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Extracting the Green'’s function from the correlation of coda waves:
A derivation based on stationary phase
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The Green’s function of waves that propagate between two receivers can be found by cross-correlating
multiply scattered waves recorded at these receivers. This technique obviates the need for a source at one of
these locations, and is therefore called “passive imaging.” This principle has been explained by assuming that
the normal modes of the system are uncorrelated and that all carry the same amount of equeépgytition-
ing). Here | present an alternative derivation of passive imaging of the ballistic wave that is not based on
normal modes. The derivation is valid for scalar waves in three dimensions, and for elastic surface waves.
Passive imaging of the ballistic wave is based on the destructive interference of waves radiated from scatterers
away from the receiver line, and the constructive interference of waves radiated from secondary sources near
the receiver line. The derivation presented here shows that the global requirement of the equipartitioning of
normal modes can be relaxed to the local requirement that the scattered waves propagate on average isotropi-
cally near the receivers.

DOI: 10.1103/PhysReVvE.69.046610 PACS nuni)erd3.20+g, 91.30-f, 42.30—d

I. INTRODUCTION allowable wave numbergl5,16.) Furthermore, because of
the shallow depth of most earthquakes, the fundamental
Passive imaging is a technique wherein waves recorded abve and Rayleigh wave modes are usually most strongly
two receiver locations are correlated to give the Green'sxcited and, in regional seismology, there is no equipartition-
function that describes the direct wave propagation betweeimg of energy among surface wave modes because the fun-
these receivers. The tail of multiply scattered waves is calledamental Love and Rayleigh wave modes usually carry more
the “coda,” after the Latin word for tail. Coda waves are energy than the sum of all higher modé§,18. This means
effective for monitoring temporal changes in medig2). that both the Earth’s normal modes as well as the surface
Using coda waves to determine the Green’s function is usefuvave modes cannot be used to explain the experiments of
because it provides information on wave propagation be€ampillo and Paul13]. This does not mean that the deriva-
tween two points in space without the need for a source &ion of passive imaging based on normal mofi#lsis incor-
either of these two points. The Green’s function thus obJ€Ct but it does imply that it is not always applicable.

tained can be used to form an image of the medium. Passive 10 90al of this work is to present an alternative way to
imaging has been used in seismic exploratiém], heli- underst_and why the cor,relatlon's hidden in the coda' provide
oseismology 5], and ultrasonics with either an active sourcethe balllsfuc wave Gfee”. S functl_on between the receivers. In
[6—8] or thermal noise that excites the cd@al0]. Numeri- _Sec. I, I illustrate this W|t_h the sw_nplest case of scalar waves
in a homogeneous medium having embedded scatterers. In

cal expenments have shown that passive imaging can b§ec. I, the results are interpreted and the role of the scat-
used both in closed and in open systdrt,12.

c i d Paull3 | d T .. tering medium is elucidated. In Sec. IV, | extend the deriva-
ampillo and Paul13] recently used passive imaging in (i, 15 elastic surface waves in three dimensi¢8B). The

crustal seismology by retrieving the surface wave Green'4jerivation presented here is not based on normal modes:
function between seismological stations within Mexico usingiherefore. it is valid both for closed and open systems.

coda waves generated by earthquakes along the west coast of
Mexico. The theoretical explanation offered in their work is

based on the assumption of e_quipartitioning of the Earth’s Il. PASSIVE IMAGING FOR SCALAR WAVES

modes[6]. These modes can either be the normal modes of IN A 3D MEDIUM

the Earth, or the surface wave modes that describe the guided

waves that propagate along the Earth’s surface. Consider two receivers that are separated by a distance

Suppose one invokes the Earth’s normal modes. In thas shown in Fig. 1. | use a coordinate system with the origin
study of Campillo and PadlL3], records of the ground mo- chosen at receiver 1 and with the positivexis in the di-
tion with a duration of about 600 s were used. It takes aboutection of receiver 2. The receivers are placed in a medium
1100 s for a P wave to propagate to the other side of thavith scattererss that radiate scalar waves. Apart from the
Earth[14]; for an S wave it takes even longer, so, in their scatterers, the propagation velocity is assumed to be con-
study, the time is too short for the Earth’s normal modes tcstant. The scatterers act as secondary sources of singly and
equilibrate. Invoking the surface wave modes, however, alsmultiply scattered waves; scatterer numbkegmits a signal
poses a conceptual problem. These modes are guided wavé&g(t) that is due to all the waves that impinge upon that
and they are not discrete because they exist for every frescatterer. The wave field at the two receivers can be written
guency.(For any given frequency there is a discrete set ofas a superposition of the waves radiated by the scatterers
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quasirandom signdR0], seismic imaging with drill bit noise
scatterer s [21], and time reversed imagiri@2].

