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Mode matching interface for efficient coupling of light into planar photonic crystals
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In order to integrate superdispersive elements based on photonic crystals, such as the superprism, with
conventional integrated optics, insertion losses at the interface to the photonic crystal need to be reduced to an
acceptable level. We describe a mode matching interface composed of cascaded diffraction gratings that
generates the field profile of the photonic crystal Bloch mode from a slab mode. We calculate with three-
dimensional finite-difference time-domain computation that by interposing such a multilayered grating between
an unpatterned slab and a planar photonic crystal, the insertion efficiency is enhanced from 9% to 84%. Each
diffraction grating consists of a row of holes and does not require any additional process steps from those used
to fabricate the planar photonic crystal. In order to optimize the efficiency of the mode matching interface,
constructive interference conditions are imposed between successive gratings and reflections from individual
gratings are suppressed. We fabricate devices in silicon on insulator material and show experimental evidence
of the Bloch mode structure and of the mode matching mechanism.
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[. INTRODUCTION cal analysis of a Bloch mode chosen as an example. We
introduce the multilayered gratin®1LG) used to implement
Anomalous dispersion properties of photonic crystalsthe mode matching interfad¢8ec. Ill), as well as the numeri-
[1,2] such as ultrarefraction and negative refracti@+6]  cal methods used in this papéhe numerical data are gen-
have been intensely studied in the past years and have rerated by FDTD and then analyzed with the help of an inner
sulted in applications such as the superprism efféeB] and  product introduced in Sec. IVThe MLG is first optimized
self-collimation[10—-15. In particular, the superprism effect as a stand-alone device in Sec. V, and then integrated with
has been singled out as a good candidate to develop a nélve PPC in Sec. VI. This method considerably accelerates
generation of planar lightwave circuits for frequency domaindesign iterations because the stand-alone MLG can be opti-
demultiplexion. One of the crucial difficulties in using the mized with a transfer matrix method that is much faster than
superprism effect for practical planar demultiplexers is thea full FDTD simulation. One of the conclusions of Sec. Il is
coupling of light into the photonic crystal with acceptable that cascading a higher number of diffraction gratings with a
insertion losses. Those insertion losses can be very high ireduced scattering strength is beneficial because it reduces
the absence of mode matching because of the complex struaut-of-plane scattering losses and increases the mode overlap
ture of the Bloch modes involved in the superprism effectwith the photonic crystal due to a finer adjustment of the
Although this is a crucial difficulty, it has received very lim- MLG. However when a Gaussian beam is coupled into the
ited attention in the previous literature. Baba and OhsakPPC instead of a slab mode of infinite extent, additional dif-
have proposed a mode matching interface and calculated ificulties arise and a more compact MLG with bigger holes
efficiency with 2D finite-difference time-domain computa- and fewer cascaded gratings needs to be (Sedt. VII.
tion (FDTD) [16]. Here we present a different approach thatFinally, we give experimental evidence of the Bloch mode
focuses on the problems related to the planar photonic crystatructure by propagating light from a waveguide into a PPC
geometry, in particular, the out-of-plane scattering losses and then into the unpatterned slab and by imaging the dif-
the interface that can only be taken into account by 3Dfraction pattern of the electromagnetic field in the unpat-
FDTD. terned slaliSec. VIII). This experiment is repeated both with
In the second section we analyze the structure of th@ bare PPQwithout mode-matched interfageand with a
Bloch modes involved in the superprism effect and derivenode-matched PPC.
the necessary functionality of the mode matching interface. Although the mode matching interface could easily be
The interface can then be designed and simulated indepeadapted to a triangular crystal lattiGde Bloch mode struc-
dently of the planar photonic crystdPPQ. In order to pro- ture at the cusps of the equifrequency contours is essentially
vide physical intuition we derive the structure of the Blochthe samg we restrict ourselves to a square lattice PPC to
modes from general considerations such as the folding backompute quantitative results. A square lattice of hotedius
of the dispersion diagrams into the first Brillouin zofi&Z) r=0.15um) is etched into a silicon slab of thickness
and the presence of cusps in the equifrequency contour. This 205 nm. The holes are backfilled with silicon dioxide and
also shows that the coupling difficulties outlined in this paperthe slab is clad on both sides with silicon dioxide. The lattice
are intrinsic to the superprism effect and are not due to @onstant is linked to the design of the MLG and varies
particular geometry. We confirm those results by the numerislightly from case to case, but it is kept between Q.47
and 0.5um. In the calculations the refractive index of sili-
con is assumed to be 3.43 and the refractive index of silicon
*Email address: witzens@caltech.edu dioxide is assumed to be 1.46. The effective index of the slab
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(n) is equal to 2.77 at 1.52m. \ is the free space wave-
length.

(1 ,1‘)

II. BLOCH MODE STRUCTURE

Due to the periodic nature of photonic crystals, photonic
crystal modegBloch mode$ can be described by functions
of the following form (Bloch theoreni

g

f(rer, (1)

wherer is the position vectol is the reducedk vector of the
Bloch mode(in the first B2 andf is a function with the same
periodicity as the photonic crystal. In the case of a RBO
periodicity) the Fourier transform of such a function takes

the form ‘ . : ‘
-10 -5 0 5 10
Ky (1em’)
i(k+aKy+bKy) 1 o )
gg fape R 2 FIG. 1. (Color) This figure illustrates how the structure of the

second band is formed by turning on coupling between higher-order
R R . ) Fourier components. The circle centeredlois the equifrequency
whereK; andK, are the inverse lattice vectors of the PPCcontour of an unpatterned slab of effective ind¢a®— 7r2)ng .y

anda andb are integers. We call the lattice vectors of the + mr®ngc,]/a* (\=1.54 um), wherea is the lattice constant of

PPCe, ande,. K, andK verify K;-&;= &;27. When more  the PPC (0.5.m). The effective index is the weighted mean of the

than one of the Fourier components in EB) carry a sig- effective index of the unpatterned slab and of the refractive index of

nificant portion of the mode’s power, there can be a signiﬁ_S”iCOI’] dioxide(holeg so that we take into account the finite holes

cant mode mismatch between the Bloch mode of the PP the effective index but ignore the coupling and the aniseotropy

and an incoming slab mode, which corresponds to a singlthey induce. However, we represent by circles centeredlén

