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Timing jitter of femtosecond solitons in single-mode optical fibers: A perturbation model
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On the basis of the higher-order nonlinear Scdimger equation, an extended soliton perturbation model is
proposed. The evolution equations for the soliton parameters and the resultant expressions for timing jitter are
derived. Subsequently, the model is tested to be correct in the subpicosecond-femtosecond regime through
direct numerical simulations of the underlying equation by using the stochastic split-step Fourier method. It is
shown that the results of our numerical simulations are in excellent agreement with analytical predictions for
timing jitter. It is found that the Gordon-Haus jitter for dark solitons is nearly216f that for bright solitons,
and that the Raman jitter always dominates the Gordon-Haus jitter in the femtosecond regime. In particular, the
stabilities of the solitary waves are demonstrated under the Gaussian white noise. It is expected that for bright
and dark solitons, the present equations of motion would find extensive applications in the high-speed com-
munication systems more than those obtained by use of the well-known perturbation theory about the nonlinear
Schralinger equatioJ. Opt. Soc. Am. BL8, 153 (2001)].
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[. INTRODUCTION tion theory about the NLS equation developed by Haus and
Lai [12]. In particular, Drummoncet al. [13] showed that

The soliton concept is a sophisticated mathematical conintrinsic thermal quantum noise from phonon reservoirs,

struct based on the complete integrability of a class of nonwhich depends strongly on both the temperature and pulse

linear partial differential equations which can pass the PainlNtensity, contributes more largely to timing jitter than does
P d P he gain-related Gordon-Haus noif&4| for femtosecond

lt(ra;s sggrsr;[?]mlihczri]c atl)le t?:al;/: gr eVit‘\?/lv Ot?j?ﬁ ei?(;/r?trife CShC:rtEQnS olitons. For simplicity, they ignored the self-frequency shift
which make 'an gpticalyp’)ulse propagation a soliton or solitar and Kerr dispersion. Following the procedures developed by

. ) YOrummondet al.[13] and Hauset al.[12,15 we propose an
wave. One, given by Hasegawa and Tappert, is the balancgengeq soliton perturbation model, based on the HONLS
between the pulse broadening of the group-velocity disperayation. As a result, the evolution equations of soliton pa-
sion (GVD) and the compressing of the Kerr nonlinearity, rameters and the analytical expressions for timing jitter are
which is governed by the well-analyzed nonlinear Sehro regpectively derived for bright and dark solitons. Therein we
dinger (NLS) equation[2]. The other, proposed by McCall have considered TOD and Kerr dispersion. By checking the
and Hahn, is due to the self-induced transparency in a res@malytical predictions for timing jitter against direct numeri-
nant medium and is described by the Maxwell-Bloch equacal simulations, we show that the results obtained by this
tions[3]. In this paper, we are concerned with femtosecondmodel are correct in the subpicosecond-femtosecond regime
soliton propagation in single-mode optical fibers, which be-and are more generic than those obtained beftB;15,
longs to the former case. since those higher-order effects are included.

Over short distances and in weak nonlinear medium, the The paper is organized as follows. The generalized NLS
NLS equation can lead to a soliton behavior applicable to ®quation for femtosecond solitons propagating in single-
picosecond regime, whereas over longer distances or for afode, polarization-preserving optical fibers will be cited in
initial high intense ultrashort pulse a number of higher-orderSec. Il, where the corresponding bright- and dark-soliton so-
effects such as the third-order dispersi¢hOD), self- lutions for the HONLS equation are given. More signifi-
steepening4], and the self-frequency shifsFS [5] mustbe ~ cantly, the stabilities of the solitonlike solutions under
taken into account. Thus, the classical NLS equation fails if3@ussian white noise are also demonstrated numerically. In
the physical description of soliton behavior under the cir->€¢- !ll, we propose an extended soliton perturbation model

cumstances. In recent literature, some authors pointed oﬁﬁ‘sed on the HONLS equation and derive the resultant evo-

that the higher-order nonlinear Sébinger (HONLS) equa- ion equations for the soliton parameters and the corre-

tion derived by Kodama and Hasegay@ can be used to qunding expressions for timing jitte_r for bright and .d".’“k
describe the soliton behavior in a subpicosecond-somons' In order to check our theoretical model, an efficient

femtosecond regimé7—11. Moreover, both bright- and simulating scheme in terms of the stochastic split-step Fou-

dark-soliton solutions were given there under certain para['er met_hod IS _outlmed in Sec_. V. C_omparlng our f’*”?"y“.‘?a'
metric conditions calculations with numerical simulations, various timing jit-

In the current decade, physici§t2—15 have elucidated ters are discussed in Sec. V. Finally, our results are concluded

with sufficient accuracy some phenomenological effects!” Sec. V.

e.g., soliton noise or timing jitter, by means of the perturba- Il. GENERALIZED NLS EQUATION

The generalized nonlinear propagation equation govern-
*Electronic address: cshua@mail.edu.cn ing the evolution of femtosecond optical field in single-
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mode optical fibers was derived by Kodama and Hasegawa:hn,wjv?(2mAcC) is the effective nonlinear susceptibility
[6]. In the context of soliton propagation, it is useful to em- resulting from the electronic Kerr and Raman contributions,
ploy a renormalization in the propagative reference frame of\ 4 is known as the effective mode arawg, is the nonlinear
7=(t—2/v)/Ty and {=2/Lp, whereT, is a typical initial  refractive index, and and h= 2% represent the speed of
soliton duration, and_.p=T3/|3,| denotes the dispersion light and the Planck constant, respectively. The time correla-
length at carrier frequencywy. By including the noise tion function is given by
sourceq13], the generalized NLS equation can be rewritten

as 1 i R 1
F(’T)IZ exp—iwr) a™(w) nth(|w|/To)+§ dw,
i . 1 3)
V= =5 Y2 g e v o[ 9120,
where aR(w) is the Raman gain coefficientl3,23, and
—ag(|Y|?),+iTRY+T, (1) np(w)=[expfioksT)—1]! denotes the thermal Bose-