The double sunt ¢ in expressior(3) can be split into a
sum over diagonal terms,_, and a sun>g_. ¢ Over Cross
terms. | show in the Appendix that for a random medium, the
ensemble average of the cross terms vanishes provided the
v . X dc component of th&y(t) is equal to zero. In a single real-
reclei‘ver 1 R receiver 2 ization of the medium, however, the cross terms are nonzero.
at (0,0,0) at (R,0,0) | also show in the Appendix that for a single source event
(e.g. an earthquakehe ratio of the cross terms to the diag-
onal terms is smaller thag2A/T. When an average over
Ng,. Source events is carried out, this ratio is bounded by

FIG. 1. Definition of the geometric variables for the waves that\/2A/NgT. This means that by averaging over time, and

z

travel from scatterer numberto two receivers. possibly over different source events, the sum of the cross
terms can be made arbitrarily small by increasing the time
re) © interval T and the number of source evems,. In the fol-
PrAt)= ES So{t—— iz ( lowing | refer to this type of averaging &isne/event averag-

ing. Note that in several studies of passive imaging, time/
wherec is the wave speed. Because of the directionality ofevent averaging as described here is the only type of
the radiation pattern, the wave forms recorded at the tw@veraging that is applief6-7,9,10,13
receivers from a given scatterer are not necessarily equal. As In the following I assume that sufficient time/event aver-

shown later, however, the main contribution to this sumaging is carried out so that the cross terms in the €2insan
comes from scatterers near the receiver line. The wave trafe ignored. With the definitiot¥) this reduces expressi¢8)
eling from these scatterers to the two receivers propagate i®

the same direction. Therefore, the directionality of the radi- (S (9

ated e’nergy is |rre'levant. The constgﬁqu in the 3D cn=> C + 1 2 )/r(f)r(f). (5)
Green'’s function is included in the definition 8f(t). If the s c

response of the receivers depends on frequency, then the im- , o

pulse response of the receivers can be included in the waveince the Fourier transform of the cross correlation is equal
forms Sg(t). to the power spectrurtb) is given in the frequency domain

In passive imaging one correlates the waves recorded &

two receiverd 6] over a time window of lengtf: exio(r®—r)c]

C<w>=25 |S(w)|? e . (8

T
C(T)Ef po(t+7)py(t)dt. 2
0 The power spectrurfSy(w)|? does not depend on the phase
Inserting Eq.(1) into this expression gives a double Sumfluctuat!ons (_)f the scatte_red waves, but is d(_)e_s depend on
fluctuations in the amplitude. When the variations in the
> ¢ over all scatterers } g
' power spectrum are uncorrelated with the phaseﬂe»(é)

(s") _p(s") —-r¥)/c), then

ri 2
t+———+7
C

.
— (s")p(s")
Clr) SES fo SO dure — —« exfdio(ry-r)/c]
&) Clw)=|(w)]2> mERE .
S 11'2

Let the autocorrelation of the sign8j(t) be denoted by

with

)
= s @ S-S [S(w)? ®)
N s '

o e P ot St - here s e umber ofscateers.
peax IS den ’ jargon of : P When there are many scatterers per wavelength, the sum-
cesses this time is equal to the correlation time of the random

o ) .~ 'mation over scattererS¢(---) can be replaced by a volume
processS¢(t). This width may vary among the different sig- . ; S : )
nals; if that is the case) indicates the generic width. When integration/ (---)ndV that is weighted by the scatterer den

: ) . . . sity n that is defined as the number of scatterers per unit
the S¢(t) are impulsive functions of time, thef is of the - N I
same order of magnitude as the width of tBgt). When volume. In this approximation Ed7) is given by
these signals are of a long duration with a quasirandom — _(exdio(r,—ry)/c]