Fourier component. +bl22 the corresponding higher-order Fourier harmonics, wiaere
The group velocity of light is given b¥(w), wherew is ~ @ndb are integers. The circles centered (@:0) and(0,)) intersect

the angular frequency. This also holds for the group veIOCit))”S'de the fllrst BZ(represented by the black squaend anticross

of Bloch modes in photonic crystals, with the only diﬁerenceWhen coupling is turned on. The red contour represents the second

. - . band and the green contour the third band in the case of infinitesi-
thatk is the reducedt vector[7]. Vi (w) is normal to surfaces g rrinnest

¢ . mal coupling. The real equifrequency contour of the second band is
of constantw (analogous to surfaces of constant energy Naiso represente@dlack squarish contourEven though the structure

solid state physics, for example, the Fermi surfaoein the s more complex in the case of finite coupling, the mode on the
case of a PPC it is normal to contours of constantThe  intersection between the equifrequency contour of the second band
equifrequency contour of an unpatterned S'ab is a circle cemnd thel'M direction is essentially composed of two Fourier com-
tered onl" (k=0), so that the group velocity of slab modes ponents offset by<, andK, from the first BZ. The exact Fourier

is collinear to thek vector. However, in a photonic crystal strycture of such a mode is represented in Fig. 2. The axes of the
equifrequency contours have features such as approxmateﬂi}ﬁure showk,=K- &, andk,=K-&,.

flat sides and cusp$ig. 1). This causes light to diffract in a
PPC in a fundamentally different way than in an unpatterned ) . )
slab. If the spread df vectors of a light beam corresponds to ~ Before we give a numerical analysis of the Bloch modes
a flat side of the contour, the group velocities are collinear s@f the square lattice PPC, we derive the Bloch mode struc-
that the beam stays collimatéself-collimation. On the con-  ture at the cusp from more general considerations, so as to
trary, in the region of the cusps the angular deflection inelate it to the presence of the cusp rather than to a particu-
propagation direction corresponding to small changes in théarity of the square lattice. As a thought experiment, we start
k vector is much higher than in the unpatterned gklper-  with a homogeneous medium and progressively turn on cou-
prism effec}. pling between higher-order spatial Fourier components. This
The cusps in the equifrequency contour are due to cougives an adequate description of the band structure in the
pling between two higher-order Fourier components. Thidimit of very small hole size. In the case of finite hole size
coupling is induced by the periodic array of holes. On eitherthe equifrequency contours as well as the Bloch mode struc-
side of the cusp, the Bloch mode is dominated by one of théure are modified, however, the essential characteristics are
Fourier components, while at the cusp itself the two compothe same and can be intuitively understood with the weak
nents are of equal magnitude. In the case of the second bawedupling model.
of a square lattice PPC, the equifrequency contours have a In Fig. 1 we represent the equifrequency contour of an
cusp on their intersection with thEM direction, wherel’ unpatterned slab of effective indeX(a%— 7r?)ngap
andM are the high-symmetry points shown in Fig. 1. +arngp,)]/a® for A=1.54um (circle centered o).
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Band 2 be generated from the incoming slab mode.
/ The I'M direction corresponds t61+ é2 in real space.
P The interface between the PPC and the slab is chosen to be
g along él—éz so that a slab mode with a propagation direc-
/ 8 tion perpendicular to the interface is coupled to a Bloch
Band 3 5 mode on thd'M direction, on the cusp of the equifrequency
5 contour.
g When a Bloch mode crosses the interface from the PPC to
& £ the unpatterned slab it generates higher diffraction orders in
the unpatterned slab. Conversely, in order to insert a slab
T_>e1 mode(single Fourier componehinto the PPC, those higher-
@ order Fourier components need to be generated from the slab

mode by the mode matching interface. In order to design the

FIG. 2. (a) Field profiles(amplitude of the out of plane compo- mode matching interface, the relative strength and phase of
nent of theB field, B3, on the center plane of the PPaf modes of  those diffraction orders needs to be evaluated from the Fou-
the second and third bands locatedIoll (atA=1.55um). The  rier structure of the Bloch mode. Thus we need to establish a
mode of the second band has a field maximum in the high indexorrespondence between the Fourier components of the
region at the center of the figure, where the mode of the third ban@|och mode and the diffraction orders in the slab. We denote

has a field minimum(b) Fourier structure of the mode of the sec- > - - >
ond band obtained by taking the Fourier transfornBgf The am- by n. the normalized vector along the interfaceg, (

plitudes of the Fourier components are shown. The axis gives thé& e2)/[le1— €] The projection of th‘k vector of the Fourier

offset of the Fourier components from the component in the first BZcomponents onto the interfade, = K- nL , indicates the dif-

in integer multiples oK, andK,. fraction orders to which the Fourier components contribute.
The Fourier componer(tL,l) corresponds to the zeroth dif-

The lattice constana of the PPC equals 0.am and the  f.0-4i0n orderkl—k rn 0. The two dominant components

effective index is the weighted mean of the effective index of(1 0 and (0,1) project tok, = (k+K1,2) ru +22/A and

the unpatterned slab and of the refractive index of silicon
dioxide (holes. This corresponds to a medium with the sameCONtribute to higher diffraction orders, wheke= V2ais the
periodicity of the holes at the interface aads the lattice

ratio of high index regiongslabh and low index regions £ th h q b h
(holeg, but where the anisotropy and the coupling inducecconstant of the P.PC' The correspondence between the Fou-
er components in the Bloch mode structure and the ampli-

by the holes is ignored. We also represent the higher- ordérld ¢ th b h ding. diff
Fourier harmonics created by the latti@ircles centered on tude of their contribution to the corresponding diffraction

- - . . orders is not exactly one to one, however we can conclude
aK;+bK,, wherea andb are integers The(1,0) harmonic y

