
PHYSICAL REVIEW E 69, 046609 ~2004!
Mode matching interface for efficient coupling of light into planar photonic crystals

Jeremy Witzens,* Michael Hochberg, Thomas Baehr-Jones, and Axel Scherer
Department of Electrical Engineering 136-93, California Institute of Technology, Pasadena, California 91125, USA
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In order to integrate superdispersive elements based on photonic crystals, such as the superprism, with
conventional integrated optics, insertion losses at the interface to the photonic crystal need to be reduced to an
acceptable level. We describe a mode matching interface composed of cascaded diffraction gratings that
generates the field profile of the photonic crystal Bloch mode from a slab mode. We calculate with three-
dimensional finite-difference time-domain computation that by interposing such a multilayered grating between
an unpatterned slab and a planar photonic crystal, the insertion efficiency is enhanced from 9% to 84%. Each
diffraction grating consists of a row of holes and does not require any additional process steps from those used
to fabricate the planar photonic crystal. In order to optimize the efficiency of the mode matching interface,
constructive interference conditions are imposed between successive gratings and reflections from individual
gratings are suppressed. We fabricate devices in silicon on insulator material and show experimental evidence
of the Bloch mode structure and of the mode matching mechanism.

DOI: 10.1103/PhysRevE.69.046609 PACS number~s!: 42.70.Qs, 42.82.Cr, 42.82.Gw
al

t
n

ain
e

th
le
h
tru
c
-
a
d
a-
a
s

s
3D

th
iv
c
pe

ch
a

Th
e

o
er

We

-
ner

with
tes
pti-
an
is
h a
uces
erlap
he
the
if-

les

de
PC
dif-
at-
h

be

ially
to

nd
ice
es

i-
con
lab
I. INTRODUCTION

Anomalous dispersion properties of photonic cryst
@1,2# such as ultrarefraction and negative refraction@3–6#
have been intensely studied in the past years and have
sulted in applications such as the superprism effect@7–9# and
self-collimation@10–15#. In particular, the superprism effec
has been singled out as a good candidate to develop a
generation of planar lightwave circuits for frequency dom
demultiplexion. One of the crucial difficulties in using th
superprism effect for practical planar demultiplexers is
coupling of light into the photonic crystal with acceptab
insertion losses. Those insertion losses can be very hig
the absence of mode matching because of the complex s
ture of the Bloch modes involved in the superprism effe
Although this is a crucial difficulty, it has received very lim
ited attention in the previous literature. Baba and Ohs
have proposed a mode matching interface and calculate
efficiency with 2D finite-difference time-domain comput
tion ~FDTD! @16#. Here we present a different approach th
focuses on the problems related to the planar photonic cry
geometry, in particular, the out-of-plane scattering losse
the interface that can only be taken into account by
FDTD.

In the second section we analyze the structure of
Bloch modes involved in the superprism effect and der
the necessary functionality of the mode matching interfa
The interface can then be designed and simulated inde
dently of the planar photonic crystal~PPC!. In order to pro-
vide physical intuition we derive the structure of the Blo
modes from general considerations such as the folding b
of the dispersion diagrams into the first Brillouin zone~BZ!
and the presence of cusps in the equifrequency contour.
also shows that the coupling difficulties outlined in this pap
are intrinsic to the superprism effect and are not due t
particular geometry. We confirm those results by the num
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cal analysis of a Bloch mode chosen as an example.
introduce the multilayered grating~MLG! used to implement
the mode matching interface~Sec. III!, as well as the numeri-
cal methods used in this paper~the numerical data are gen
erated by FDTD and then analyzed with the help of an in
product introduced in Sec. IV!. The MLG is first optimized
as a stand-alone device in Sec. V, and then integrated
the PPC in Sec. VI. This method considerably accelera
design iterations because the stand-alone MLG can be o
mized with a transfer matrix method that is much faster th
a full FDTD simulation. One of the conclusions of Sec. III
that cascading a higher number of diffraction gratings wit
reduced scattering strength is beneficial because it red
out-of-plane scattering losses and increases the mode ov
with the photonic crystal due to a finer adjustment of t
MLG. However when a Gaussian beam is coupled into
PPC instead of a slab mode of infinite extent, additional d
ficulties arise and a more compact MLG with bigger ho
and fewer cascaded gratings needs to be used~Sec. VII!.
Finally, we give experimental evidence of the Bloch mo
structure by propagating light from a waveguide into a P
and then into the unpatterned slab and by imaging the
fraction pattern of the electromagnetic field in the unp
terned slab~Sec. VIII!. This experiment is repeated both wit
a bare PPC~without mode-matched interfaces! and with a
mode-matched PPC.

Although the mode matching interface could easily
adapted to a triangular crystal lattice~the Bloch mode struc-
ture at the cusps of the equifrequency contours is essent
the same!, we restrict ourselves to a square lattice PPC
compute quantitative results. A square lattice of holes~radius
r 50.15mm) is etched into a silicon slab of thicknesst
5205 nm. The holes are backfilled with silicon dioxide a
the slab is clad on both sides with silicon dioxide. The latt
constant is linked to the design of the MLG and vari
slightly from case to case, but it is kept between 0.47mm
and 0.5mm. In the calculations the refractive index of sil
con is assumed to be 3.43 and the refractive index of sili
dioxide is assumed to be 1.46. The effective index of the s
©2004 The American Physical Society09-1
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WITZENS et al. PHYSICAL REVIEW E 69, 046609 ~2004!
~n! is equal to 2.77 at 1.52mm. l is the free space wave
length.