Einstein distribution, wittkg the Boltzmann'’s constant arid
where a shorthand= (¢, 7) is exploited for brevity; thus is the temperature. It is easy to show that if the gain and loss in
a dimensionless photon field, and the subscripéend - de-  the fiber are broadband relative to the soliton bandwidth and
note the spatial and temporal partial derivatives. The ternbalance exactly, i.e.y=0, and the noise sources are negli-
related toy accounts for the fiber net loss through the rela-gible, Eqg.(1) can be reduced to the familiar HONLS equa-
tion y=(y*—y®)Lp /v, wherey” andy® denote the corre- tion:
sponding absorption and gain coefficients. The parameters

—rAm m H — _ i i 1
,Qm—[d Bldw ],,F,U0 Wlth, m=1,2,3, rgsult from an expan %: an¢77+||¢|2¢+ galllfm— (| 429),
sion of the propagation constap{w) in a Taylor series.
Physically, the group velocity is simply the inverse of the — asy(|9?) (4)

parametel3;. The parametew; is responsible for the TOD
and is defined a&,=B3/To|B,|, while the terms related to wherea,=sgn(- 3,). The five terms on the right-hand side
a, anda; describe the effects of self-steepening and the SFSf Eq. (4) account for the GVD, self-phase modulation
arising from stimulated Raman scattering, respectively. Al{SPM), TOD, self-steepening, and the SFS arising from
though self-steepening and the SFS are negligible in a picastimulated Raman scattering, respectively. When the last
second regime, they are of considerable importance when th@iree terms are omitted, E¢@) reduces to the well-known
pulses are shorter than 100 fs. The positive sign in front oNLS equation. As compared with the GVD and SPM which
the second derivative term applies for an anomalous dispeproduce symmetric broadening in the time and frequency
sion (8,<0), which occurs for longer wavelengths, whereasdomain, respectively, and counterbalance to propagate soli-
the negative sign applies for normal dispersi@3%0). The  tons under certain parametric conditions, these higher-order
model parameters; andy are real constants;, andaz can  effects cause asymmetrical broadening either temporally or
be complex6,16]. Here for simplicity, we have assumed that spectrally and also have the possibilities to yield soliton
the coefficientse, and a3 are also real constants and the propagation[10]. After an appropriate transformation, the
inequality 3a,+2a3>0 is always met. bright-soliton solution of Eq.(4), where ay=1, reads

It should be noted that in Eq1), the Raman noise and [7,8,11]
gain-related Gordon-Haus noise appear, respectively, as the
real multiplicative stochastic variablER and the complex do({,7)=mAsechiAr+q({)]exd —iQr+io()], (5)
additive stochastic variablg, which are responsible for the

timing jitter occurring in the soliton communication systemsWhere

[13,17-2]. According to the generalized Wiener-Khintchine o 112
theorem[22], the spatiotemporal correlations of stochastic :(—1) . (ay<0),
variables can be expressed[48] Bayt2ag
3ay,+2a3+ ay
R Ry er 1 1 ’ ’ Q=——
<F (gaT)F (g T )>:ﬁF(T_T )5(§_§ )l 2a1(a2+ a3) !
d 1 1
a® $= €a1A3— EalAQZwLAQ, (6)
<F*(§,T)F(§’,T’)>=75(7—7’)5(4“—5’), v ¢
de(d) 1 , 1 s 1,
A d—g_i(l_alQ)A +Ealﬂ —EQ .

o
(F,nr*(' 1'))y==3a(r—1)8({-{'),
n When ay=—1, the dark-soliton solution of Ed4) can be
_ written as[9,11]
where a®=29°Lp /v, a®=2y"Lplv, n=v?Ty/xLp is
the typical number of photons in a soliton pulsg, Yo(¢,7)=nBtaniB7—Q(¢{)]exd —iwr+i9()], (7)
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where idn-itia-lb . ] ‘{exact solution
istribution % distribution at £=2000
a; 1/2 \"‘\ e
=| — > 3
n (3a2+2a3) ’ (0[1 O),
>
a1—3a2—2a3 §
m: —l E
2a1(axt az) g
<
do) 1,1
= + = 2,
az 3alB 5 a1Bw“+Bw, (8)
dﬁ(g) 2 1 3 1 2
d—g—(l-l-alm)B +€a1m +§m .

ObVIc_)us_Iy, _e'ther solutior(5) O_r (7) has only one mdepen— FIG. 1. Evolution of the 500-fs bright soliton under the pertur-
dent intrinsic parametek or B since the parametél or w is  pation of Gaussian white noise. In our simulation of EY, two
fixed [7,17]. It is noted that there exists a proper subset Ofgimensionless steps¢=0.04 andA r=0.005 are used in the dis-
conditions, to name a fewy; i@, a3=+6:6:—6 (Hirota),  cretization andy™(0,7) is chosen as initial pulse, where,=

or +6:6:—3 (Sasa-Satsumaunder which Eq(4) is com-  —9.6x1073, a,=3.18<1073, andaz= — (a;+3a,)/2. The inset
pletely integrablg7]. In the cases beyond these conditions,shows a comparison of pulsesat 0 and 2000 as well as an exact
solutions(5) and (7) are not true solitons in a strict math- distribution without noise.

ematical sense, but share some properties with solitons such i . , )

as preserving shape and size during propag4gdh It is of show comparisons of pulses at typical distanfesith the
interest to note that these solutions are not compatible WithtlaI distributions as well as exact solutions without noise.