. Y . that the 1 and—1 diffraction orders kK, =*+2#x/A) are
and the(0,1) harmonic intersect inside the first BZ diM. dominant. K. mlA)

When the coupling between the Fourier components is Furthermore, we can classify Bloch modes on i

_turned on” (small bUt. nonvanishing hOIE’T s_,)z_ﬂne two Fou- direction by their symmetry relative 10M (in real space the
rier components anticross and two disjoint contours are

formed. The resulting contours correspond to the secong!’face generated by, +e, and e;=e;/\e,). More pre-
band(red and to the third banégreen of the photonic crys- CiSely we consider the symmetry opera®mefined by a
tal. The fourth band corresponds to ttis1) harmonic(it ~ Surface generated B+ €, ande; and passing through the
also intersectd’M inside the first BZ OnT'M, the Bloch ~ center of a hole. Therrs=—1 for the second bangvenB
modes of the second and third bands are essentially confield and oddE field) and og=1 for the third bandodd B
posed of two Fourier harmonics respectively, offset from thefield and everE field). We consider quasi-TE modes so that
first BZ by K1 and byK2, while the Bloch modes of the the field |ntenS|ty on the center plane of the slab is best
fourth band are essentially composed of a single Fourieflescribed byB;=B- €. There is a high index region on the
component. symmetry planés (at the center of the square defined by four
In the case of a finite hole size there will also be otheradjacent holes, Fig.)2For the second ban&; has a maxi-
Fourier components in the Bloch mode structure and th&num in that region, while for the third bari is antisym-
equifrequency contour has a slightly different shapem-  metric and has an antinode @& The different field overlaps
pare the true equifrequency contour in Fig. 1 to the red conwith the low and the high index regions create the wide
tour that corresponds to the limit of vanishing coup)ingut  splitting between those two bands. For more details on sym-
the Bloch mode is still dominated by the same two higher-metries in photonic crystals see REE7].
order components. As an example, we operated a Fourier
decomposition on one particular Bloc_h mode of the PPC IIl. MULTILAYERED GRATING
(second band oM at A=1.55um). Figure 2 shows the
detailed Fourier structure of the mode. The power shared A grating formed by a row of holes of pitch, parallel to
between the two main components is calculated to be 87%he edge of the PPC, diffracts an incoming plane wave to
We conclude that in order to couple into these Bloch modesigher diffraction orders offset bi{y,ating= *27/A and is
the two dominant higher-order Fourier components need tas such suitable to generate the higher-order harmonics com-
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prising the Bloch mode. However, the diffraction efficiency 2

of a single grating is insufficierfor example, 15% diffrac- 2¢o+2dn——=a+2mm, 4
tion efficiency was computed by FDTD for holes of radius 0

r=0.15um). Hence several gratings are cascaded. To im- o

prove efficiency, constructive interference conditions are im- 2¢,+2 cog f)dn— =7+ 27m;, (5)
posed between the contributions of the successive gratings to
the higher diffraction orders and destructive interference
conditions are imposed between the reflections generated by
the successive gratingantireflection conditions We will
show that those interference conditions can be reduced to
two independent equations and that it is possible to satisfy\,heremZ’B’4 are integers. Equatiof6) is also the antireflec-
both conditions at the same time for certain values of thejon condition for reflections from the first order to the zeroth
PPC lattice constant. In the following “coupling efficiency” order. Equation(3) implies that Eqs(4)—(6) are equivalent
characterizes the stand-alone MLG and corresponds to thgith my=m,—2m,; andm,=m,—m,, so that only Eqs(3)

power transfer from the zeroth order into the first order. Onand(4) need to be satisfied to suppress all reflections. Since
the other hand, insertion efficiency, characterizes the MLG], ¢, and a are functions ofm;, m,, and\,, the lattice
integrated with the PPC and corresponds to the insertion etonstant of the PPC is linked to the design of the MLG.
ficiency into the PPC. Equations(4)—(6) ensure that zero reflection is achievable

For the range of lattice constants used in this paper thé the limit of small MLG holes. The small holes are neces-
only diffraction orders that are supported by the slab are sary because otherwise the reflection of the first grating can-
—1, 0, and 1 [27m/A|<2mn/\ wheremis the order of the not be compensated. This is the same phenomenon as the
diffraction ordej. The correct field symmetry to couple into reflections from a distributed Bragg reflect@®BR) at the
the second band is obtained when the holes of the gratingsntireflection condition, i.e., if the scattering efficiency of a
are in front of the holes of the PPC, or when the holes of th&ingle grate is too high, the reflections due to the first grate
gratings are offset bjA/2. This can be seen by the fact that can not be compensaté8,19. When the reflections van-
the incoming TE slab mode has the correct symmetry angsh, the two forward traveling diffraction orders can be mod-
that the symmetry alon® is preserved by the gratings in eled as coupled forward traveling waves. Thus they can be
those two cases. If the offset is different from O &2  modeled by an effective two by two transfer matrix in the
(modulo A), the symmetry is broken. In the following the limit of small holes. The device behaves like a directional
holes of the grating will be offset bg/2 (Fig. 5. The 1 and  coupler with a coupling length that can only take a set of
— 1 diffraction orders have the same magnitude and have théiscrete values whose step is dependant on the hole size. In
same phasedefined as the phase &; on S) so that they the limit of vanishing hole size the effective coupling length
can be described by a single scalar, referred to as order 1 lsehaves like a continuous parameter. Equat@®nimplies
the following. The characteristic of the grating then reduceshat the elements on the diagonal of the effective 2 by 2
to scattering between four slab modes of identical symmetryransfer matrix have the same phdse., the zeroth diffrac-
relative toS (order 0, order 1, and their counterpropagatingtion order and the first diffraction order accumulate the same
counterparts and scattering to free space mod@ait-of- phase while propagating forward(2¢q_,1— @o— @1)/2 is
plane scattering lossedHence, the grating can be describedthe phase difference between the coupling coefficient in the 2
by a 4xX4 lossy scattering matrix. by 2 transfer matrix and the diagonal terms.