II. BLOCH MODE STRUCTURE

Due to the periodic nature of photonic crystals, photo
crystal modes~Bloch modes! can be described by function
of the following form ~Bloch theorem!:

f ~rW !eikW•rW, ~1!

whererW is the position vector,kW is the reducedk vector of the
Bloch mode~in the first BZ! andf is a function with the same
periodicity as the photonic crystal. In the case of a PPC~2D
periodicity! the Fourier transform of such a function tak
the form

(
a,b

f a,bei (kW1aK1
W1bK2

W )•rW, ~2!

whereKW 1 andKW 2 are the inverse lattice vectors of the PP
and a and b are integers. We call the lattice vectors of t
PPCeW1 andeW2 . KW 1 andKW 2 verify KW i•eW j5d i j 2p. When more
than one of the Fourier components in Eq.~2! carry a sig-
nificant portion of the mode’s power, there can be a sign
cant mode mismatch between the Bloch mode of the P
and an incoming slab mode, which corresponds to a sin
Fourier component.

The group velocity of light is given by¹Wk(v), wherev is
the angular frequency. This also holds for the group veloc
of Bloch modes in photonic crystals, with the only differen
thatk is the reducedk vector@7#. ¹Wk(v) is normal to surfaces
of constantv ~analogous to surfaces of constant energy
solid state physics, for example, the Fermi surface!, or in the
case of a PPC it is normal to contours of constantv. The
equifrequency contour of an unpatterned slab is a circle c
tered onG (k50), so that the group velocity of slab mode
is collinear to thek vector. However, in a photonic crysta
equifrequency contours have features such as approxim
flat sides and cusps~Fig. 1!. This causes light to diffract in a
PPC in a fundamentally different way than in an unpattern
slab. If the spread ofk vectors of a light beam corresponds
a flat side of the contour, the group velocities are collinea
that the beam stays collimated~self-collimation!. On the con-
trary, in the region of the cusps the angular deflection
propagation direction corresponding to small changes in
k vector is much higher than in the unpatterned slab~super-
prism effect!.

The cusps in the equifrequency contour are due to c
pling between two higher-order Fourier components. T
coupling is induced by the periodic array of holes. On eith
side of the cusp, the Bloch mode is dominated by one of
Fourier components, while at the cusp itself the two com
nents are of equal magnitude. In the case of the second
of a square lattice PPC, the equifrequency contours ha
cusp on their intersection with theGM direction, whereG
andM are the high-symmetry points shown in Fig. 1.
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Before we give a numerical analysis of the Bloch mod
of the square lattice PPC, we derive the Bloch mode str
ture at the cusp from more general considerations, so a
relate it to the presence of the cusp rather than to a part
larity of the square lattice. As a thought experiment, we s
with a homogeneous medium and progressively turn on c
pling between higher-order spatial Fourier components. T
gives an adequate description of the band structure in
limit of very small hole size. In the case of finite hole siz
the equifrequency contours as well as the Bloch mode st
ture are modified, however, the essential characteristics
the same and can be intuitively understood with the we
coupling model.

In Fig. 1 we represent the equifrequency contour of
unpatterned slab of effective index@(a22pr 2)nslab
1pr 2nSiO2

)]/a2 for l51.54mm ~circle centered onG).

FIG. 1. ~Color! This figure illustrates how the structure of th
second band is formed by turning on coupling between higher-o
Fourier components. The circle centered onG is the equifrequency
contour of an unpatterned slab of effective index@(a22pr 2)nslab

1pr 2nSiO2
#/a2 (l51.54mm), wherea is the lattice constant of

the PPC (0.5mm). The effective index is the weighted mean of th
effective index of the unpatterned slab and of the refractive inde
silicon dioxide~holes! so that we take into account the finite hole
in the effective index but ignore the coupling and the anisotro

they induce. However, we represent by circles centered onaKW 1

1bKW 2 the corresponding higher-order Fourier harmonics, whera
andb are integers. The circles centered on~1,0! and~0,1! intersect
inside the first BZ~represented by the black square! and anticross
when coupling is turned on. The red contour represents the se
band and the green contour the third band in the case of infinit
mal coupling. The real equifrequency contour of the second ban
also represented~black squarish contour!. Even though the structure
is more complex in the case of finite coupling, the mode on
intersection between the equifrequency contour of the second b
and theGM direction is essentially composed of two Fourier com

ponents offset byKW 1 and KW 2 from the first BZ. The exact Fourie
structure of such a mode is represented in Fig. 2. The axes o

figure showk15kW•eW1 andk25kW•eW2.
9-2
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MODE MATCHING INTERFACE FOR EFFICIENT . . . PHYSICAL REVIEW E 69, 046609 ~2004!
The lattice constanta of the PPC equals 0.5mm and the
effective index is the weighted mean of the effective index
the unpatterned slab and of the refractive index of silic
dioxide ~holes!. This corresponds to a medium with the sam
ratio of high index regions~slab! and low index regions
~holes!, but where the anisotropy and the coupling induc
by the holes is ignored. We also represent the higher-o
Fourier harmonics created by the lattice~circles centered on
aKW 11bKW 2, wherea andb are integers!. The ~1,0! harmonic
and the~0,1! harmonic intersect inside the first BZ onGM .
When the coupling between the Fourier components
‘‘turned on’’ ~small but nonvanishing hole size! the two Fou-
rier components anticross and two disjoint contours
formed. The resulting contours correspond to the sec
band~red! and to the third band~green! of the photonic crys-
tal. The fourth band corresponds to the~1,1! harmonic ~it
also intersectsGM inside the first BZ!. On GM , the Bloch
modes of the second and third bands are essentially c
posed of two Fourier harmonics respectively, offset from
first BZ by KW 1 and by KW 2, while the Bloch modes of the
fourth band are essentially composed of a single Fou
component.

In the case of a finite hole size there will also be oth
Fourier components in the Bloch mode structure and
equifrequency contour has a slightly different shape~com-
pare the true equifrequency contour in Fig. 1 to the red c
tour that corresponds to the limit of vanishing coupling!, but
the Bloch mode is still dominated by the same two high
order components. As an example, we operated a Fou
decomposition on one particular Bloch mode of the P
~second band onGM at l51.55mm). Figure 2 shows the
detailed Fourier structure of the mode. The power sha
between the two main components is calculated to be 8
We conclude that in order to couple into these Bloch mo
the two dominant higher-order Fourier components need

FIG. 2. ~a! Field profiles~amplitude of the out of plane compo
nent of theB field, B3, on the center plane of the PPC! of modes of
the second and third bands located onGM ~at l51.55mm). The
mode of the second band has a field maximum in the high in
region at the center of the figure, where the mode of the third b
has a field minimum.~b! Fourier structure of the mode of the se
ond band obtained by taking the Fourier transform ofB3. The am-
plitudes of the Fourier components are shown. The axis gives
offset of the Fourier components from the component in the first

in integer multiples ofKW 1 andKW 2.
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be generated from the incoming slab mode.
The GM direction corresponds toeW11eW2 in real space.