. . As usual, Eq.(1) can be solved in terms of the moment
the respective counterparts of the standard NLS equ"morrﬁethod[19], or the perturbation theory that treats all high-

\[/\};\]/e?ﬁ ?)irmHzrr]nIiELen%;blse g{aesn%gt]e:gn‘ie’rihgopasbgczzl'tarY)rder effects and noise sources as a small perturbation to the
5o b dod i y d d g” ; dwell-analyzed NLS equatiof26]. Corresponding to our pro-
also be regarded as noniin€ar modes, and allow us 10 O&aqaq system, however, we find that there exists a relatively

scribe the behavior of systems with an infinite number ofgimier alternative in which one can take only the stochastic
degrees of freedom in terms of a few variablese, e.9., Ref.  torms as a small perturbation to the HONLS equation. De-
[25]). For brevity, our localized waves under considerationjjed treatments of the problem will be provided in Sec. Ill.
are loosely called “solitons” even though this is a terminol-
ogy reserved for integrable sets. IIl. SOLITON PERTURBATION MODEL

Because all physical systems are dispersive and dissipa- ) ) ) ) )
tive in reality, an investigation of the stabilities of these soli- Before proceeding, we would like to discuss the adiabatic
tons is of great significandel6]. In order to test the stabili- Perturbation theory(APT) about femtosecond solitons,
ties of solitons, the underlying equatiofi) is directly 20 0 2
simulated by using the stochastic split-step Fourier methoc -
(see Sec. IY. Figures 1 and 2 show the evolutions of these e o
To=500 fs bright and dark solitons under perturbations of 15+
Gaussian white noise, respectively. It is striking that the soli-
tons of motion are stable. Here the dimensionless model paz
rameters area;=+9.6x10 3, a,=3.18x10°% and a3 3
=(Fa;—3a,)/2. These parameters can be determined bys
several basic fiber parameters suctBas 0.5 p€/kmand £ 05
Bs=+0.0024 pd/km, where negative and positive signs
correspond to the bright and dark solitons, respectively. gg.l
Compared with Fig. 1, Fig. 3 displays the evolution of a 2
bright soliton with the same initial duratiohy but with dif-
ferent model parameters, wherea;=—0.056,a,
=3.18x10 3, and az=—(a;+3a,)/2. These values are
subject to another set of fiber parameterg8,=

—2.5 p$/km, andBs=—0.07 ps/km. It is clear that these FIG. 2. Evolution of the 500-fs dark soliton under the perturba-

solitons, apart from undergoing a temporal shift, are rathefion of Gaussian white noise. The discretized steps are the same as
stable against some finite perturbations in a broad parametgfy. 1, buty®(0,7) is chosen as the initial pulse. Here the param-

range. Their profiles or shapes are well preserved aftesters are «;=9.6x1073, 0,=3.18x10"3, and as=(a;
propagating a long distance of a few thousands of dispersion 3a,)/2. The inset shows a comparison of pulsesta0 and
lengths as shown in those insets of Figs. 1, 2, and 3, whicR000 as well as an exact distribution without noise.

Timg , 20 0 Distanc® 8
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FIG. 3. Evolution of the 500-fs bright soliton under the pertur-
bation of Gaussian white noise, where,=—0.056,a,=3.18
x 1073, and az=—(a;+3a,)/2. The other parameters are the
same as in Fig. 1. The inset shows a comparison of pulsé€s at
=0, and 1000 as well as an exact distribution without noise.

which has been used successfully to investigate the timinggz = §(1+“1W)Bz+

jitter in the high-speed soliton communication systdig).
In the following, we wish to propose an extended soliton

perturbation model and derive the evolution equations for the
soliton parameters. Solving these equations, we shall obtain

approximately the analytical formulas of timing jitter for
bright and dark solitons.
Now, we apply the APT to Eq(l) by taking its unper-

turbed solution as a fundamental soliton of the form of solu-

tion (5) [or Eq.(7)], where paramete (or w) is assumed
to be a variable just like the paramet&ror B, and all pa-
rametersA, Q, g, and @ (or B, w, Q, and ¥) vary with
distance slowly. Furthermore, we treat the noise tefm
=iI'Ry+T on the right-hand side of Eq1) as a small
perturbation. The evolution equations for the bright soliton
parameters are therefore governed by

A R fu rd
az ~Rej Ualdr,
a0 _ 11 QA2+1 Q3 192
ag = et AT gl
2 2 2
+§m (1+ a2Q)A“+1Im | U,I'dr,
9
dg 1

1 J—
d_g_ EalAg_ EalAQZ+AQ+ Rej UqrdT,

dQ

d—§=lmf UQFdT,

where “Re” and “Im” stand for real and imaginary parts of

PHYSICAL REVIEW E69, 046602 (2004
1 *
UA:_2 o
m

1 |1
—— |5 tqtanhA7+Qq) |45,

U:
" meal2

U (10

*
— _7-1#0 ,
q m2

1
— —tanAT+a) 3 .
m

Ug

In the same way, the equations of motion for the dark soliton
parameters are found readily to be

dB —
_:Ref UBFdT,

d¢
dy 1 2
€a1m3+§m2+§n2(1+a2m)82
+|mf U,lCdr,
(11)
49 _1 8%+ taBwin Rqud
d_§_§a1 +§a1 w°+Bw+Re oldr,
do _, fu I'd
d_g_ m - T,
where the projection functions take the forms
1 Btanh(Br—
Bz—Mexmmr—iﬂ],
N cos(Br—Q)
1 Br—2Q ) )
o= ————exgdiwr—id],
N cos(Br—Q)
1 QtanhBr—Q)—3/4
Q:ﬁQ CO:FF(BT(—?)Q) exjiwr—id], (12
1 . .
U,=——BsecR(Br—Q)exdiwr—id].