We call 6 the diffraction angle(d=sin Y {27/(AK)]), ¢o There is one last condition that is necessary to achieve
=@g_o the phase accumulated by the zeroth order aftent00% extinction of the zeroth orddi.e., a coupling effi-
transmission through a single grating;=¢,_,; the phase ciency of the MLG uniquely limited by out-of-plane scatter-
accumulated by the first order, agg_,; the phase acquired ing losses If (2¢g_.1— ¢o— ¢1)/2=* /2 the MLG be-
by the fraction of the zeroth order scattered into the firsthaves like a symmetric directional coupler and 100% power
order by a single gratingdy, ¢;, andeg_,; are the phases transfer is possible if the adequate coupling length is chosen
of elements of the scattering matrix of a single grating is  (power coupled from the zeroth order into the first order and
the target wavelengthg is the spacing between successivethen back into the zeroth order interferes destructively with
gratings, anch is the effective index of the slab. The con- the field that stayed in the zeroth orgleff (2¢y_1— ¢q
structive interference condition between the two forward— ¢;)/2+# + #/2 the maximum power transfer is less than
propagating modegrder O and order)lis obtained when  100%. It can be derived from first principlésower conser-

vation and reciprocity imposed on the scattering matitiat
20 20 in the limit where individual holes constituting the grating
goo+dn)\—=go1+cos(0)dn)\—+27rml, 3 have small coupling efficiencysmall radiug this phase
0 0 tends to— /2. In that limit ¢;—0 and¢;—0 (if the scat-
tering efficiency of the holes is vanishing a slab mode is
wherem; is an integer. The antireflection conditions, respec4ransmitted unperturbed through the grating and does not ac-
tively for reflections from the zeroth order to the zeroth ordercumulate an extra phasdt can then be derived from power
[Eq. (4)], from the first order to the first ord€¢Eq. (5)], and  conservatior(unitarity of the transfer matrjxand from reci-
from the zeroth order to the first ordgq. (6)] are given by  procity thateg 1 — = 7/2.

2
0
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@ (b) f {exh* +¢* xh}- 2dA=0. 9)
A

g 0.8y This functional is taken as the inner product. It has previ-
g ously been applied to photonic crystal modas].
3 o06f |$) is a given field profile to be analyzedield cross
= section perpendicular e, +&,) and|) a normalized mode
g 04r profile (normalized to 1 if it is forward propagating and to
'§ —1 if it is backward propagating Then
02}
P=(¢|¢). (10)
o © e )
0 70 20 30 40 50 Py=(¥l¢)°sar((¢l¥)), (11)

Number of Cascaded Gratings ) )
whereP is the power carried by¢) and P, the power car-

FIG. 3. Transmissiorta), coupling efficiency(b), and reflection  ried by the projection of|¢) onto |¢). Note that P
(c) of the multilayered gratinghole size 40 nmas computed by the :2i<¢i|¢>239n(< ¢i|¢,i>)' where the sum is taken over all
transfer matrix method fox =1.52 um. The coupling efficiency is  the modes of the system, but because the inner product is not
defined as the power transferred from the zeroth order into the ﬁrsﬁ)ositive definitePSEi|(¢i| ¢>|2.
ord(_er, the trans_mis_sion as the power remaining in the first order. The Bloch mode is decomposed into forward propagating
Optimum coupling is obtained with 27 layers. modes of the unpatterned slafs}rp) and backward propa-

. - , o _gating modes of the unpatterned sldkp)gp). Those com-

The coupling efficiency is still limited by scattering ponents correspond to the projection of the Bloch modes
losses. With numerical examples we will show that a strucyntg the modes of the unpatterned sj&s. (12) and (13)].
ture with more layers of smaller holes has less scatteringpe gjap is single mode, so that the TE modes of the siab can

losses than a structure with fewer gratings of larger holesbe unambiguously referred to by the angle betwéglhé
. . ) . 5
The MLG described in Sec. Wig. 3 is composed of 40 nm and their direction of propagation. Furthermore, only slab

holes while the MLG described in Sec. MFig. 10 is com- . . A . A

posed of 0.15um holes. With the bigger holes the maximum modes with propagation directions corresp_ondmg?td) ’

coupling efficiency is 70% and is limited by out-of-plane and _0."’1.8 well as thew counterpropagating counterparts

scattering losses have a finite overlap with the Bloch mode and its diffraction
g | pattern. The forward propagating modes &te ,), |#q-),

In short, we showed that if the MLG is designed with d[1,), the backward propagating modes &g )
i -0f- ~ 0/ 80°— 0/
small holes, reflections are suppressed and out-of-plane sc Va0, and | driaees o). We couple to Bloch modes with a

tering losses reduced, and that the coupling efficiency of thée’ .
MLG can be chosen between 0 and near 100% on a quas(i’—'Ven symmetry fs=—1), so that we only need to take into
continuous scale. In Sec. V we will implement a MLG with account [¢)=112(|¢_ o) +[¢)), o) =I0e), [1)

a hole size of 40 nm that verifies this. =1N2(| 10— o)+ | V18004 0)), @Nd |tho) =|th150:), Where

the relative phase between modes in the sums is chosen so as
to satisfyos=—1. |io) and|¢,) correspond to the zeroth

and first diffraction orders.

