests
that its probability density function(PDF) has a power law tail. It is verified that the PDF of the ACD(1) has
a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the
random multiplicative process a relation between the model parameter and the power law exponent is theo-
retically derived. It is confirmed that the relation is valid from numerical simulations. An application of the
ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
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Power law distributions are observed in the field of natu-
ral science, life science, and social science[1,2]. The power
law is utilized to characterize “complex system,” which has
been explained by self-organized criticality(SOC) [3]. In
fact, the SOC has succeeded in explaining power law behav-
ior observed in various fields. Naturally the SOC cannot ex-
plain all the power law behavior, such as financial fluctua-
tions. Recently, financial fluctuations have been attracting the
attention of many physicists. The movement is called
“econophysics” [4] and advances collaborations between
economists and physicists. The successive studies make re-
markable progress in understanding the mechanism of power
law behavior in financial fluctuations[5–7]. Specifically
some researchers have been interested in time intervals be-
tween two successive transactions. Takayasuet al. have ex-
amined time interval distribution of the yen/dollar exchange
rate. They have indicated that a probability density function
(PDF) of the time interval exhibits a power law distribution
[8]. Engle and Russell have introduced autoregressive condi-
tional duration(ACD) processes in order to discuss the time
interval related to foreign currencies[9]. Actually these pro-
cesses are useful in analyzing financial data that do not arrive
in equal time intervals. However, theoretical investigation
has not yet been sufficient.

The purpose of this Brief Report is to analyze the ACD
processes by using mathematical techniques developed in the
random multiplicative process(RMP). The fundamental idea
of the RMP was pointed out by Champernowne[10], and the
mathematical formalization is given by Kesten[11]. The
RMP is a stochastic process with both multiplicative and
additive noises. The effect of the multiplicative noise repre-
sents both positive and negative feedback originating from
nonlinearity of a system. In the context of statistical mechan-
ics the RMP has been investigated[12–15]. It has been
widely applied as a model to understand aspects of the sin-
gular behavior in nonlinear dynamics, such as the on-off in-
termittency [16–20] and conformation of polymers in ran-
dom velocity fields[21].

The ACD processes are formalized as follows. Let us con-
sider a Poisson point process. Letts denote the time interval

between thesth event and thess+1dth one. Then the PDF of
ts, psstd follows the exponential distribution:

psstd =
1

kTsl
exps− t/kTsld. s1d

Here it is assumed thatkTsl is given by a conditional average
under past realizationsts−s8ss8=1, . . . ,Kd, expressed as

kTsl = a0 + o
s8=1

K

as8ts−s8, s2d

where as8ss8=0, . . . ,Kd are positive coefficients. Equation
s2d is called ACDsKd. It is obvious that Eq.s2d is rewritten
as

ts = Sa0 + o
s8=1

K

as8ts−s8Des, s3d

wherees is a stochastic variable following an identical and
independent exponential distribution with a unit mean.
Namely, the PDF ofe is given by

pesed = exps− ed. s4d

Of course, calculating the conditional average of Eq.s3d un-
der the realizationsts−s8ss8=1, . . . ,Kd one gets Eq.s2d. Fur-
thermore, when all theas8=1/K the ACDsKd is rewritten as

ts = sa0 + ktlKdes, s5d

where ktlK is a moving average overK steps, which is de-
fined as

ktlK ;
1

K
o
s8=1

K

ts−s8. s6d

This is the self-modulation processsSMPd which is intro-
duced by M. Takayasu and H. Takayasuf22g, namely, the
ACD processes include the SMP as the special case.
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For simplicity ACD(1) is considered, namely,K=1 on Eq.
(2),

ts = sa0 + a1ts−1des. s7d

If a stationary average satisfying Eq.s7d is assumed then one
has

kTl =
a0

1 − a1
. s8d

Because it is clear thatkTl.0 from the definition, Eq.s8d
shows a singularity fora1ù1. Similarly, calculating a sta-
tionary second order moment of Eq.s7d, one has

kT2l =
2a0

2s1 + a1d
s1 − 2a1

2ds1 − a1d
. s9d

From the definition ofkT2l it is obvious that Eq.s9d suggests
a singularity fora1.1/Î2, namely, it is expected that a
power law distribution appears. In order to verify that the
PDF follows the power law the cumulative distribution
function sCDFd corresponding to the PDF oft, ptstd, which
is defined as

Ptsùtd =E
t

`

ptst8ddt8, s10d

is numerically calculated.
Figure 1 shows the CDF ofts for variousa1 at fixeda0. If

ptstd has a power law tail thenPtsùtd is written as

Ptsùtd ~ t−b, s11d

whereb is a power law exponent,b.0. If 0,b,2 then the
PDF is in the stable regime. When the power law exponent is
lower than 2 the second order moment diverges. Moreover,
when the exponent is lower than 1 the first order moment
diverges.

From Fig. 1 it is found that each CDF has a straight-line
part in the log-log scale, namely, the CDF follows the power
law distribution. It is also found thatb is a function ofa1
because each slope of the CDF depends ona1. Furthermore,
Fig. 1 shows that the value of a cut in the CDF is nearly
equal toa0.