. . — 2

phaseA can be much smaller that the duration of the signals.  C(@)=|S(w)| f T ndxdydz (9)
This property has been successfully employed in radar imag- 12
ing [19], exploration seismology using vibrators that emit awith the distances, andr, defined in Fig. 2.
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>0
N ° >
receiver 1 receiver 2
receiver 1 receiver 2 <0
at (0,0,0) at (R,0,0) “ o o
- . ) receiver 1 receiver 2
FIG. 2. Definition of the geometric variables for the waves that
travel from a scatterer at locatignto two receivers. The region of FIG. 3. The waves that propagate toward the right correlate for
constructive interference is indicated by the shaded regions. a positive lag timer>0 (top panel, while the waves that are left-

moving correlate for a negative lag time<0 (bottom panel
The integration over the transverse coordinatesxdy can

be evaluated with the stationary phase approximationniiply the retarded and the advanced Green’s functions,
[23,24. This technique leaves only the contribution of the regpectively. If the scatterer densitydecreases sufficiently
points near the receiver line=z=0, for which the integrand  fast toward infinity, these integrals are finite, but in general
is not oscillatory. In this approximation the integrals are infinite. Furthermore, the scattering losses
incurred during the propagation from the scatterers to the
receivers have not yet been taken into account. In practice
this limits the volume integral to a region of a few mean free
paths of the receivers. These unsatisfactory aspects are ad-

For scatterers to the left of the receivexsq0) the integrand ~ dressed in the next section.

is given by expikR)/R, for scatterers to the right of the re-

ceivers &>R) the integrand is equal to exp(kR)/R, and

for scatterers between the receivers<{(0<R) the integrand . WHICH GREEN’S FUNCTION IS RETRIEVED?
is given by expik(R—2x))/|R—2x|. Because the latter inte-
grand is oscillatory, the region Ox<R gives a sub-
dominant contribution to the integral of E¢L0). Ignoring
this contribution gives

ik(|R=x|—=[x])
ndx. (10
|||

— C © e
C(w):2W|S(w)|2_iwfOC||R_X|_

The infinite integrals in Eq(11) can be removed by con-
sidering the physics of passive imaging in more detail. The
conclusion of the previous section is that the correlation of
the waves recorded at the two receivers yields the Green’s
c function by a process of constructive interference of the scat-

C(a))=8772|8(a))|2(.—) tered waves that propagate along the receiver !me. In a scat-
lw tering medium, the scatterers affect the waves in three ways:
akR g e kR o (i) the c'i.irection of wave propagatiqn is chang'ed by the scat-
x( — f ndx— j ndx). (11)  terers,(ii) the velocity of a transmitted wave is affected by
4mR ) - 47R Jr scatterers near the path of propagation, @inga transmitted
wave attenuates because of scattering losses.

The term—exp(kR)/47R is the Green’s function that ac-  In an ensemble average, the last two effects are described
counts for the waves that propagate between the receiversy an effective mediuni25,26. In a single realization of a
this term comes from the integration owex0. The second scattering medium, the scatterers also leave an imprint on the
term —exp(—ikR)/4wR, which comes from the integration phase velocity and attenuation of a propagating wave. This is
over x>R, is the advanced Green'’s function. The retardedllustrated in Fig. 4 which shows the waves that have propa-
Green’s function comes from the waves that propagate frongated through a circular region with isotropic point scatterers
receiver 1 to receiver 2 and correlate for a positive lag timg27]. The waves in the absence of scatterers are shown with
7>0, as shown in the top panel of Fig. 3. The presence of théhe dashed lines, while the waves in the presence of scatter-
advanced Green'’s function is due to the waves that propagatgs are shown by the thin solid lines. All the receivers are at
from receiver 2 to receiver 1; these waves correlate for ahe same distance from the source, yet there are appreciable
negative lag timer<0, as shown in the bottom panel of Fig. variations in the amplitude and the phase of the ballistic
3. The factor lilw, which corresponds to an integration in wave due to the variations in the number of scatterers within
the time domain, comes from the stationary phase evaluatiothe first Fresnel zone for each source-receiver pair. For a
of thex andy integrals. In other studies is was also noted thatgiven realization and source-receiver pair, a ballistic wave
the correlation(2) gives the integral of the sum of the re- propagates with a phase velocity and attenuates over a
tarded and the advanced Green'’s functiig,13. Malcolm  distanced with a factor exptd/2L). The attenuation length
et al. [8] use this property experimentally as a diagnostic ofL is not necessarily equal to the mean free plathf the
the equipartitioning of energy. effective medium[25,26 becausd. is defined for a given

Each scatterer near the receiver line gives, after timepath in a single realization.
event averaging, the same contribution to the Green’s func- This principle can be taken into account in Eq0) by
tion. This leads to the integral§® .ndx and Jrndx that interpretingc as the phase velocity of the ballistic wave, and
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FIG. 5. Definition of the unit vectord and & that define the
radial and transverse polarizations, respectively.

dium the normal modes are not orthogonal and the theory of
Lobkis and Weavef6] must be generalized by using adjoint
modes[28].