The analyses conducted in the next sections are based to a

IV. INNER PRODUCT

large extent on the decomposition of the electromagnetic | D) ep =0l &) o)+ (1l D)), (12

field into modes of the unpatterned slab. This decomposition _ _ _ _

is performed with an inner product introduced in this section. | )ep=— (ol o) o) — (al D) 1) (13
For waveguides with continuous translation symmetry, or- ) , .

thogonality conditions are well establishi@®], in particular, The minus signs in Eq13) are due to the fact that the

for a nonabsorbing waveguide with translation symmetry inP@ckwards propagating modes are normalizee i
the z direction, and two modegbound or radiative ¢

=(E,H) and (=E,H) with the same implicit time depen-
dence exptiwt)

V. CHARACTERIZATION OF THE STAND-ALONE
MULTILAYERED GRATING

We design a MLG with holes of radius 40 nm and with

E=e(x,y)e'?,  H=h(xy)e'# (7)  design parameteis,=1.52 um, m;=1, andm,=4, which
- B results ina=0.470um andd=1.240 um.
E=ax,y)eiﬁz, H_:h_(xiy)eiﬁz (8) The transfer matrix characterizing a single row of holes is

computed by using FDTD with a spatial discretization of 20

) — nm and a time step of 0.01143m ! in units of c,=1
wherew is the angular frequency argiand are the propa-  yherec, is the speed of light in vacuumA silicon slab

gation constants. IB—B+0, the following holds for a sur- with a single hole (=40 nm) is placed in a computational
face A normal toz. domain of dimensionAX 1.2 xmX100 um (respectively,
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50 F N - hole (MLG) field probe
n 30 0.6 x /
=4 os e - 3 NN = =
810 . d_13d4 r\Qr\ )r\Of\Dr‘
O 135 14 145 15 155 16 165 g
T 1 4 y z
S 50 s & h
g o £ ole (PPC)
% 30 045
© 10 02 £ FIG. 5. Configuration of the simulation. The widtk @irection
g 135 14 145 15 155 16 165 B is A so that a single hole per cascaded grating is placed in the
£ 50 ;.au“. computational domain. Bloch boundary conditions are applied (
2 30 06 direction so as to effectively simulate an infinite grating and an
a0 o infinite PPC in thex direction. The field is launched in the unpat-
o terned slab, propagates through the MLG, and is transmitted into

1365 14 145 15 155 16 165

Wavelength (.im) the PPC. Field probes are periodically placed with a separation

between them, first inside the MLG at equal distance from adjacent
FIG. 4. Coupling efficiencyupper plo}, transmissior(middle gratings and then inside the PPC. The distance between the MLG

plot), and reflectior{lower plot of the MLG as a function of wave- and the PPC is chosen so as to impose the correct phase relationship

length and of the number of cascaded gratings. The optimum colk€tween the zeroth and the first order for optimum insertion into the

pling efficiency is obtained at=1.52 um and 27 layers; however, Bloch mode. This results in the distancel/8 between the last

the passband of the MLG is higher for a smaller number of casgrating of the MLG and the first row of the PRBole center to hole

caded gratings. centey.

_ ] . ) pass band of the mode-matched photonic crystal as shown in
X, y, andz, wherex is along the interface; —e,, yis along  gec. vi(Fig. 9).

the out-of-plane directio§3, andz is along the direction of

propagatiore; +e,). Bloch boundary condition8BC) with  |NTEGRATION OF THE MULTILAYERED GRATING

a zero phase are applied in théirection so as to effectively WITH THE PLANAR PHOTONIC CRYSTAL

simulate an infinite grating. Absorbing boundary conditions

(ABC) are applied in the other directions. The zero phase is The relative phase betwegsto) and|y) can be adjusted
compatible with| ) (ke=k, =0) and with the higher dif- by choosing the distanay; c_.ppc between the last row of
fraction order|y,) (k, ==+2m/A so thatk, =0 modulo the MLG and the first row of the PP(Fig. 5). Inside the
27IA). PPC,|¢o) and|#4) are in phase in the high index region
d between four adjacent hol¢Eig. 2(a)]. This also holds for

through the hole. Probes store field profiles before and aftdf® first row of the PPC and constraidg g .ppc. For
m;=1 and ¢g_,1— @o=— /2, this results indy c_ppc

the hole. By taking the. inner product W't%)’ |¢1>’. [#0):  —3d/a. Indeed the distanced2 introduces a phase shift
and|y,) all the coeff|C|ent_s Qf the scattering matrix are ex- Oy — @lyoy = — 3l4m; 2= —3m/2. At the last row of the
tracted. The transfer matrix is then computed from the scat; LlG o _ — one — /2 s0 that the resultin
tering matrix. By exponentiating the transfer matrix and im- Plu) ™ Plug) ~ Po—17 Po= =T . 9
posing as a boundary condition only forward propagatingPhase difference at the first row of the PPC -is3w/2
waves at the output boundary of the MLG, the properties of~ wl2=—2m. ) )

MLG with a variable number of cascaded layers are com- AS for the calculation of the transfer matrix we apply
puted. BBC in thex direction to a computational domain of dimen-
Figure 3 shows the transmissidzeroth order to zeroth SIONSAX1.2.umx 100 um. The slab modgyy) is launched
orded, coupling (zeroth order to first ordgrand reflections @t the beginning of the MLG. After 40000 time steps the

of the MLG as a function of the number of cascaded gratingdv@ve packet traveling in the PPC reaches the ABCrat
atA=1.52 um, as computed by the transfer matrix method.[Fig- 6@]. Between subsequent layers of the MLG, as well

It is apparent that the optimum coupling efficiency is reacheds inside the PPC, probes store the field profilg)Y. We
with 27 layers. FDTD simulations of the full MLG are in Stop all simulations after 50 000 time steps so that the reflec-

good agreement with the transfer matrix methet \ tion of the Bloch mode at the z interface does not reach the
=1.51um, the optimum is computed to be 26 layers with field probes and bias the data. The inner product is taken
the transfer matrix method and to be 23 layers with a fullbetween the field profiles angy), |#1), | o), and|,) (see
FDTD simulation. Figure 4 shows the results of the transfer Figs. 6 and Y. Note that the inner product is defined between
matrix method as a function of both the number of cascadetleld cross sections of same implicit time dependence, so that
gratings and of the wavelength. The triangular shape of tha temporal Fourier transform needs to be applied to the time
transmission shows that there is an inherent trade-off beseries before the inner product.

tween the maximum coupling efficiency and the pass band We compute throughout the MLG and the PPC the power
(the maximum coupling efficiency is achieved with 27 lay- carried by (i) the order 0 [(¢o|#)|?), (i) the order 1
ers; however, the pass band is higher for a smaller number (4| #)|?), (iii) the total power carried by forward propa-
layers. This will be reflected in the insertion efficiency and gating slab modesi.e., the sum of the previous tyoand