The interface between the PPC and the slab is chosen t
alongeW12eW2 so that a slab mode with a propagation dire
tion perpendicular to the interface is coupled to a Blo
mode on theGM direction, on the cusp of the equifrequenc
contour.

When a Bloch mode crosses the interface from the PPC
the unpatterned slab it generates higher diffraction order
the unpatterned slab. Conversely, in order to insert a s
mode~single Fourier component! into the PPC, those higher
order Fourier components need to be generated from the
mode by the mode matching interface. In order to design
mode matching interface, the relative strength and phas
those diffraction orders needs to be evaluated from the F
rier structure of the Bloch mode. Thus we need to establis
correspondence between the Fourier components of
Bloch mode and the diffraction orders in the slab. We den
by nW' the normalized vector along the interface, (eW1

2eW2)/ieW12eW2i . The projection of thek vector of the Fourier
components onto the interface,k'5kW•nW' , indicates the dif-
fraction orders to which the Fourier components contribu
The Fourier component~1,1! corresponds to the zeroth dif
fraction order,k'5kW•nW'50. The two dominant component
~1,0! and ~0,1! project to k'5(kW1KW 1/2)•nW'562p/A and
contribute to higher diffraction orders, whereA5A2a is the
periodicity of the holes at the interface anda is the lattice
constant of the PPC. The correspondence between the
rier components in the Bloch mode structure and the am
tude of their contribution to the corresponding diffractio
orders is not exactly one to one, however we can concl
that the 1 and21 diffraction orders (k'562p/A) are
dominant.

Furthermore, we can classify Bloch modes on theGM
direction by their symmetry relative toGM ~in real space the
surface generated byeW11eW2 and eW35eW1`eW2). More pre-
cisely we consider the symmetry operatorS defined by a
surface generated byeW11eW2 andeW3 and passing through th
center of a hole. ThensS521 for the second band~evenB
field and oddE field! and sS51 for the third band~odd B
field and evenE field!. We consider quasi-TE modes so th
the field intensity on the center plane of the slab is b
described byB35BW •eW3. There is a high index region on th
symmetry planeS ~at the center of the square defined by fo
adjacent holes, Fig. 2!. For the second band,B3 has a maxi-
mum in that region, while for the third bandB3 is antisym-
metric and has an antinode onS. The different field overlaps
with the low and the high index regions create the wi
splitting between those two bands. For more details on s
metries in photonic crystals see Ref.@17#.

III. MULTILAYERED GRATING

A grating formed by a row of holes of pitchA, parallel to
the edge of the PPC, diffracts an incoming plane wave
higher diffraction orders offset byKgrating562p/A and is
as such suitable to generate the higher-order harmonics c
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WITZENS et al. PHYSICAL REVIEW E 69, 046609 ~2004!
prising the Bloch mode. However, the diffraction efficien
of a single grating is insufficient~for example, 15% diffrac-
tion efficiency was computed by FDTD for holes of radi
r 50.15mm). Hence several gratings are cascaded. To
prove efficiency, constructive interference conditions are
posed between the contributions of the successive grating
the higher diffraction orders and destructive interferen
conditions are imposed between the reflections generate
the successive gratings~antireflection conditions!. We will
show that those interference conditions can be reduce
two independent equations and that it is possible to sat
both conditions at the same time for certain values of
PPC lattice constant. In the following ‘‘coupling efficiency
characterizes the stand-alone MLG and corresponds to
power transfer from the zeroth order into the first order.
the other hand, insertion efficiency, characterizes the M
integrated with the PPC and corresponds to the insertion
ficiency into the PPC.

For the range of lattice constants used in this paper
only diffraction orders that are supported by the slab a
21, 0, and 1 (u2pm/Au,2pn/l wherem is the order of the
diffraction order!. The correct field symmetry to couple int
the second band is obtained when the holes of the grat
are in front of the holes of the PPC, or when the holes of
gratings are offset byA/2. This can be seen by the fact th
the incoming TE slab mode has the correct symmetry
that the symmetry alongS is preserved by the gratings i
those two cases. If the offset is different from 0 orA/2
~modulo A), the symmetry is broken. In the following th
holes of the grating will be offset byA/2 ~Fig. 5!. The 1 and
21 diffraction orders have the same magnitude and have
same phase~defined as the phase ofB3 on S) so that they
can be described by a single scalar, referred to as order
the following. The characteristic of the grating then reduc
to scattering between four slab modes of identical symm
relative toS ~order 0, order 1, and their counterpropagati
counterparts! and scattering to free space modes~out-of-
plane scattering losses!. Hence, the grating can be describ
by a 434 lossy scattering matrix.

We call u the diffraction angle„u5sin21@2p/(Ak)#…, w0
5w0→0 the phase accumulated by the zeroth order a
transmission through a single grating,w15w1→1 the phase
accumulated by the first order, andw0→1 the phase acquired
by the fraction of the zeroth order scattered into the fi
order by a single grating (w0 , w1, andw0→1 are the phases
of elements of the scattering matrix of a single grating!. l0 is
the target wavelength,d is the spacing between successi
gratings, andn is the effective index of the slab. The con
structive interference condition between the two forwa
propagating modes~order 0 and order 1! is obtained when

w01dn
2p

l0
5w11cos~u!dn

2p

l0
12pm1 , ~3!

wherem1 is an integer. The antireflection conditions, resp
tively for reflections from the zeroth order to the zeroth ord
@Eq. ~4!#, from the first order to the first order@Eq. ~5!#, and
from the zeroth order to the first order@Eq. ~6!# are given by
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2w012dn
2p

l0
5p12pm2 ~4!