n

It is straightforward to prove that when the noise sources
vanish, Eqs(9) and(11) reduce to Eqs(5) and(7), respec-
tively. For heuristical discussion, we illustrate the evolution
of a bright soliton in Fig. 4 with the same conditions as in
Fig. 1, but with a direct numerical simulation of E@). In
essence, these sets of stochastic differential equations agree
well with Eq. (1) within their errors, especially for picosec-
ond solitons[18]. Therefore, our Eqs(9)—(12) can be ap-
plied to the numerical study of timing jitter. On the other

the whole integral, respectively. The projection functions forhand, two paramete@® andw in these equations fluctuate

bright solitons are given by

with the noise ternT” and become of stochastic functions of
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Ag=1a(L,AA) + T4, 1A +14(L,7)AQ(E)
+1a(4, 1AL +A Y, (16)

where the perturbation functiorf&i(g,r) are derivatives of

Yo(L,7) with respect taX;, whereX;=A, 6, g, andQ. Itis
N\ noted thatAA({), A6(L), Aq(¢), andAQ({) are real func-
0.04 tions of distance,. After a little algebra, we find

0.54

Amplitude |y|

800

J
fA(gi 7-) = ﬁ l//O(gi T) = [1/A_ Ttanr(AT—'_ Q)] 11001

o\s\a“oe G

J
FIG. 4. Evolution of the 500-fs bright soliton under the pertur- fo(L,7)=—=wo(L,7) =i,
bation of Gaussian white noise, where we simulate(Bgand use a0
A¢=0.01 andA7=0.015. The other conditions are the same as in
Fig. 1. d
J fo(£,7)= 55 04,7 = —tanh(Ar+a)go,  (17)

distance. Thus, it is reasonable to takReas the frequency

variable of bright soliton and) related tow as the phase d )
shift of dark soliton[13,21] in the following subsections. fo(l,m)= -5 ¥o({, 1) =—i1¢0.
A. Bright solitons Because Eq(15) is not self-adjoint, these functions in Eq.

(17) are not orthogonal. In order to project out the evolution
8]‘ a particular parameter, we therefore choose an alternative
set of functionsfxi(g,r) as

Following the method developed by Haus and [B2],
we treat the effect of the noise term as a perturbation to th
solution of a bright soliton whose parameters vary slowly
with _
fA(L,7)= o,
P4 m)= oL, 7) +AY(L,7), (13

— 2
where (¢, 7) is given by the Eq(5). For simplicity, we fa(é“,T)Zi(TﬂLKq
shall study the case;+3a,+2a3=0 in this paper. Al-
though the situatiorw;+3a,+2a3#0 is a little compli- f_(g S ——;
cated, one could deal with it in a similar fashion. Further- s 0
more, the bright-soliton solutio(b) reduces to — .

fo(¢,7)=—itaniAT+Qq) o,

,T)=A AT+ i , 14 . ) . . )
Yo(4:7) sechA7+a(¢)Jexio(o)] (14 which are the eigenfunctions of the adjoint equation to Eq.
where (15 and are orthonormal to the set in EG7), i.e.,

tanA7+Q) g,

q(§>=%a1A3§, 0(§>=%A2£- Refﬁf_xi*(é“”)ij“”)d’: S (19

Because the group velocity for any linear perturbation is dif-
ferent from the propagation velocity of the soliton, the per-
turbation acting on soliton will disperse and/or move away
i from the soliton. Therefore, the continuufny, is also or-
[Ay];=5 A W+ i[PdA Y™ +2|po|?Ay] thogonal tofy (£,7) under the circumstancé$2,13,15.
By substituting Eq.(16) into Eq. (15) and using the or-
thogonal relation(19), the four equations of motion for the
+galdd]— al YEA Y + 2|l A ], soli?on paramet(ra(rs <):an be deriv?ad(aee the Appendix

Substituting Eq.(13) into Eq. (1) and neglecting higher
order terms tham ¢, with some manipulations, we have

— gl | 0|21, A = as[ Y Ayt hoA ¥ 1o+ T, [AA]=Ta0),

(15 1

[A60],=AAA+ Z(2a,— a))A’PAQ+T (),

whereay=1 for bright solitons. 6
To solve Eq.(15), the perturbed term s can be approxi- .

mated as a superposition of changes in the four soliton pa- _ L 2

rametersA, 6, g, and(), plus a continuum term ¢, [Aal;=AAQ+ 5, ATAATT (D), (20
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[AQ],=Tg(0), quency and amplitude. By using Eq80), (23), and(24), the
jitter variance can be written as

§ B 0g=(Ag* (0)Aa(L)
in(§)=Ref_wfxi*(é,r)Fdr- (21 =(Ag*(0)Aq(0))

where the noise sources are given by

It should be emphasized that the third formula in E20) +A2f§f§(AQ*(g”)AQ((”’))dg”dg”’
describes the dependence of position fluctuatidhg$l) on 0J0
both frequency fluctuationdQ(¢) and amplitude fluctua- 1 ¢ (e
tions AA({) when the parameter, is non-negligible. This + —afA“f f (AA*(ZMAA(L)Ydg" dL”
effect is of great importance for femtosecond solitons. Pro- 4 0J0
vided that the TOD, self-steepening, and SFS effects are not ‘(e
considered, Eq20) reduces to the case of picosecond soli- + alAzf f (AA*(LMI(L™))dg"dg”
tons[see, e.g., Eqg4.7)—(4.10 in Ref.[15]]. 0.0
If choosing a multimode coherent state as the initial con- ¢ (¢
dition, that is, for coherent inputs, the Wigner vacuum fluc- +f f (T3 (LT q(L"™))dg" dg™”
tuations are Gaussian and are correlated as 070
1 =ol+ ol t+oh. (26)
* ! p— AY]
(Ag*(0AY0) 2?5(7 ™) 22 It should be pointed out that other correlations undisplayed
above are equal to zero. Hev¢, o3, andog correspond
then, upon integrating the first and fourth formulas in Eq.to the mean-square timing jitter resulting from the vacuum
(20), two correlations related to the fluctuations in amplitudeflyctuations, the Gordon-Haus effect, and Raman noise, re-

and frequency can be given by spectively. We find
(AA*(D)AA(L"))=(AA*(0)AA(0)) 2 1 a2A? .
“[e 7 2amn |en & |
+ Jo Jo <1"9A€\(gl!)FA(§!!I)>d§Hd§IH
2 G 1 2A2
A AaC UéH=l — Y oG 373, (27)
==+t—={ (<, (23 12nA 9n  10&
2n n
(AQ*(HAQ(L))=(AQ*(0)AQ(0)) U%:&_A) "
3n