IV. SURFACE WAVES IN AN ELASTIC MEDIUM

Campillo and Paul6] obtained the full surface wave
t Green’s tensor by correlating the direct product of the three
: ¥ § ¥ components of the two receivers. In this section, | show that
200 250 300 200 250 300 200 250 300 the treatment of the previous sections can be generalized to
time (s) time (s) time (s) surface waves propagating in a layered elastic 3D medium
with embedded scatterers. The surface-wave Green’s tensor

_ FIG. 4. Waves recorded at twelve locations at the edge of gy 5 |ayered medium whose properties depend on the depth
circular region that contains isotropic point scatteri2g]. The only can be written in the frequency domain as
clock indicates the receiver position. Shown is the wave field in the

absence of scatterefdashed ling the complete wave field in the

presence of scatterefthin solid ling, and the wave field computed Gjj(r,ro)= 2 G{?(r,ro). (13
by averaging the scatterers within the first Fresnel zone for each m

receiver(thick solid line.

~

: \’ .

The total surface wave Green’s tensor is expressed as a sum
over surface-wave modem that include both Rayleigh
waves and Love waves. The surface wave Green'’s tensor of
{podem in the far field is given by 29,30

by multiplying the integrand with a factor exp(|R—X|
+|x])/2L] that accounts for the scattering losses of the wave
that travel to both receivers. For a constant scatterer densi

n, the x integrals that correspond to those in Ef0) can be ol (kR )
carried out to give Gi(r,ro)=p"(z,0)p™ (20,0) ——, (14
ncl glkRg—R/2L  o—ikRg—R/2L /Wk R
— 2 20 " — A fm
Clw)=87(w)] ( o )( 4R 4R ) 2

(12 \whereR= V(X—Xg)?+ (y—Yo)? is the distance between the
The x integrals contribute a factdr to the correlation. The points measured in the horizontal plane, dqgdis the hori-
last two terms give the retarded and advanced Green’s fungontal wave number of moden. The polarization vectors
tions for the ballistic wave that propagates between the rep™(z,¢) depend on the depthand the azimuthp of the path
ceivers. between points, andr. The orientation of the polarization

The issue of the medium of propagation is also of rel-vectors can be expressed into the unit vectbrand ¢ that
evance for the derivation of passive imaging based on nopoint in the radial and transverse direction, respectively, as
mal modes[6]. That derivation has an open question: thedefined in Fig. 5. For Love waves the polarization vector is

normal modes of which system should be used? The normaglated to the Love wave eigenfunctitfi(z) [29,31] by
modes of the true system, which includes the scatterers, are

by definition uncoupled; equipartitioning among these modes p™(z,0)=17(2) , (15)
therefore will not occur. The normal modes of a homoge-

neous system are coupled by the scatterers, which may resuhile for Rayleigh waves

in equipartitioning of energy among the modes of the homo-

geneous model. However, this raises the question which ho- P"(z,0)=rT(2)A+ir5(z)z, (16)
mogeneous system to use? It is not clear from the derivation

of Lobkis and Weavej6] from which system one obtains the with r{'(z) and r5(z) the radial- and vertical-component
Green’s function. If this would be the Green’s function of amodal functions of the Rayleigh wav¢29,31. Following
medium that takes the scattering losses of the ballistic wavRef.[29], the surface-wave modes are assumed to be normal-
into account, then that medium is attenuating. In such a meized according to the following convention:
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* * k K
4chmJ p(IT)2d2=4chmJ pl(rPH2+(r)?]dz=1, +1 ifﬁ_ ﬁ>o'
0 0 -
(17 7= K K., (22
. . . —1 if e <0,
with ¢, andU, are the phase velocity and group velocity of Xx—R| |x]

modem, respectively, ang(z) the mass density.