Successively o) and|,) are launched and propagate
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FIG. 6. (Color) Field decomposition obtained from the field
probes.(a) and (b) correspond to a non-mode-matched PPC (
=1.51 um) and(c) corresponds to a PPC integrated with an MLG
of 14 layers that operates partial mode matching=1.49 um,
compare with Fig. @®]. In (@) (| )|+ (4] b)|? is shown for
various time steps after the start of the FDTD simulation(blrand
in (c) the black curve shows | #)|? [(i) in the texi], the blue
curve shows|(y|)|? (i), the green curve show§ | )|
+|(y1] p)|? (i), and the red curve showsyo|¢)|?+|(w.| ¢)|?
(iv). It is apparent in(b) that the zeroth order is reflectéblack
line) and that the first order is transmitt€olue line.
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FIG. 7. (Color) Field decomposition obtained from the field
probes for a PPC integrated with an MLG wiil 14 layers,b) 19
layers andc) 23 layers § =1.51 um in all three casesThe MLG
in (@ has less then the optimum number of layémst enough
power coupled into the first order(b) corresponds to the optimum
number of layers and the MLG ifT) has too many layers. Ift) the
coupling from the zeroth order into the first order is maximized,
however, the insertion efficiency into the PPC is suboptimum be-
cause the Bloch mode has a small fraction of its power in the zeroth
order. The color conventions are the same as in Fig. 6.

wherePy,4 ppc is the power carried by forward propagating

(iv) the total power carried by backward propagating slab'ilab modes(iii) at the first probe after the interface,

modes (0| )2+ (11| #)|?). We evaluate the insertion ef-
ficiency by

Ptwd,ppc— Pbwdppc
Po !

(14

bwd,ppc IS the absolute value of the power carried by back-
ward propagating modé#/) at that same probe ar}, is the
power carried by forward propagating modés) before the
MLG (i.e., the power that was initially launched~orward
propagating Bloch modes in a PPC have components that
would correspond to backward propagating modes in the
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FIG. 8. (a) Insertion efficiency as a function of the number of  F|G. 9. Insertion efficiency as a function of frequency far19
cascaded gratings in the MLG far=1.51um and(b) fraction of  |ayers and(b) 14 layers. Optimum insertion efficiency is achieved

the output power of the MLG transmitted into the PRK).normal- in the case of 19 layers at 1.54m (84%), however, the bandpass is
izes out the losses due to out-of-plane scattering inside the MLG, ifigher in the case of 14 layetd5 nm vs 28.5 nh

order to evaluate the insertion losses uniquely due to mode mis-

mateh. of the mode mismatch. It is apparent that mode mismatch is

slab so thatPy,,,4ppc has to be taken into account in Eq. the main limiting factor(the maximum powertransmission is
(14). ’ 83.7%, versus 86.9% without out-of-_pla}ne scattering I(jss_es
Figure 6 showsi), (i), (iii), and(iv) as a function of the There are some fgndamentall !Imlt.S to .thIS coupling
propagation distance) for a bare PPC and for a PPC inte- scheme that may explain the remaining insertion losses. Only
grated with a MLG that operates partial mode matching. Infh® components of the Bloch mode that correspond to for-
Fig. 6(b) the PPC is not mode matched and almost all thevard propagating modes of the slapyg) and [41)) are
power is reflected9% insertion efficiency In Fig. 6c) the generated. However the Bloch mod_e a!so contains compo-
MLG operates partial mode matching. At the interface, thé'ents that would be back-propagating in the slab, such as
power remaining in the zeroth order is almost completelycOmponent in Fig. 2. There are also components orthogo-
reflected, while the power in the first order is transmitted intoh@l to the radiative modes of the slab, for example, higher-
the photonic crystal. However, this picture can be refinedorder Fourier components wittk,>2an/\ that cannot
The Bloch modes have most of their power in the highePropagate in the unpatterned sldbr example, components
diffraction order, but there is still a finite amount of power in € andD in Fig. 2). _ _ o _
the zeroth order. Thus the optimum insertion efficiency is not N Fig- 9 we show the insertion efficiency as a function of
at 100% coupling efficiencyof the MLG) but at a slightly wavelength. Ag predicted, there is a trade-off between the
lower coupling efficiency. This is illustrated by Fig. 7.(a  Pest peak efficiencyl9 layer MLG and the pass band. For
the coupling into the first order is insufficient and there is a@ 19 layer MLG the peak efficiency is 84%4s compared to
sharp drop at the interface in the power carried by the zerot§% Without mode matching interfacand the full width at
order. In(c) the MLG has near 100% power transfer into the Nalf maximum(FWHM) is 28.5 nm. For a 14 layer MLG the
first order but the situation is still suboptimal because there i®€akK efficiency is 79% and the FWHM is 45 nm.
not enough power in the zeroth order. The power in the ze-
roth order increases at the _interface, the power in the first. VIl. COMPACT DESIGN EOR GAUSSIAN BEAMS
order decreases, and the ratio between the two components is
changed inside the PPC. There are additional reflections as In Sec. Il we have shown that if a slab mode of infinite
compared to(b). The situation is optimum irib) and the extent is coupled into the PPC, a MLG composed of many
reflection is minimum. Note that both the power in the firstlayers of small holes is more efficient than a MLG with
order and in the zeroth order increase at the interface. Thiewer cascaded gratings and larger holes. Reflections are
does not contradict power conservation because the powsuppressed, maximum achievable coupling efficiency is
carried in back propagating slab modes also increases at tiégher, and out-of-plane scattering losses decrease. However,

interface. when a beam of finite widthe.g. a Gaussian beanis
For A=1.51 um, we plotted the insertion efficiency as a coupled into the PPC, the higher diffraction orders generated
function of the number of gratings composing the MfGgg.  inside the MLG propagate in different directions than the

8), i.e., the power transmitted into the PPC normalized by theeroth order, so that the three beams separate. The MLG will
power initially launched intdy,). We also plotted the power only function as an efficient coupling scheme if the initial
transmitted into the PPC normalized by the power containetheam is much wider than the depth of the Mii@Gimber of

in forward traveling modeSii ) after the MLG and before the cascaded gratings time§. Then the beam separation will
PPC. This normalizes out the losses incurred inside the ML®nly be a fringe effect.

due to out-of-plane scattering and is a better characterization We design a MLG with a hole size=0.15 um and with

046609-8



MODE MATCHING INTERFACE FOR EFFICIEN . ..