e * (ol " 1" M
+f0 fo (Fa(dMra(gm)d"dd

The resulting formulag27) are not only useful in the fem-
tosecond regime, but are also applicable to the picosecond
regime. In the picosecond regime; is much less than 1.
Thus all terms associated with; in Eqg. (27) can be ne-
glected. But the mean-square Gordon-Haus jiﬁé;H, still
(24 has a cubic growth with distance. Our result coincides with
— the conclusion reported by Haus and co-worKde,15. In
where AX;(0)=Reffx*(0,7)Ay(0,7)d7, and the overlap e femtosecond regime, these mean-square jitters, except
integral Z(X) is defined as the Raman one which seems to be immune to the higher-

order effects, have an extra quadratic or cubic growth

and depend strongly on the magnitude @f. Indeed,

if Q+#0 is considered, the mean-square Raman jitter also
(25) depends on the higher-order effects, Wheoé=2(1

2 4.3
In the derivations of Eqs(23) and (24), we have used the )" HAAEL3N.
stochastic correlations in Eq.2), and the funda-
mental knowledge such as(Rel™*({,7)Rel'({',7'))
=(1/2)RET* (¢, 1T (¢, 7")) [22]. In the normal dispersion regimex(>0), the HONLS
The correlation in position fluctuations corresponds to theequation has a dark-soliton solution described by (Zj.In

timing jitter in arrival times since we have chosen a propa-analogy to bright solitons, we consider the most simple case
gative reference frame. Therefore the jitter feeds off positions =0, i.e., the relatiorv;=3a,+ 2«3 is satisfied. Now, the
fluctuations as well as off noises entering through the fredark-soliton solution is identified as the black soliton

A A
= —+ —[a®+B6AT(A)]L, (<{,
6n 3n

»  tanhrtanhr’ l_(T— 7

(X ZJW ! )d dr’.
(X) —wJ-=2 cosi rcosH 7/ X T

B. Dark solitons
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po({,7)=BtaniB7—Q(lexdid ()], (28

where

1
QO=zmBY%, (=B

HereB denotes the amplitude of the background field. As has
been known, a dark soliton is a kink-type solution connect-

PHYSICAL REVIEW B9, 046602 (2004

1
[AQ]§=§BzA¢+ a;BZ2AB+To(0), (33
[A¢]g:F¢(§),
where the stochastic terms are defined as
e (0)= ReJm fp* (£, mIdr. (34)

ing two stable background waves of the same amplitude but

of different phases. By considering the phase shift 7 for
the black soliton, Eq(28) can be rewritten agl3,21]

¢
+i cos

Brsinf—Q 5

Yol =B .

sinétan
2

xexdiv({)]. (29

Furthermore, the projection functions for the soliton param-

etersP; e {B,9,Q, ¢} can be expressed as
fg=[tanBr— Q)+ BrsecH(Br—Q)Jexpid),
fy=iBtanhBr—Q)exp(id),

fo=—Bseck(Br—Q)expid), (30

I—Bexp(iﬁ).

It is interesting that we can construct a set of adjoint func-

In the same way, the correlations of fluctuations in amplitude
and phase shift are found to be

AB* (£)AB( ’)>—9(772—_6)B(1+2 Gy, (<
< g g _4(3_‘_/”_2)2? aga g g:
(35
1 ... 2I(B) ,
(AP*(DAP(()= = (1+2a7 )+ ——¢ (<.
3nB
(36)

From Eqs(33), (35), and(36), the mean-square timing jitter
for a black soliton can be evaluated. Thus, one has

o5=(AQ*(D)AQ())=o{+oautok, (37

wheres?, o3,,, ando} read

tions which can overcome the nonvanishing boundary con-

dition in the forms

9B
3+ 72

fB:

(B7—Q)seck(Br—Q)exp(i ),

fy=i(B7—Q)secR(Br—Q)expid),

9

3+ a2

3 .
-7t seck(Br—Q)exp(i ),

(31

(BT—Q)

fy=—isec(Br—Q)exp(i®).

In consequence, it follows from Eq&0) and (31) that

Refjwf_pi*(g,r)fpj(g,r)dTZ 8- (32)

By using Eqs(30)—(32) and combining Eq(15), with the
same procedures as for bright solitons, the evolution equ
tions for the soliton parameters.g=—1) can be given by

[AB],=Ts(2),

[A9],=2BAB+ %(a2+a3)BsA¢+Fﬂ(§),

3 1 9(w?—6)a’iB?
O’I :—_+ __+—_ 3 2,
16nB  [12n  4(3+7%)?n
3a° 1 13(7?—6)a’B?
2 Gp3¢3
" gnB” 187 6(3+72)%n ¢
(B
aﬁz(—_)B“f.
6n

As in the case of bright solitons, all mean-square jitters in
Eq. (38) have a quadratic or cubic growth even though the
parameter; vanishes. In contrast, the size of these jitters is
smaller than that in the bright-soliton case for the same
propagation distanc€20,21. Detailed discussions will be
provided in Sec. V.

It should be pointed out that Eq&0) and (33) are our
main results using perturbation theory, based on the HONLS
equation, and are somewhat similar to those in Hé&f3.and
[15]. By contrast, these results are derived exactly. The ex-
pressions in Eqs27) and (38) can be used to evaluate the
timing jitter analytically. It has been expected that our results
would find more extensive applications in the field of high-
speed optical communications. To test our theoretical predic-

ati'ons, we wish to simulate the timing jitter directly, based on

the underlying equatiofil).