When the two receivers record the three components ofhe azimuth associated with the polarization vectors in Eq.
the ground motion, one can form the correlation tensor of al(21) is given bye=0 for x<0 and bye= 7 for x>R; these

combinations of components cases are denoted by the plus and minus sign, respectively.
The integrand of Eq(21) is oscillatory, except whek,
Cij(T)zf Ugi(t+ 7)uy(t)dt, (18)  =km . This means }hat the dominant contribution comes
from the termsm=m’, for this reason the mode coupling

. . . termsm#m’ can be ignored. Furthermore, the integrand is
whereus,;, for example, is the component of the displace- oscillatory over the range<Ox<R, and the dominant con-
ment recorded at receiver 2. The recorded displacement ca i y f thg . 0 andx>R. Th i
be written as a sum over the surface waves radiated by thgpution comes from the regions<0 andx=R. These ap
different scatterers. By analogy with Eq.(1) the displace- proximations give

ment of the two receivers in the frequency domain is given

by a double sum over scatterexand surface wave modes 1 o m
Cij()=m2 | =— | dxnd'(ze,+)p]"*(21, %)
ol (kmX\y+ /) m { iKpJ-=
Ur o= Mz, o, (S)) — S5M ().
1,2 25 % P (212,012 m
(19 ol (kmR++/4)

1 (=
. . . . . X——s——| dxnpgi(z;,—
In this expressionX{®) is the horizontal distance between - iKm fR iz, =)

scatterers and receiver 1 and 2, respectivelqyr(f)2 is the —knR
azimuth of the corresponding scattering path, &fd™(w) 2

is the frequency spectrum of the radiation of maddrom e il
scatterers. Inserting this expression in the correlati¢iB) ijm’*(zl,_)—
gives a double sunx s over scatterers. The cross tersis [

#s' interfere after sufficient time/event averaging destruc- Eka
tively and can be ignored. The resulting stiy(---) can be

approximated with the surface integr@(- --)ndxdy, where

nis the scatterer density per unit surface area. Taking thesgith [S"(w)|* the average power spectrum of the radiated
steps gives modem. The first term is due to right-going waves that are

generated in the regiox<0, the polarization vectors corre-

KR+ 7/4)
|S™(w)[?, (23

_ m' % spond to the azimutlp=0, which is indicated by the plus
Cij(w)= 2 f dxdynif'(zz,¢2)p" * (21,2) signs. The second term is due to waves scattered from the
m,m . . .

areax>R that move toward the left, their polarization vec-
gl (kmXa=km'X1) ) tors correspond to the azimuth=, which is indicated by
msm(w)sm *(w), (200 the minus signs.
mm’ A2721 Note that the stationary phase integration over the trans-

where it is understood that all quantities in E49) that verse coordinate leads to the correct geometrical spreading

depend on the scatterenow depend on the locatid®,y) of 1/\/ka. When the(s_econdar)/ sources of the waves are
the integration point. confined to the vertical plane through the source and re-

The integral over the transverse coordinatecan be ceiver, the integral over the transverse coordinate is absent.

evaluated in the stationary phase approximation, this gives &S IS the reason why the geometrical spreading is not cor-

contribution from scatterers near the receiver line that id€ctly retrieved in the derivation of Roux and Fifikl].
A comparison with Eq(14) shows that the first term is

given by , m X
equal to €y/iw)Gjj(rz,ri), while the second one equals
' [(cm/iw)G](ry,r5)]*. The correlation tensor is therefore
Cy(w)=\27 3 [ axn iz, = pp @, 0) gvenby

el (kmlx—=R|=kny[X]) gi nr/4 G-m(l’ ry) (o
X S"(0)S"* (w), ()= H_Zlf
\/kmkm’ \/|km|x|_km’|X_R|| (w) (w) Cll(w) W% Cm{ low 7°°dxn
(21) Gm r«.r ) T s -
_ +(ﬁ) f dxnt ST (@)%, (24)
with o) R
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where the dagger denotes the Hermitian conjugate. This ex-

pression contains infinite integrals. Incorporating the attenu- )

ative properties of the ballistic surface wave, as shown in . image of receiver 1
Sec. lll, gives @

reflecting surface

\ receiver 2

Cij(0)=m> [S™(w)|?ncpln

receiver 1

iw iw

{Gir?("zyrl) (Gir?(rlyrz)
X +

‘
] (29

wherelL ,, is attenuation length of surface wave madeand .