2w112 cos~u!dn
2p

l0
5p12pm3 , ~5!

w01w11dn
2p

l0
@11cos~u!#5p12pm4 , ~6!

wherem2,3,4 are integers. Equation~6! is also the antireflec-
tion condition for reflections from the first order to the zero
order. Equation~3! implies that Eqs.~4!–~6! are equivalent
with m35m222m1 andm45m22m1, so that only Eqs.~3!
and ~4! need to be satisfied to suppress all reflections. Si
d, u, and a are functions ofm1 , m2, and l0, the lattice
constant of the PPC is linked to the design of the MLG.

Equations~4!–~6! ensure that zero reflection is achievab
in the limit of small MLG holes. The small holes are nece
sary because otherwise the reflection of the first grating c
not be compensated. This is the same phenomenon as
reflections from a distributed Bragg reflector~DBR! at the
antireflection condition, i.e., if the scattering efficiency of
single grate is too high, the reflections due to the first gr
can not be compensated@18,19#. When the reflections van
ish, the two forward traveling diffraction orders can be mo
eled as coupled forward traveling waves. Thus they can
modeled by an effective two by two transfer matrix in th
limit of small holes. The device behaves like a direction
coupler with a coupling length that can only take a set
discrete values whose step is dependant on the hole siz
the limit of vanishing hole size the effective coupling leng
behaves like a continuous parameter. Equation~3! implies
that the elements on the diagonal of the effective 2 by
transfer matrix have the same phase~i.e., the zeroth diffrac-
tion order and the first diffraction order accumulate the sa
phase while propagating forward!. (2w0→12w02w1)/2 is
the phase difference between the coupling coefficient in th
by 2 transfer matrix and the diagonal terms.

There is one last condition that is necessary to achi
100% extinction of the zeroth order~i.e., a coupling effi-
ciency of the MLG uniquely limited by out-of-plane scatte
ing losses!. If (2w0→12w02w1)/256p/2 the MLG be-
haves like a symmetric directional coupler and 100% pow
transfer is possible if the adequate coupling length is cho
~power coupled from the zeroth order into the first order a
then back into the zeroth order interferes destructively w
the field that stayed in the zeroth order!. If (2w0→12w0
2w1)/2Þ6p/2 the maximum power transfer is less tha
100%. It can be derived from first principles~power conser-
vation and reciprocity imposed on the scattering matrix! that
in the limit where individual holes constituting the gratin
have small coupling efficiency~small radius! this phase
tends to2p/2. In that limit w0→0 andw1→0 ~if the scat-
tering efficiency of the holes is vanishing a slab mode
transmitted unperturbed through the grating and does no
cumulate an extra phase!. It can then be derived from powe
conservation~unitarity of the transfer matrix! and from reci-
procity thatw0→1→6p/2.
9-4
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MODE MATCHING INTERFACE FOR EFFICIENT . . . PHYSICAL REVIEW E 69, 046609 ~2004!
The coupling efficiency is still limited by scatterin
losses. With numerical examples we will show that a str
ture with more layers of smaller holes has less scatte
losses than a structure with fewer gratings of larger ho
The MLG described in Sec. V~Fig. 3! is composed of 40 nm
holes while the MLG described in Sec. VII~Fig. 10! is com-
posed of 0.15mm holes. With the bigger holes the maximu
coupling efficiency is 70% and is limited by out-of-plan
scattering losses.

In short, we showed that if the MLG is designed wi
small holes, reflections are suppressed and out-of-plane
tering losses reduced, and that the coupling efficiency of
MLG can be chosen between 0 and near 100% on a qu
continuous scale. In Sec. V we will implement a MLG wi
a hole size of 40 nm that verifies this.

IV. INNER PRODUCT

The analyses conducted in the next sections are based
large extent on the decomposition of the electromagn
field into modes of the unpatterned slab. This decomposi
is performed with an inner product introduced in this secti

For waveguides with continuous translation symmetry,
thogonality conditions are well established@20#, in particular,
for a nonabsorbing waveguide with translation symmetry
the z direction, and two modes~bound or radiative! c

5(E,H) and (c̄5Ē,H̄) with the same implicit time depen
dence exp(2ivt)

E5e~x,y!eibz, H5h~x,y!eibz ~7!

Ē5ē~x,y!ei b̄z, H̄5h̄~x,y!ei b̄z ~8!

wherev is the angular frequency andb andb̄ are the propa-
gation constants. Ifb2b̄Þ0, the following holds for a sur-
faceA normal toẑ.

FIG. 3. Transmission~a!, coupling efficiency~b!, and reflection
~c! of the multilayered grating~hole size 40 nm! as computed by the
transfer matrix method forl51.52mm. The coupling efficiency is
defined as the power transferred from the zeroth order into the
order, the transmission as the power remaining in the first or
Optimum coupling is obtained with 27 layers.
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$e3h*̄ 1e*̄ 3h%• ẑdA50. ~9!

This functional is taken as the inner product. It has pre
ously been applied to photonic crystal modes@21#.

uf& is a given field profile to be analyzed~field cross
section perpendicular toeW11eW2) anduc& a normalized mode
profile ~normalized to 1 if it is forward propagating and to
21 if it is backward propagating!. Then

P5^fuf&, ~10!

Pc5^cuf&2sgn~^cuc&!, ~11!

whereP is the power carried byuf& andPc the power car-
ried by the projection ofuf& onto uc&. Note that P
5( i^c i uf&2sgn(̂ c i uc i&), where the sum is taken over a
the modes of the system, but because the inner product is
positive definiteP<( i u^c i uf&u2.