IV. NUMERICAL SIMULATION SCHEME

In this section, we would like to develop and implement
an unconditionally stable scheme for simulating the general-
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ized NLS equation. The scheme can successfully incorporaté has been noted that our symmetrized form of &) has
both multiplicative and additive noises into the symmetrizedtwo advantages at least. One is that the leading error is of
split-step Fourier metho@27,28. It has been known that third order in the step sizA{. The other is that the imple-
there are two forms of stochastic calculus, i.e., an Ito calcumentation is unconditionally stable since a semi-implicit
lus and a Stratanovicf29,30 calculus. In our simulations, method is used itN,, and i, [27,29. Furthermore, the in-
the Stratanovich prescription to integrate the stochastic noisggrals for the multiplicative and additive noises in E4p)
terms is used since its variable changes simply follow theyre discretized in a one-dimensional latticeNof 2P (p is a
rules of usual calculus. In the following, we outline the basicpositive integer cells, where the lattice spacing &7
steps of our algorithm. =T/N with T being the lattice length. The resulting versions
The generalized NLS equation including both the multi-iake the forms
plicative and additive noise terms can be written in its op-
erator forms

1 (7+A7 [imTAL,
o ) ) AWM’jm_A_TLj ng Sw(¢,md7d{,
_ 1 ij+AT {mt AL drd
AVVA,jm_E . Lm Sa(¢,m)drd{.

|
| &

. i 1
Qo5 tzo -7 . .
2972 6 978 By means of Eq(2), the correlations of these noise terms
can be expressed as

2

~ J J
R=ilgf2= 22 = (g —ass (9D, (39

or 280/ 0, /Ag
v (Wi Wiy oy = L2
L nAT
Sw=ir%(¢,7), (44)
. a®5:.8. AL
Sa=T(£.7), (W W jrmr) = —— =

nAr

whereD, N, §,,, andS, correspond to the lineadisper-
sive), nonlinear, multiplicative stochastic, and additive sto-
chastic operators, respectively. It has an exact solution f
infinitesimal A given by

It has been assumed that the noises are Gaussian white with
respect to time and space, meanwhile the time correlation
%unction is taken asF(7—171')=2&6(7—71'), where ¢

To carry out our simulations, solutigd0) is further approxi-

YL+ AL T)=exf ALD+N)Jg(L,7)

CHAC .
+L [Sui({,7)+SaldZ. (40)

mated in a symmetrical form

¢(§+A§,T):GXF{%A§6

where

exp[AgNm]expEAgD}zp(g,T)

+ AWy i+ AW, (412)

1 T+AT ((+AL
AWM:_f J’ SM(ng)dega
T)r Ie
1 THAT [{+HAL
AWA_E_J; J’g SA(é’,T)deé’,

~ 1 . -

— 1
Im=3 WD+ UEHAL D],

=4.6x10 2 at a temperature of 300 KL3]. Techniques for
the efficient generation of Gaussian white noise have been
heavily investigated since the 196(29,30. In this paper,
we obtain noises directly with various intensities from the
computer-based Gaussian random generator, e.g., the
NORMRND function in MATLAB software. In fact, the spa-
tiotemporal colored noise can also be generated efficiently in
this way, according to a robust algorithm developed by
Garca-Ojalvoet al. [31].

On the other hand, the execution of the exponential op-

erator expA/D/2] is carried out in Fourier space by using
the prescription

exp{%AZf)}B(i,TF{F1eXl{%A§5(iw) f] B(Z,7),

(49

whereF denotes the Fourier-transform operation, é(diw)

is obtained by replacingd{d7) by iw. Considering its dis-
crete version, we employ the fast Fourier transfdifffrT)
algorithm [32] to implement Eq.(45) efficiently, where a
high-frequency cutoff is used in an equivalentattice. Be-
cause of the nonvanishing boundary conditionrat+T/2,
the discrete values, for dark solitons withk running from

1 to N in the FFT algorithm are different from those for
bright cousins. More specifically, should be odd multiples
of /T for dark solitons and even multiples for bright soli-
tons, but with the same spacinfjw=27#/T along thew
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lattice. In the mean time, great care is taken to treat the FFT V. DISCUSSIONS
approximation to the Fourier form of E§45) for different

solitons[29]. The other executions of the stochastic and non-. It IS W.e”'kf‘OW”. that apart from opchI Iogsgs or dissipa-
i PN A , . tion, timing jitter is the key factor which limits the total
linear operators, i.eSy, Sa, andN, are carried out inm  yansmission distance of the soliton link. From E(6) and

space, and an iterated root-findirjg mec@nism is adopted @7)’ we can see that there are three physical mechanisms
evaluate the semi-implicit steps My, and ¢, [27,29. which induce deviations in the soliton position from its origi-
As can be seen, it is rather straightforward, though a littlenal location at the bit center. One is the vacuum fluctuations,
time-consuming, to simulate the stabilities for bright andresulting from the Heisenberg uncertainty principle and be-
dark solitons. Therein we have chosen 0.04 and 0.005 aag important for small propagation distances. The second is
discretization time and space meshes, respectively, to redugige Gordon-Haus noise which comes from the gain and loss
the discretization error. By considering the initial fluctuationsin the fiber and produces the well known Gordon-Haus jitter
in soliton parameters derived from E@2), the initial wave  [14]. In the long-distance soliton communications it is essen-
functions for bright and dark solitons can be written as tial for relatively long =10 ps) pulses. The last is the Ra-
man noise which originates from the intrinsic thermal quan-
$P(0,7) = (1+ 6A)sechi(1+ SA) 7+ sqlexp —i 8Q7), tum quctuatio_ns_.of phor)on reservo@rs and generates the
cubic growth in jitter variance, just like the Gordon-Haus
(46) noise. The magnitude of the Raman jitter can be obtained by
evaluating the overlap integrdl X) analytically or numeri-
cally. For simplicity, we use a single-Lorentzian model in our

$9%(0,7)=(1+ 6B)tant (1+ 6B) 7— 6QJlexp —i dw 1), analytical work and find(X) = (4/15)Xe, whereX=A or B
[13].
(47) Owing to the influences of these higher-order effects, the

expressions of timing jitters are all a little different from
— — those obtained by using the perturbation theory of the NLS
where _5A:(1/\/£) op1,  6q=(ml @) 8pp, 60 equation13,15. For comparison, we summarize these noise
= (1\6n) 8ps, SB=[9(w2—6)/4(3+72)?n]¥25p,, SQ  sources which have different characteristic scaling properties

—\3/10dps, and Sw=(1/N12n)6ps. Here op; N the following.