Here a relation betweena1 andb is theoretically derived.
From Eq.(7) one can immediately write the expressions of
bs=a1es and fs=a0es on the basis of the RMP,

ts = bsts−1 + fs, s12d

where bs and fs are a multiplicative noise and an additive
one, respectively. In fact it is obvious that the multiplicative
noise and the additive noise have cross correlation. However,
here it is assumed that it is 0 for instance. From the equation
of the power law exponentb f12g one has

ksa1edbl = 1. s13d

Substituting Eq.s4d into Eq. s13d one gets the relation be-
tweenb anda1,

a1
bGsb + 1d = 1, s14d

whereGs·d represents the gamma function. In order to con-
firm the relation betweena1 andb, one estimatesb from the
slope of the CDF in log-log scale for variousa1. As shown
in Fig. 2 the theoretical equation shows good agreement with
estimation ofa1 versusb. From Fig. 2 it is found that for
a1.1/Î2 Ptsùtd follows a power law with the exponent
less than 2. Fora1.1 it follows a power law with the
exponent less than 1.

Furthermore, one considers the necessary and sufficient
condition for t to have a stationary PDF[12]. Then the in-
equality is required,

FIG. 1. Typical examples of cumulative distribution functions in
a log-log scale of the ACD(1) fixing a0=0.1. Unfilled circles rep-
resent a cumulative distribution function ata1=0.4, filled circles at
a1=0.8 and unfilled squares ata1=1.2. The calculation step to ob-
tain these CDFs is 53106.

FIG. 2. The relation between the model parametera1 and the
power law exponentb at a0=0.1. Unfilled circles represent the
power law exponents obtained from the slopes of the cumulative
distribution function in the log-log scale and a solid curve the the-
oretical relationa1

bGsb+1d=1. Note thatb=2 whena1=1/Î2, and
that b=1 whena1=1. Fora1.eg, whereg is Euler’s constant, no
stationary distribution exists.
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klog a1el = log a1 − g , 0, s15d

namely, a stationary PDF exists when

a1 , eg = 1.78107 . . . , s16d

whereg is Euler constantf23g. From Fig. 2 it is clarified that
the CDF oft no longer has a stationary solution fora1.eg.

In time series analysis of financial fluctuations it has been
reported that the PDF both of time series and of their multi-
plicative inverse has a power law tail[7,24]. That can be also
explained by the ACD(1). By insertingts=1/ts into Eq. (7)
one obtains

ts =
ts−1

a0ts−1 + a1
js, s17d

wherejs=1/es. By transforming Eq.s4d expressed in term of
e into of j one has the PDF ofj,

pjsjd =
1

j2 exps− 1/jd. s18d

For largets Eq. s17d can be approximated byts<s1/a0djs.
Therefore by usingpjsjd the PDF oft for large t is de-
scribed asptstd<a0pjsa0td. Here the CDF oft for larget is
given by

Ptsùtd < Pjsùa0td, s19d

wherePjsùjd represents the CDF ofj, which can be calcu-
lated by

Pjsùjd = 1 − expS−
1

j
D . s20d

Substitution of Eq.s20d into Eq. s19d yields

Ptsùtd < 1 − expS−
1

a0t
D ~ t−1, s21d

namely, the CDF oft has the power law tail of which the
exponent is 1.

Here an application to financial time series is shown.
Takayasuet al. empirically investigated time intervals be-
tween two successive transactions of the yen/dollar exchange
rate[8]. They reported that the CDF of the time intervals has
a power law tail with the exponent 1.8. From Eq.(14) a1 is
given by

a1 = Gsb + 1d−1/b. s22d

Equations22d yields that the parametera1 can be estimated
from the power law exponentb. From the power law expo-
nentb=1.8 one getsa1=0.75.From the cut in value of the
CDF one getsa0=2.0.Figure 3 shows the CDF calculated
from the ACDs1d at a0=2.0 anda1=0.75. The CDFcal-
culated from the ACDs1d agrees with that estimated from
the real data. Therefore it is found that Eq.s22d is useful
in obtaining the model parametera1 from the power law
exponentb.

The autoregressive conditional duration processes were
analyzed both numerically and theoretically. It is confirmed
that the CDF of the dynamical variable of the ACD(1) has a
power law tail from numerical simulations. On the basis of
the theory of the random multiplicative process, the relation
between the model parametera1 and the power law expo-
nent,b, is theoretically derived. It is verified that the theo-
retical relation betweena1 andb fits the estimation obtained
from the CDF of the ACD(1). The necessary and sufficient
condition for a PDF to have a stationary distribution is given
by a1,eg. It was analytically verified that a PDF of the
multiplicative inverse of the dynamical variable of the
ACD(1) has the power law tail of which the exponent is 1. It
was confirmed that the CDF of time intervals between two
successive transactions of the yen/dollar exchange rate has a
power law. These model parameters of the ACD(1) were es-
timated from the CDF calculated from the time intervals of
the real data. It was shown that the CDF obtained from the
ACD(1) is consistent with that estimated from the real data.

It is coincidence that the theory of the RMP with the
identical and independent noises is applicable to the ACD(1)
because it is obvious that both the multiplicative and additive
noises have the same noise source. I think that the reason is
a challenging open problem. The method based on the RMP
is only available to the ACD(1). Hence forKù2 it is ex-
pected that development of an alternative method to derivate
the same relation asK=1.

The ACD processes can be applied to a power law distri-
bution in various fields since they are very simple. Specifi-
cally, I believe that they should be useful in explaining the
power law distribution in complex systems found in natural
science, life science, and social science. The ACD allows us
to make a theoretical model of time series with an arbitrary
exponent and to compare statistical properties of their dy-
namics.

The author thanks Professor T. Munakata, H. Takayasu,
and M. Takayasu for useful comments and stimulating dis-
cussions.

FIG. 3. Log-log plots of the cumulative distribution function
obtained from the ACD(1). Filled circles represent the cumulative
distribution function calculated from the ACD(1) at a0=2.0 and
a1=0.75. The dashed line shows a power law with the exponent
1.8.
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