The Bloch mode is decomposed into forward propagat
modes of the unpatterned slab (uf&FP) and backward propa
gating modes of the unpatterned slab (uf&BP). Those com-
ponents correspond to the projection of the Bloch mo
onto the modes of the unpatterned slab@Eqs.~12! and~13!#.
The slab is single mode, so that the TE modes of the slab
be unambiguously referred to by the angle betweeneW11eW2
and their direction of propagation. Furthermore, only s
modes with propagation directions corresponding tou, 0°,
and 2u as well as their counterpropagating counterpa
have a finite overlap with the Bloch mode and its diffracti
pattern. The forward propagating modes areuc2u&, uc0°&,
and ucu&, the backward propagating modes areuc180°2u&,
uc180°&, and uc180°1u&. We couple to Bloch modes with a
given symmetry (sS521), so that we only need to take int
account uc1&51/A2(uc2u&1ucu&), uc0&5uc0°&, uc̄1&
51/A2(uc180°2u&1uc180°1u&), and uc̄0&5uc180°&, where
the relative phase between modes in the sums is chosen
to satisfysS521. uc0& and uc1& correspond to the zeroth
and first diffraction orders.

uf&FP5^c0uf&uc0&1^c1uf&uc1&, ~12!

uf&BP52^c̄0uf&uc̄0&2^c̄1uf&uc̄1&. ~13!

The minus signs in Eq.~13! are due to the fact that th
backwards propagating modes are normalized to21.

V. CHARACTERIZATION OF THE STAND-ALONE
MULTILAYERED GRATING

We design a MLG with holes of radius 40 nm and wi
design parametersl051.52mm, m151, andm254, which
results ina50.470mm andd51.240mm.

The transfer matrix characterizing a single row of holes
computed by using FDTD with a spatial discretization of
nm and a time step of 0.011 43mm21 in units of c051
~where c0 is the speed of light in vacuum!. A silicon slab
with a single hole (r 540 nm) is placed in a computationa
domain of dimensionsA31.2 mm3100 mm ~respectively,

st
r.
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x, y, andz, wherex is along the interfaceeW12eW2 , y is along

the out-of-plane directioneW3, andz is along the direction of

propagationeW11eW2). Bloch boundary conditions~BBC! with
a zero phase are applied in thex direction so as to effectively
simulate an infinite grating. Absorbing boundary conditio
~ABC! are applied in the other directions. The zero phas
compatible withuc0& (kx5k'50) and with the higher dif-
fraction order uc1& (k'562p/A so that k'50 modulo
2p/A).

Successivelyuc0& and uc1& are launched and propagate
through the hole. Probes store field profiles before and a
the hole. By taking the inner product withuc0&, uc1&, uc̄0&,
and uc̄1& all the coefficients of the scattering matrix are e
tracted. The transfer matrix is then computed from the s
tering matrix. By exponentiating the transfer matrix and i
posing as a boundary condition only forward propagat
waves at the output boundary of the MLG, the properties
MLG with a variable number of cascaded layers are co
puted.

Figure 3 shows the transmission~zeroth order to zeroth
order!, coupling ~zeroth order to first order!, and reflections
of the MLG as a function of the number of cascaded grati
at l51.52mm, as computed by the transfer matrix metho
It is apparent that the optimum coupling efficiency is reach
with 27 layers. FDTD simulations of the full MLG are i
good agreement with the transfer matrix method~at l
51.51mm, the optimum is computed to be 26 layers w
the transfer matrix method and to be 23 layers with a
FDTD simulation!. Figure 4 shows the results of the transf
matrix method as a function of both the number of casca
gratings and of the wavelength. The triangular shape of
transmission shows that there is an inherent trade-off
tween the maximum coupling efficiency and the pass b
~the maximum coupling efficiency is achieved with 27 la
ers; however, the pass band is higher for a smaller numbe
layers!. This will be reflected in the insertion efficiency an

FIG. 4. Coupling efficiency~upper plot!, transmission~middle
plot!, and reflection~lower plot! of the MLG as a function of wave-
length and of the number of cascaded gratings. The optimum
pling efficiency is obtained atl51.52mm and 27 layers; however
the passband of the MLG is higher for a smaller number of c
caded gratings.
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pass band of the mode-matched photonic crystal as show
Sec. VI ~Fig. 9!.

VI. INTEGRATION OF THE MULTILAYERED GRATING
WITH THE PLANAR PHOTONIC CRYSTAL

The relative phase betweenuc0& anduc1& can be adjusted
by choosing the distancedMLG→PPC between the last row o
the MLG and the first row of the PPC~Fig. 5!. Inside the
PPC, uc0& and uc1& are in phase in the high index regio
between four adjacent holes@Fig. 2~a!#. This also holds for
the first row of the PPC and constrainsdMLG→PPC . For
m151 and w0→12w052p/2, this results indMLG→PPC
53d/4. Indeed the distance 3d/4 introduces a phase shi
w uc1&2w uc0&523/4m12p523p/2. At the last row of the

MLG w uc1&2w uc0&5w0→12w052p/2 so that the resulting

phase difference at the first row of the PPC is23p/2
2p/2522p.

As for the calculation of the transfer matrix we app
BBC in thex direction to a computational domain of dimen
sionsA31.2 mm3100 mm. The slab modeuc0& is launched
at the beginning of the MLG. After 40 000 time steps t
wave packet traveling in the PPC reaches the ABC at1z
@Fig. 6~a!#. Between subsequent layers of the MLG, as w
as inside the PPC, probes store the field profile (uf&). We
stop all simulations after 50 000 time steps so that the refl
tion of the Bloch mode at the1z interface does not reach th
field probes and bias the data. The inner product is ta
between the field profiles anduc0&, uc1&, uc̄0&, anduc̄1& ~see
Figs. 6 and 7!. Note that the inner product is defined betwe
field cross sections of same implicit time dependence, so
a temporal Fourier transform needs to be applied to the t
series before the inner product.