(i=1,...,6) areGaussian-independent random numbers of
zero mean and variance equal to one. The simulating results A. Vacuum fluctuations
Of StabI|ItIeS Under these Il’lltla| Conditions haVe been ShOWﬂ For br|ght So|itons the mean_square t|m|ng J|tter resu'ting
in Figs. 1, 2 and 3see Sec. )l from the vacuum fluctuations is given by
For numerical evaluation of timing jitter, besides the same
two steps and initial conditions as exploited above, we have . 1 ai
used the ensemble which is of 500 trajectories to reduce U.Z(bri)Z——Jr —+ =] (48
sampling error, within a small distance of propagation 240 |6n  8n

(=10 km). These values result from a compromise betwee
time calculation and accuracy. Besides, care should be tak
to simulate the timing jitter for either type of solitons since

IE:orrespondingly, the mean-square fluctuations for dark soli-
4Bns read

each has a different expression for jitter variance. In the con- 3 1 9(72—6)a?
crete, the variance of timing jitter is generally defined as o'lz(dar)Z—_-f— —+ —22_1 2. (49
of=(t5)—(t,)%, where the symbo{) denotes the so-called 16n [12n  4(3+7%)“n

ensemble average artg is the pulse position. For bright
solitons, t,= (1/E) [” .7|¢|*dr, whereE=["_|¢]?dT de-

n h I ner Lltisn hat for dark soliton : .
otes the pulse energfl9). It is noted that for dark solitons epoth bright and dark solitons. As seen, the vacuum fluctua-

this center-of-mass method can only give information on th ] inate f three fund tal Hributi one i
global energy distribution but not on the dark-pulse position lons originate from three fundamental contributions. ne 1

itself [20]. Fortunately, in our simulations we can modify the ]Ehe 'r.“t.'t"’.‘l |pf|OS|ttI0r'][' fluct.uat|o|.rt13, ¥vh|le the Othﬁr twglﬁcome
formula t, for bright solitons so that it is valid for dark rom initial fluctuations in soliton frequendpr phase differ-

. _ o B 2 ence ¢) and amplitude, respectively. As one might expect,
jv‘;]'gfgé':f"l’e sehc?%’v(erﬂ)Q)(ﬁ(/ﬁ)g;x;sgcrljsﬂiplci?rl Z('ac?(:’- amplitude fluctuations also lead to a degradation of the

. o signal-to-noise of the soliton bit streafd7-19. After a
. Q). (Q= a1§/3)' is adopted to eliminate the effects of the simple calculation, we can see that the vacuum jitter variance
h!gh]y undulating cw bgpkgrounq and overcome Fhe NONVat, gark solitons is nearly one half of that for bright solitons
nishing b_oundqry conditiofsee Fig. 2 For longer distances  ,; tha same propagation distance.
(>100 dispersion lengthsalternatively we can employ the
strategies taken by Hamai@¢ al. [20], where the pulse po-
sition is roughly found by means of a certain threshold con-
dition. The numerical illustrations of timing jitter in terms of ~ When the reservoir gain and loss are considered, there
these expressions will be shown in Sec. V. appears the well-known Gordon-Haus jitter in the fiber since

It is clear that the mean-square fluctuations depend not only
on the quadratic growth in distandg but also onaf for

B. Gordon-Haus noise
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the optical amplifiers add both the amplitude and phase 4.0
noises to the amplified soliton. Currently, this jitter is the
major limiting factor that affects the performance of soliton
communications and the total transmission distance. Frorn

Egs.(27) and (38), we can immediately obtain the Gordon- 4
Haus jitter variance for bright and dark solitons: ";’
2 G 2 o]
) T o 1 13af 6.3 £
T raiTor=y g
G 2 2 =
3a 1 13(7°—6)a]
2 _ Gs3
GHEN™ gn> " 180 6(3+72)%n ¢

In the presence of higher-order effects, the mean-squart o , . .
Gordon-Haus jitters for both bright and dark solitons have an 0 2 4 6 8 10
extra cubic growth, which depends af and becomes im- Distance z (km)

portant over a long distance. Like the case of vacuum fluc-
tuations, the ratio between E¢1) and Eq.(50) ranges from
0.42 to 0.5.

FIG. 5. Timing jitter for the 500-fs bright soliton as a function
of the transmission distance. The total jittequarel vacuum fluc-
tuations(circley, Raman jitter(starg and Gordon-Haus jitteftri-
angle$ come from our numerical simulations based on Eh,

C. Raman noise whereA {=0.04 andA 7=0.005. The statistical ensemble is of 500
A lesser-known fluctuation effect that arises from the Ra-lrajectories and other parameters are specified in the text. For com-

man phase-noise terfiR induces the Raman jtter in optical P2rison. our analytical resultsolid lineg are plotted.
communications. The Raman jitter is different from the

Gordon-Haus jitter and independent of all higher-order ef-and positive for dark solitonsAgz=40 um?, andn,=2.6
fects in our current system. SubstitutifgX)=(4/15)Xe X 10 2° m?/W for a dispersion-shifted fiber. By utilizing
into the third formulas in Eqg27) and(38) and lettingA and  these parameters, all jitters including the vacuum fluctua-

B=1 yields tions, Gordon-Haus jitter and Raman jitter fdp=500 fs
) 8 bright and dark solitons are depicted both numerically and
o R(bri):4—5H€§ , (52)  analytically, as shown in Figs. 5 and 6, respectively. Also, the
total jitter corresponding to the realistic case in which all
) 2 three noise sources are active is demonstrated there. In Figs.
OR(dan= T—=¢¢". (53
45n