where the Green’s function of each mode is understood to F!G- 6. The wave path of a reflected wave. The receivers are

contain an attenuation term expR/2L,) shown by solid circles. The dark gray areas indicate the location of
This expression is similar to the Ccr)nrrésponding re€1) scatterers that give a stationary contribution to the integration over

for scalar waves in three dimensions. The correlation iVegcatterers for the reflected wave. The open circle denotes the image

the superposition of the Green's fuﬁction of the ball?stiCOf receiver 1 upon reflection in the free surface, and the light gray

wave tﬁatppropagates from receiver 1 to receivéth® first area is the image of the scatterers that contribute to the stationary

o . hase solution for the reflected wave.
term), and the ballistic wave Green’s function that propa-p

gates in the opposite directic(thellast term Passivg ?mag- positive and negative time windows, respectivesy.
ing with surface waves thus provides the superposition of the Physically, the derivation shown here implies that in gen-

retarded and advanced surface wave Green's functions of thg,| the scattered waves recorded at the two receivers are

ballistic wave. uncorrelated, except for the waves radiated from scatterers
that are located near the receiver line. Passive imaging of the
V. CONCLUSION ballistic wave thus is based on constructive interference

As shown in Egs(11) and(25), the ballistic wave Green'’s ig:\elleyr ﬁaéhose scattered waves that propagate along the re-

function can be obtained by a cross correlation of the wave Ultrasound experiments with a finite aluminum sample

e e o ha he ilistc ave 5 wel s wates tht sre e
. . X : L flected from boundaries are reconstructed from passive im-
tion in the frequency domain must be multiplied by

. 5 T L X aging[6,9,10. The theory presented here does not account
I'a)/|S(a))| . The m[,'||t|p||caF|0!’] withi correSpondS in th? for these reflected waves. When a wave reflects off a plane
time domain to a differentiation that undoes the 'ntegrat'onooundary as shown in Fig. 6, the scattering paths from scat-

used in the cross correlation. The division by the power Specgers |ocated in the dark gray areas interfere constructively.
trum|[S(w)|? corrects for frequency-dependent factors in theThe theory presented here can be applied to this problem by
scattering coefficients, the source spectrum, and the receivgiyoking an image receiver and image scatterers as indicated
response. For the case of Ef1) for scalar waves in 3D, the py the open circle and light-gray area in Fig. 6. For a non-

power spectrum can be obtained from the waves recorded gfanar boundary or an innomogeneous reference medium one
the receivers. For the corresponding express&S) for sur-  needs to determine other stationary phase contributions to
face waves in an elastic medium, each mode must be Cofne integral over the scatterers. These contributions depend

rected for the power spectrum of that mode. The scatteringy, the geometry of scattering path, and are not accounted for
coefficients for surface wave modes strongly depend on thgy the theory presented here.

depth of the scatteref29], and on topograph}32]. For this The equilibration of normal mod€$] provides a suffi-
reason the average power spectf®fi(w)|* of the scattered cient condition for constructing the Green’s function from
surface wave mode may depend strongly on the mode numhe cross correlation of the waves recorded at two receivers.
berm. It is not clear howS™(w)|? can be extracted from the The derivation presented here shows, however, that the
recorded waves. In applications in crustal seismology, thequilibration of normal modes is not a necessary condition.
fundamental mode Love and Rayleigh waves usually domitn fact, the derivation presented here is equally valid for
nate. The average power in the fundamental Rayleigh wavepen systems that do not possess normal modes. The deriva-
can be estimated from the vertical component. The power ofion also holds for closed systems that do possess normal
the horizontal components can then be used to infer thenodes at early times when the modes have not yet equili-
power in the fundamental Love wave. Without correcting forbrated.
the power spectrum, the cross correlation may not give the The derivation presented here is based on the assumption
correct frequency dependence of the Green’s function. that the scattered waves propagate isotropically in all direc-
The second step that must be taken is due to the fact thabns. (This does not imply that the scattering coefficients are
the cross correlation of the waves recorded at two receiverisotropic; it means that the net energy flux of the scattered
gives the superposition of the retarded and the advanced balraves is smalj.Mathematically this is expressed by the con-
listic wave Green’s functions. These two contributions candition that the scatterer densityis constant in space. This
be unraveled in the time domain by restricting the signal tamplies a local condition on the isotropic propagation of scat-
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tered waves near the receivers, rather than the global requireerted at the end, but they do not change the essence of the
ment of the equilibration of normal modes. By using theargument. Absorbing the termr{f —r{¥)/c into 7, expres-
correlations that are hidden in the coda waves, the destrugion (3) becomes

tive interference of waves radiated from scatterers away from

the receiver line, and the constructive interference of scat- T
tered waves that propagate along the receiver line make:C(T)zg jo
passive imaging an effective technique for extracting the bal-