We compute throughout the MLG and the PPC the pow
carried by ~i! the order 0 (u^c0uf&u2), ~ii ! the order 1
(u^c1uf&u2), ~iii ! the total power carried by forward propa
gating slab modes~i.e., the sum of the previous two!, and

u-

-

FIG. 5. Configuration of the simulation. The width (x direction!
is A so that a single hole per cascaded grating is placed in
computational domain. Bloch boundary conditions are appliedx
direction! so as to effectively simulate an infinite grating and
infinite PPC in thex direction. The field is launched in the unpa
terned slab, propagates through the MLG, and is transmitted
the PPC. Field probes are periodically placed with a separatiod
between them, first inside the MLG at equal distance from adjac
gratings and then inside the PPC. The distance between the M
and the PPC is chosen so as to impose the correct phase relatio
between the zeroth and the first order for optimum insertion into
Bloch mode. This results in the distance 3d/4 between the last
grating of the MLG and the first row of the PPC~hole center to hole
center!.
9-6
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~iv! the total power carried by backward propagating s
modes (u^c̄0uf&u21u^c̄1uf&u2). We evaluate the insertion ef
ficiency by

Pf wd,PPC2Pbwd,PPC

P0
, ~14!

FIG. 6. ~Color! Field decomposition obtained from the fie
probes.~a! and ~b! correspond to a non-mode-matched PPCl
51.51mm) and~c! corresponds to a PPC integrated with an ML
of 14 layers that operates partial mode matching@l51.49mm,
compare with Fig. 7~a!#. In ~a! u^c0uf&u21u^c1uf&u2 is shown for
various time steps after the start of the FDTD simulation. In~b! and
in ~c! the black curve showsu^c0uf&u2 @~i! in the text!#, the blue
curve showsu^c1uf&u2 ~ii !, the green curve showsu^c0uf&u2

1u^c1uf&u2 ~iii !, and the red curve showsu^c̄0uf&u21u^c̄1uf&u2

~iv!. It is apparent in~b! that the zeroth order is reflected~black
line! and that the first order is transmitted~blue line!.
04660
b

wherePf wd,PPC is the power carried by forward propagatin
slab modes~iii ! at the first probe after the interface
Pbwd,PPC is the absolute value of the power carried by bac
ward propagating modes~iv! at that same probe andP0 is the
power carried by forward propagating modes~iii ! before the
MLG ~i.e., the power that was initially launched!. Forward
propagating Bloch modes in a PPC have components
would correspond to backward propagating modes in

FIG. 7. ~Color! Field decomposition obtained from the fiel
probes for a PPC integrated with an MLG with~a! 14 layers,~b! 19
layers and~c! 23 layers (l51.51mm in all three cases!. The MLG
in ~a! has less then the optimum number of layers~not enough
power coupled into the first order!, ~b! corresponds to the optimum
number of layers and the MLG in~c! has too many layers. In~c! the
coupling from the zeroth order into the first order is maximize
however, the insertion efficiency into the PPC is suboptimum
cause the Bloch mode has a small fraction of its power in the ze
order. The color conventions are the same as in Fig. 6.
9-7
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WITZENS et al. PHYSICAL REVIEW E 69, 046609 ~2004!
slab so thatPbwd,PPC has to be taken into account in E
~14!.

Figure 6 shows~i!, ~ii !, ~iii !, and~iv! as a function of the
propagation distance~z! for a bare PPC and for a PPC int
grated with a MLG that operates partial mode matching.
Fig. 6~b! the PPC is not mode matched and almost all
power is reflected~9% insertion efficiency!. In Fig. 6~c! the
MLG operates partial mode matching. At the interface,
power remaining in the zeroth order is almost complet
reflected, while the power in the first order is transmitted in
the photonic crystal. However, this picture can be refin
The Bloch modes have most of their power in the high
diffraction order, but there is still a finite amount of power
the zeroth order. Thus the optimum insertion efficiency is
at 100% coupling efficiency~of the MLG! but at a slightly
lower coupling efficiency. This is illustrated by Fig. 7. In~a!
the coupling into the first order is insufficient and there is
sharp drop at the interface in the power carried by the ze
order. In~c! the MLG has near 100% power transfer into t
first order but the situation is still suboptimal because ther
not enough power in the zeroth order. The power in the
roth order increases at the interface, the power in the
order decreases, and the ratio between the two compone
changed inside the PPC. There are additional reflection
compared to~b!. The situation is optimum in~b! and the
reflection is minimum. Note that both the power in the fi
order and in the zeroth order increase at the interface. T
does not contradict power conservation because the po
carried in back propagating slab modes also increases a
interface.

For l51.51mm, we plotted the insertion efficiency as
function of the number of gratings composing the MLG~Fig.
8!, i.e., the power transmitted into the PPC normalized by
power initially launched intouc0&. We also plotted the powe
transmitted into the PPC normalized by the power contai
in forward traveling modes~iii ! after the MLG and before the
PPC. This normalizes out the losses incurred inside the M
due to out-of-plane scattering and is a better characteriza

FIG. 8. ~a! Insertion efficiency as a function of the number
cascaded gratings in the MLG forl51.51mm and~b! fraction of
the output power of the MLG transmitted into the PPC.~b! normal-
izes out the losses due to out-of-plane scattering inside the MLG
order to evaluate the insertion losses uniquely due to mode
match.
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of the mode mismatch. It is apparent that mode mismatc
the main limiting factor~the maximum power transmission
83.7%, versus 86.9% without out-of-plane scattering loss!.

There are some fundamental limits to this coupli
scheme that may explain the remaining insertion losses. O
the components of the Bloch mode that correspond to
ward propagating modes of the slab (uc0& and uc1&) are
generated. However the Bloch mode also contains com
nents that would be back-propagating in the slab, such
componentE in Fig. 2. There are also components orthog
nal to the radiative modes of the slab, for example, high
order Fourier components withkx.2pn/l that cannot
propagate in the unpatterned slab~for example, components
C andD in Fig. 2!.

In Fig. 9 we show the insertion efficiency as a function
wavelength. As predicted, there is a trade-off between
best peak efficiency~19 layer MLG! and the pass band. Fo
a 19 layer MLG the peak efficiency is 84%~as compared to
9% without mode matching interface! and the full width at
half maximum~FWHM! is 28.5 nm. For a 14 layer MLG the
peak efficiency is 79% and the FWHM is 45 nm.