1

05| (@) ,

_ os8f |
:

g 07h |

= ost ® ©) i
2

£ o5t |
-
S

c o4t |
L
=

S o3 _
o

02f i

01 ek / |

// \\\ J AN S \.\\' e N\ e ]

0 ] ' w : . ‘
0 2 4 6 8 10 12 14 16 18 20

Number of cascaded gratings

FIG. 10. Transmissioria), coupling efficiency(b), and reflec-
tion (c) of the multilayered gratings at the target wavelength
=1.52 um for a hole radius of 0.1xm. The optimum coupling

PHYSICAL REVIEW E 69, 046609 (2004

0.5

5 0.4r

2

<)

o

5 0.3}

a

£ o
©

B g

= 0.2r <

2 Intersection with o

B lightline b

& 2

Loat i

Kovigtn. g X e gy O

135 14 145 15 155 16

Wavelength in zem

1.65

FIG. 11. Transmission through the stand-alone RB&shed
and through the mode-matched PRGnNtinuous. In both cases the
upper curve is the total power transmission and the lower curve the
power transmitted into the zeroth order. Points show computed data
points. The oscillations in the transmission might be due to a Fabry-

efficiency is achieved with three cascaded gratings. The couplingerot resonance between the edges of the PPC. The third band has
efficiency is limited by out-of-plane scattering losses. It can be seelan antisymmetri® field and is not excited, so that the transmission
that transmission and reflection of the three layer MLG are close tdetween\ =1.4 um and\ =1.62 um corresponds uniquely to the
zero and are not limiting the coupling efficiency in a significant second band.

way.

The two interfaces of the PPC have a completely different
design parametens; =1, m,=4, \o=1.52 um, which re-  transmission characteristic: In the case of the non-mode-
sults ina=0.483um andd=1.3141um. Three cascaded matched PPC there is almost total reflection at the first inter-
layers are sufficient to achieve optimum coupling, but thisface (8% transmission but high transmission at the second
optimum is only 70% at 1.52m due to large out-of-plane because the Bloch mode is free to diffract in all diffraction
scattering losses¢Fig. 10. The insertion efficiency at the orders. Thus the insertion efficiency of the first interface is of
non-mode-matched interface is calculated to be+8286  the order of the total transmission. In the case of the mode-
and the peak insertion efficiency with the mode-matched inmatched PPC the out-of-plane scattering losses due to the
terface is calculated to be 58% at 1.a4n. three layer MLG occur at both interfaces, so that the inser-

We simulate by FDTD the transmission through a PPC oftion efficiency is expected to be of the order of the square
31 rows. We compute both the case of a PPC with two moderoot of the total transmission. This can be formulated quan-
matched interfaces and the case of a non-mode-matchéitatively: The insertion efficiency from the slab mofig,)
PPC. We launchi,) and let it propagate through the struc- into the PPC at the first interface is the same as the transmis-
ture. The transmission spectrum through the RP@. 11 sion efficiency from the PPC intp),) at the second inter-
results from two interfacegunpatterned slab to PPC and face (reciprocity principl@. Hence, the insertion efficiency
PPC to unpatterned slphs well as Fabry-Perot resonancescan be calculated as the square root of the fraction of the
between interfaces, losses inside the PPC for modes aboypewer transmitted in the zeroth order. This way the insertion
the light line as well as near zero transmission inside theefficiency is confirmed to be 8%2% for the non-mode-
band gap. Both the total transmission through the PPC anahatched interface and is estimated to be 50% for the mode-
the fraction of the transmitted power contained|ify) are  matched interface at 1.55m, the wavelength of maximum
shown. We attribute oscillations in the transmission spectruntransmissior{the discrepancy from the previous, more rigor-
to Fabry-Perot resonances between the interfaces. ous calculation is easily taken into account by the Fabry-

In the case without any mode matching the transmissiorPerot effect
suddenly increases at the onset of the fourth band because The total power transmission through the PPC would be
Bloch modes of the fourth band essentially correspond t@ptimized by putting a mode matching interface only at the
|4o), as explained in Sec. Ill. The total transmission througkfirst interface. However, for integrated optics applications it
the mode-matched PPC is enhanced in the frequency domaivill usually be necessary to mode match both interfaces,
of the second band. The third band does not play any rolsince it is the transmission into a particular slab mode that
because it has the opposite symmetry. Also the ratio betweewill matter if the PPC is interfaced with single mode optics.
the fraction of the transmitted power contained i) and  Even if the output field is collected by a multimode wave-
the total transmitted power is an order of magnitude higheguide, the higher diffraction orders are likely to be outside
in the mode-matched case: 81.45% versus 8.6% in the nothe angle of total internal reflection of the waveguide (
mode-matched case, at their respective peak transmiggion =56°, whered is the diffraction angle
1.55um and 1.57um). In the case of the non-mode-matched PPC the total trans-
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plane scattering losses. But in this case the ratio between the
transmitted power contained jiko) and the total transmitted
power can serve to estimate the mode overlap, i.e., the inser-
tion efficiency with the internal losses of the MLG normal-
ized out(81%). This number is very close to the total inser-
tion efficiency obtained with the MLG composed of 40 nm
holes, which is not limited by out-of-plane scatterif@#%.