S(OS(t+Ddt+ D, TSS(I)SSr(t-F 7)dt,
0

s#s'

listic wave Green's function between two points without us- ol Celn
ing a source at either of these points. (Ad)
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ance(C2(7)). Using expressioitA4) this variance is given
APPENDIX: ESTIMATION OF THE CROSS TERMS by

IN A SINGLE REALIZATION

Since the scattered waves in a complex medigm have a (C2(1))= > fTJT<SS(t)SJ(t’)SS,(t+r)

random character, | estimate the cross tefisg in the s#s’,uxu’ 70 JO

sum(3) for a random medium. In this model, the scatters are , ,

randomly located in the medium and the location of different XSy (U + 7))dtdt’. (AG)

scatterers is uncorrelated. In the following, | assume that the ) .

dc component of the signals vanishes. If this is the case, the%'nce the differenS(t) are uncorrelate@expression(A2)],

the only terms that give a nonzero contribution to E46)

(S4(1))=0. (A1) are the terms=u ands'=u’ or the termss=u’ ands’
=u. This gives

In this appendix the angled brackefs-) indicate an en-

semble average. It is essential that the dc component of the 5 T(T

scattered waves vanish; when the dc component is nonzeréCa(7)= > f f S(1)S(t"))(Ss(t+ 7)Ser (1" + 7))

there is no destructive interference, and averaging over the s#s’ 7070

scatterer positions does not give a vanishing mean signal. +(Ss(t)Sy(t" + 7))(Se/ (1) Sy (t+ 7)) }dtdt’.
The waves emitted by scattessand s’ are in the en-

semble average uncorrelated because the position of these (A7)
I . Thi h
scatterers are uncorrelated 's means that With the definition(A3) this can be written as
(Ss()Ssr (1)) =(Ss(1))(Ss:(t"))=0 for s#s’, 2 .
A
(C&m=2 f f {Cy(t—t")Cy(t—t")
where expressiofAl) is used in the last identity. Following s#s’ 70J0
the notation of expressia@d) we have for the diagonal terms +C(t—t'—7)Cgy(t—t'+ r)}dtdt’. (A8)
(SOS(L) =Celt=1"). (A3) Now let us estimate the order of magnitude of this sum.

When there aréN scatterers contributing to this sum, then

well, because the time seri€(t) in not necessarily station- there areN(N—1)<N? terms in the double sum. Let the
ary. This can be incorporated by replacing expresgigg) ~ maximum of Cy(t) be given byCpg,. This maximum may
by (Sy(t) Sy(t') ) =W(t)Cs(t—t'), whereW(t) varies slowly be dlfferent for the differenCq(t), if that is the case then
with time compared t€(t—t') and compared to the width Cmax IS the largest of all these maxima. The W'd,th of the
of the employed time window. This complication can be in- autocorrelatiorCy(t) is indicated byA. Each of thet” inte-
corporated by replacing(t—t’) by W(t)C.(t—t'). Since grals in Eq.(A8) then gives a contribution that is smaller

2 .. . . . .
this does not change the essence of the argument, this is H®@NCmad. The remaining integral gives a contributioff.

Strictly speaking this covariance may depend on the tiase

included in the following. This implies that
Let us consider the suf3) and ignore for the moment the ) b2
geometrical spreading term§’r{Y . These terms can be in- (CE(7))=<2N°C{,, TA. (A9)

046610-7
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In order to assess the importance of the cross terms, | (C&(7)¥? 2A
compare this with the mean of the diagonal term. This mean Ws T (A12)
is given by b
T 5 T
<CD(O)>:ES fo <Ss(t)>dt:§ fo (Cs(0))dt. Note that this ratio does not depend on the number of scat-

(A10) terers. When in addition to an averaging over ting,
source events are used, and when the signals emitted by the

Using the same estimates that led to E&P) then gives scatterers for different source events are uncorrelated, the
standard deviation of the cross terms increases with a factor
(Co(0))=2 C(0)T=NCpaT, (A11) thN\/_ircwhile the diagonal terms are proportional Ko, so
s a
because the autocorrelation attains its maximum for a zero
time lag. With the estimatéA9) this gives the following <C2( ))1,2 oA
ratio of the standard deviation of the cross terms to the diag- VAR . (A13)
onal terms: (Cp(0)) Nl
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