VII. COMPACT DESIGN FOR GAUSSIAN BEAMS

In Sec. III we have shown that if a slab mode of infini
extent is coupled into the PPC, a MLG composed of ma
layers of small holes is more efficient than a MLG wi
fewer cascaded gratings and larger holes. Reflections
suppressed, maximum achievable coupling efficiency
higher, and out-of-plane scattering losses decrease. How
when a beam of finite width~e.g. a Gaussian beam! is
coupled into the PPC, the higher diffraction orders genera
inside the MLG propagate in different directions than t
zeroth order, so that the three beams separate. The MLG
only function as an efficient coupling scheme if the initi
beam is much wider than the depth of the MLG~number of
cascaded gratings timesd). Then the beam separation wi
only be a fringe effect.

We design a MLG with a hole sizer 50.15mm and with

in
is-

FIG. 9. Insertion efficiency as a function of frequency for~a! 19
layers and~b! 14 layers. Optimum insertion efficiency is achieve
in the case of 19 layers at 1.51mm ~84%!, however, the bandpass i
higher in the case of 14 layers~45 nm vs 28.5 nm!.
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MODE MATCHING INTERFACE FOR EFFICIENT . . . PHYSICAL REVIEW E 69, 046609 ~2004!
design parametersm151, m254, l051.52mm, which re-
sults in a50.483mm and d51.3141mm. Three cascaded
layers are sufficient to achieve optimum coupling, but t
optimum is only 70% at 1.52mm due to large out-of-plane
scattering losses~Fig. 10!. The insertion efficiency at the
non-mode-matched interface is calculated to be 8%62%
and the peak insertion efficiency with the mode-matched
terface is calculated to be 58% at 1.54mm.

We simulate by FDTD the transmission through a PPC
31 rows. We compute both the case of a PPC with two mo
matched interfaces and the case of a non-mode-mat
PPC. We launchuc0& and let it propagate through the stru
ture. The transmission spectrum through the PPC~Fig. 11!
results from two interfaces~unpatterned slab to PPC an
PPC to unpatterned slab! as well as Fabry-Perot resonanc
between interfaces, losses inside the PPC for modes a
the light line as well as near zero transmission inside
band gap. Both the total transmission through the PPC
the fraction of the transmitted power contained inuc0& are
shown. We attribute oscillations in the transmission spectr
to Fabry-Perot resonances between the interfaces.

In the case without any mode matching the transmiss
suddenly increases at the onset of the fourth band bec
Bloch modes of the fourth band essentially correspond
uc0&, as explained in Sec. III. The total transmission throu
the mode-matched PPC is enhanced in the frequency do
of the second band. The third band does not play any
because it has the opposite symmetry. Also the ratio betw
the fraction of the transmitted power contained inuc0& and
the total transmitted power is an order of magnitude hig
in the mode-matched case: 81.45% versus 8.6% in the
mode-matched case, at their respective peak transmissio~at
1.55mm and 1.57mm).

FIG. 10. Transmission~a!, coupling efficiency~b!, and reflec-
tion ~c! of the multilayered gratings at the target wavelengthl
51.52mm for a hole radius of 0.15mm. The optimum coupling
efficiency is achieved with three cascaded gratings. The coup
efficiency is limited by out-of-plane scattering losses. It can be s
that transmission and reflection of the three layer MLG are clos
zero and are not limiting the coupling efficiency in a significa
way.
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The two interfaces of the PPC have a completely differ
transmission characteristic: In the case of the non-mo
matched PPC there is almost total reflection at the first in
face ~8% transmission!, but high transmission at the secon
because the Bloch mode is free to diffract in all diffractio
orders. Thus the insertion efficiency of the first interface is
the order of the total transmission. In the case of the mo
matched PPC the out-of-plane scattering losses due to
three layer MLG occur at both interfaces, so that the ins
tion efficiency is expected to be of the order of the squ
root of the total transmission. This can be formulated qu
titatively: The insertion efficiency from the slab modeuc0&
into the PPC at the first interface is the same as the trans
sion efficiency from the PPC intouc0& at the second inter-
face ~reciprocity principle!. Hence, the insertion efficienc
can be calculated as the square root of the fraction of
power transmitted in the zeroth order. This way the insert
efficiency is confirmed to be 8%62% for the non-mode-
matched interface and is estimated to be 50% for the mo
matched interface at 1.55mm, the wavelength of maximum
transmission~the discrepancy from the previous, more rigo
ous calculation is easily taken into account by the Fab
Perot effect!.

The total power transmission through the PPC would
optimized by putting a mode matching interface only at t
first interface. However, for integrated optics applications
will usually be necessary to mode match both interfac
since it is the transmission into a particular slab mode t
will matter if the PPC is interfaced with single mode optic
Even if the output field is collected by a multimode wav
guide, the higher diffraction orders are likely to be outsi
the angle of total internal reflection of the waveguideu
.56°, whereu is the diffraction angle!.

In the case of the non-mode-matched PPC the total tra

g
n

to
t

FIG. 11. Transmission through the stand-alone PPC~dashed!
and through the mode-matched PPC~continuous!. In both cases the
upper curve is the total power transmission and the lower curve
power transmitted into the zeroth order. Points show computed
points. The oscillations in the transmission might be due to a Fa
Perot resonance between the edges of the PPC. The third ban
an antisymmetricB field and is not excited, so that the transmissi
betweenl51.4 mm andl51.62mm corresponds uniquely to th
second band.
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WITZENS et al. PHYSICAL REVIEW E 69, 046609 ~2004!
mitted power at the second interface is a good estimate o
power incoming onto the second interface, so that the in
tion efficiency can also be evaluated by the ratio between
transmitted power contained inuc0& and the total transmitted
power. Indeed this ratio is calculated to be 8.6% and is
accordance with the insertion efficiency calculated pre
ously. However, this is not a good estimate in the case of
mode-matched PPC because there are significant ou

FIG. 12. Device imaged with a dark field microscope. On t
left, a waveguide is connected to a mode-matched PPC. An a
phous crystal is placed to the right. Diffraction orders are numbe
and represented by arrows. The white boxes show the regions
aged by the IR camera~Fig. 14!.
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plane scattering losses. But in this case the ratio between
transmitted power contained inuc0& and the total transmitted
power can serve to estimate the mode overlap, i.e., the in
tion efficiency with the internal losses of the MLG norma
ized out~81%!. This number is very close to the total inse
tion efficiency obtained with the MLG composed of 40 n
holes, which is not limited by out-of-plane scattering~84%!.