VIIl. EXPERIMENTAL DEMONSTRATION

We experimentally image the diffraction pattern of a
Bloch mode after it propagates through the PPC and crosses

¢ the interface to the unpatterned slab. We compare the case of
100 um a non-mode-matched PPC and of a mode-matched PPC. In
the latter case a three layer MLG with holes of radrus

FIG. 12. Device imaged with a dark field microscope. On the=0.15um is added to the interface. In the absence of a
left, a waveguide is connected to a mode-matched PPC. An amomode matching interface the Bloch mode gives rise to higher
phous crystal is placed to the right. Diffraction orders are numberegjjffraction orders that are the signature of the higher-order
and represented by arrows. The white boxes show the regions ingqyrier components in the Bloch mode structure. When the
aged by the IR camerig. 14. MLG is added to the PPC the higher diffraction orders are

suppressed. Because of reciprocity, this is expected when the

mitted power at the second interface is a good estimate of themode matching efficiency is high.
power incoming onto the second interface, so that the inser- Devices were fabricated bg-beam lithography(Leica
tion efficiency can also be evaluated by the ratio between thEBPG 5006~ at 100 k\) on silicon on insulator(SOI)
transmitted power contained i) and the total transmitted samples with a 205 nm silicon membrane. Prior to lithogra-
power. Indeed this ratio is calculated to be 8.6% and is imphy an 80 nm sputtered Sjdilm was deposited. After the
accordance with the insertion efficiency calculated previ-e-beam lithography the pattern was transferred from the
ously. However, this is not a good estimate in the case of theolymethyl methacrylate into the silicon dioxide with a
mode-matched PPC because there are significant out-o€HF; reactive ion etch and from the silicon dioxide into the

® 10 um © 2 um

FIG. 13. (a) Dark field microscope image of the waveguide region before the photonic crystal. On the left three waveguides are seen. The
center one is tapered out and couples into the photonic cifStal12). In the center of the image the white bar corresponds to an amorphous
crystal that extracts stray light coupled from free space into the(slatiside of the waveguideThis makes sure that the light imaged in the
region of the PPC is coupled from the center waveguide. The upper and lower waveguides on the left of the picture are used as fiducials to
optimize coupling from free space: In order to center the position of the spot from the focusing lens, we aimed to have an equal amount of
light extracted by the amorphous crystals at the terminations of the two outer waveguides. The inset is a picture taken with the IR camera.
The spot from the focusing lens can be seen as well as the three wavegbidesn SEM picture of the mode-matched PPC ér)ds an
SEM view of the amorphous crystal.

046609-10



MODE MATCHING INTERFACE FOR EFFICIEN . .. PHYSICAL REVIEW E 69, 046609 (2004

&6 953 A T A5EE | EED 1500 1520 1540 1560 1580
R BT ERBIJE y
= = F 1"5 F21=i $ % E
= 8 BT RO A  Gase o & Gom & - Pa
: dr el v 3 2R s
o B8 : H;w : g RIS 2 2
f41i::0:04019 |
1500 T 1560 1580 1500 1520 1540 1560 1580
idg iz siBRBa =5 - =
-1 2 4 3 fuﬁ‘ ;? ‘ = §: _é 4 F
, 4% -
- : * = { : s % 2
=S FEs e e e D N B = =
1500 1520 1540 1560 1580 1500 1520 1540 1560 1580
@ ()

FIG. 14. (a) Experimental results for the non-mode-matched PPC. The amorphous crystal is imaged with an IR camera for each
subsequent wavelength. The intensities of all diffraction orders are sh@nrExperimental results for the mode-matched PPC. The
diffraction orders 1 and-1 are suppressed. @ and(b), the color scaling is the same for the three diffraction orders. The settings of the
infrarred camera were the same and the spots were imaged on the same region gb#he, s diode array.

silicon with a Cl inductively coupled plasma reactive ion the IR camera and are shown in Fig. 14. The light is gener-
etch. Finally, a 1um sputtered Si@film was deposited on ated by a tunable laser and this measurement is repeated for
top as a cladding layer. free space wavelengths ranging from LB to 1.58um.

In order to compensate for small variations in refractiveThe white boxes in Fig. 12 correspond to the imaged regions
indeces and film thickness, we fabricated several sampleshown in Fig. 14. It can be seen that thd and 1 diffraction
corresponding to variations N, the target wavelength of orders are suppressed in Fig.(B4 The pass band of the
the MLG [varying A is equivalent to varying in Egs. (3) mode-matched device is 40—50 nm and corresponds to the
and(4)]. The best suppression of the diffraction orders 1 ancpass band calculated in Sec. VII.

—1 at the output of the mode-matched PPC was achieved for
No=1.565um. The lattice constant of the PPC is dependant
on \q as indicated in Sec. lll and varies slightly throughout
the span. For A\y=1.565um, a=0.470um, and d We have shown that a diffraction grating composed of
=1.277 um. multiple rows of holes can be designed to mode match be-

Polarized light is butt coupled into a 1®m wide wave- tween a planar photonic crystal and an unpatterned slab. We
guide with a 10X long working distance lens. The wave- achieved 84% insertion efficiency with a multilayered grat-
guide is expanded with a parabolic tag@?] to the final ing composed of 19 layers of holes with a radius of 40 nm,
width W=70 um [W(y)?=(2\o/n)y+W>5, where A\,  compared to 9% without mode matching. It is possible to
=1.52um and Wy=10 um, Fig. 13a)]. A PPC with 59 design more compact structures with bigger holes at the cost
rows of holegFig. 13b)], with bare or mode-matched inter- of significant out-of-plane scattering losses and a corre-
faces, is placed at the end of the waveguide. The field thefponding decrease in insertion efficiency. In particular, 58%
diffracts into the unpatterned slab. 32%n away from the insertion was achieved with a multilayered grating composed
PPC an amorphous crystffigs. 12 and 1@)] vertically ~ of three rows of holes with a radius 0.}6n. Despite their
extracts light that is subsequently imaged by an IR camerseduced insertion efficiency, these more compact structures
(Indigo systems, Merlin InGaAs NIRThe crystal is amor- are of interest because they enable coupling into a planar
phous so that it has an isotropic in plane behay8,24, photonic crystal of beams with a smaller width.

i.e., light guided by the slab is vertically extracteab] inde-

IX. CONCLUSION

pendently of its angle of incidend@6]. ACKNOWLEDGMENTS
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and get extracted out of the slab, thus three bright spot®3223, and the AFOSR under Contract No. F49620-03-1-
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