Compared to Gordon-Haus case, the mean-square Raman ji
ter for dark solitons is only 1/4 of that for bright solitons.
Moreover, it is easy to follow from Eqg50) and (52) [or 2.0
Egs. (51) and (53)] that the Raman jitter dominates the -
Gordon-Haus jitter in the femtosecond regime. However,=
when the soliton duration is of picosecond order, the case is®
the opposite. The physical reason for these effects is simpleé
Solitons have an intensity that increases with the dispersiorg,
if everything else is unchanged. Meanwhile, the multiplica- E
tive phase noise found in Raman propagation is proportiona-
to the intensity and hence becomes relatively large as com
pared to the Gordon-Haus jitter that depends on the additive
stochastic term. Therefore, for large enough dispersion, cor:
responding to the high intensity, the Raman jitter should be- X . : :
come readily observable at short enough distances while th 0 2 4 6 8 10
Gordon-Haus jitter is relatively small. Distance z (km)

For T,=500 fs bright and dark solitons, typically, the
TOD parameter isy;=*9.6x10 3, and the other param-

. B o Sz
etglrf a:ri g;VleS_g)yzl_z—&é-%x ](-jOB/k, a3t_(+a1 3?[2)/2’ d (circles, Raman jitter(starg, and Gordon-Haus jitteftriangles

@ /o= 1.8, ©. Km at commonly use correspond to our numerical simulations, where the discretized
wavelength \=1.55um), and n=3x10°, with Lp  steps and ensemble are the same as in Fig. 5. The other parameters
=500 m. These parameters are evaluated basedBgh are specified in the text. For comparison, our analytical results
=0.5 pg/km, B;=7F0.0024 pd/km (negative for bright (solid lines are plotted here.

1.5

1.0f

0.5

FIG. 6. Timing jitter for the 500-fs dark soliton as a function of
transmission distance. The total jiti@quarel vacuum fluctuations
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5 and 6, it is clear to see that the Gordon-Haus jitter in darkK19), with some tedious manipulations, the resulting terms

solitons is nearly 12 of the corresponding one in bright related to Eq(15) can be written as

solitons[20,21]. Meantime, the Raman jitter for femtosecond

solitons exceeds the corresponding Gordon-Haus one. More- = ® —

over, all numerical simuIatti)Jns ar% in excellent agreement Rej,wa*[A'p]idT:[AA]fr ReJ:wa*[fA]fAA dr

with analytical solutions derived from the extended perturba-

tion model. For extremely ultrafast pulses 100 fs), these

higher-order effects become of considerable importance;

therefore the complex property of coefficiernts and a5 in

Eq. (1) should be taken into accoulit6]. To do this with this o

model is still an open problem and is under investigation. +ReJ7fo [Tl Aqdr
From Egs.(20) and(393), it is of interest to note that the

timing jitter in femtosecond soliton communications can be

reduced considerably when the frequency fluctuatitrs

phase fluctuationsare confined to a vanishingly small range

by using some effective techniques for soliton control such

as filtering and optical phase conjugatipi8]. As a result,

the timing jitter originates mostly from amplitude fluctua- .

tions imposed on solitons, because now the dominant contri- 4 2

butions come mainly from the terms proportionakif This T g@ATAA-ATGAL, (A1)

theoretical prediction is well consistent with the conclusion

drawn by Agrawalet al. [18]. i

> 1 1
Ref EfA*[Alp]TTdT:§A3A0+§A2qAQ, (A2)

+ReJ fa*[fol,A0dT

+ReJ fa*[fo],AQ d7

1
=[AA]+ §alA3qAA—A3A0

VI. CONCLUSIONS

In this paper, we have developed an extended soliton per- P TR 2 A 2
turbation model based on the HONLS equation. The evolu- Rej_mlfA (YA y™ + 2|yl Ay ]dr
tion equations for the soliton parameters and the resultant
expressions for timing jitter have been derived for the first _ fA3A0— L—1A2 AQ (A3)
time, to our knowledge. Subsequently, the model has been 3 3 482,
tested to be correct in subpicosecond-femtosecond regime
through direct numerical simulations of the underlying equa- %
tion by using the stochastic split-step Fourier method. It is Ref
shown that the results of our numerical simulations are in -
excellent agreement with analytical predictions for timing
jitter. We found that the Gordon-Haus jitter for dark solitons © o )
is nearly 14/2 of that for bright solitons and the Raman jitter Reﬁm%fA (oA y* +2|iho|*A ] d7
always dominates the Gordon-Haus jitter in femtosecond re-
gime. In particular, the stabilities of the solitary waves have 4 3 4 4
been demonstrated under the Gaussian white noise. In the = g @A qAA— 5 @A Ag, (AS)
picosecond regime, our theoretical predictions coincide with
those obtained in Ref$13] and[15]. It is expected that for w
bright and dark solitons, the present equations of motion Ref asfa*[| |21, Apdr
would find extensive applications in the high-speed commu- >
nication systems more than those obtained by use of the

LAY A=~ ayATGAA S = anAA
6 A rrr UT 45a1 q 4561’1 d.
(A4)

©

- . 8 8
perturbation theory about the NLS equation. =— 1—5a3A3qAA+ 1_5a3A4Aq’ (AB)
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APPENDIX 15 15

In this appendix, we would like to outline the proof of Eq. where all quantitied A, A8, Aq andAQ) are real functions
(20). In order to prove the first formula, we integrate both of distancel. By substituting Eqs(A1)—(A7) into the inte-
sides of Eq(15) with the operation/” _.drf,*(7,{), utiliz-  gral equation and using the relation=— (3a,+2a3), the
ing the parities of the integral kernels. By taking the real parfiirst formula,[ AA({)],=T" s, can be obtained readily. Simi-
of the integral equation and using the orthogonal relation Eqlarly, the other three formulas in E¢R0) can be proved.
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