VIII. EXPERIMENTAL DEMONSTRATION

We experimentally image the diffraction pattern of
Bloch mode after it propagates through the PPC and cro
the interface to the unpatterned slab. We compare the cas
a non-mode-matched PPC and of a mode-matched PPC
the latter case a three layer MLG with holes of radiusr
50.15mm is added to the interface. In the absence o
mode matching interface the Bloch mode gives rise to hig
diffraction orders that are the signature of the higher-or
Fourier components in the Bloch mode structure. When
MLG is added to the PPC the higher diffraction orders a
suppressed. Because of reciprocity, this is expected when
mode matching efficiency is high.

Devices were fabricated bye-beam lithography~Leica
EBPG 50001 at 100 kV! on silicon on insulator~SOI!
samples with a 205 nm silicon membrane. Prior to lithog
phy an 80 nm sputtered SiO2 film was deposited. After the
e-beam lithography the pattern was transferred from
polymethyl methacrylate into the silicon dioxide with
CHF3 reactive ion etch and from the silicon dioxide into th

r-
d

m-
een. The
hous
e
ducials to
mount of
camera.
FIG. 13. ~a! Dark field microscope image of the waveguide region before the photonic crystal. On the left three waveguides are s
center one is tapered out and couples into the photonic crystal~Fig. 12!. In the center of the image the white bar corresponds to an amorp
crystal that extracts stray light coupled from free space into the slab~outside of the waveguide!. This makes sure that the light imaged in th
region of the PPC is coupled from the center waveguide. The upper and lower waveguides on the left of the picture are used as fi
optimize coupling from free space: In order to center the position of the spot from the focusing lens, we aimed to have an equal a
light extracted by the amorphous crystals at the terminations of the two outer waveguides. The inset is a picture taken with the IR
The spot from the focusing lens can be seen as well as the three waveguides.~b! is an SEM picture of the mode-matched PPC and~c! is an
SEM view of the amorphous crystal.
9-10
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FIG. 14. ~a! Experimental results for the non-mode-matched PPC. The amorphous crystal is imaged with an IR camera
subsequent wavelength. The intensities of all diffraction orders are shown.~b! Experimental results for the mode-matched PPC. T
diffraction orders 1 and21 are suppressed. In~a! and~b!, the color scaling is the same for the three diffraction orders. The settings o
infrarred camera were the same and the spots were imaged on the same region of the InxGa12xAs diode array.
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silicon with a Cl inductively coupled plasma reactive io
etch. Finally, a 1mm sputtered SiO2 film was deposited on
top as a cladding layer.

In order to compensate for small variations in refract
indeces and film thickness, we fabricated several sam
corresponding to variations inl0, the target wavelength o
the MLG @varying l0 is equivalent to varyingn in Eqs. ~3!
and~4!#. The best suppression of the diffraction orders 1 a
21 at the output of the mode-matched PPC was achieved
l051.565mm. The lattice constant of the PPC is depend
on l0 as indicated in Sec. III and varies slightly througho
the span. For l051.565mm, a50.470mm, and d
51.277mm.

Polarized light is butt coupled into a 10mm wide wave-
guide with a 1003 long working distance lens. The wave
guide is expanded with a parabolic taper@22# to the final
width W570 mm @W(y)25(2l0 /n)y1W0

2, where l0

51.52mm and W0510 mm, Fig. 13~a!#. A PPC with 59
rows of holes@Fig. 13~b!#, with bare or mode-matched inte
faces, is placed at the end of the waveguide. The field t
diffracts into the unpatterned slab. 325mm away from the
PPC an amorphous crystal@Figs. 12 and 13~c!# vertically
extracts light that is subsequently imaged by an IR cam
~Indigo systems, Merlin InGaAs NIR!. The crystal is amor-
phous so that it has an isotropic in plane behavior@23,24#,
i.e., light guided by the slab is vertically extracted@25# inde-
pendently of its angle of incidence@26#.

Figure 14 shows the diffraction patterns as imaged by
IR camera. The diffraction orders21, 0, and 1 have differ-
ent propagation directions and separate into three sep
beams. Those beams then impact on the amorphous cr
and get extracted out of the slab, thus three bright sp
appear on the amorphous crystal. Those spots are image
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the IR camera and are shown in Fig. 14. The light is gen
ated by a tunable laser and this measurement is repeate
free space wavelengths ranging from 1.5mm to 1.58mm.
The white boxes in Fig. 12 correspond to the imaged regi
shown in Fig. 14. It can be seen that the21 and 1 diffraction
orders are suppressed in Fig. 14~b!. The pass band of the
mode-matched device is 40–50 nm and corresponds to
pass band calculated in Sec. VII.

IX. CONCLUSION

We have shown that a diffraction grating composed
multiple rows of holes can be designed to mode match
tween a planar photonic crystal and an unpatterned slab.
achieved 84% insertion efficiency with a multilayered gr
ing composed of 19 layers of holes with a radius of 40 n
compared to 9% without mode matching. It is possible
design more compact structures with bigger holes at the
of significant out-of-plane scattering losses and a co
sponding decrease in insertion efficiency. In particular, 58
insertion was achieved with a multilayered grating compo
of three rows of holes with a radius 0.15mm. Despite their
reduced insertion efficiency, these more compact structu
are of interest because they enable coupling into a pla
photonic crystal of beams with a smaller width.
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