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Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators
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We present a stability theory for kink propagation in chains of coupled oscillators and a different algorithm
for the numerical study of kink dynamics. The numerical solutions are computed using an equivalent integral
equation instead of a system of differential equations. This avoids uncertainty about the impact of artificial
boundary conditions and discretization in time. Stability results also follow from the integral version. Stable
kinks have a monotone leading edge and move with a velocity larger than a critical value which depends on the
damping strength.
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I. INTRODUCTION ity properties of these solutions. This is not easy and not
many results are known.

The dynamics of waves in chains of coupled oscillators is  To be precise, let us consider oscillator chain:
the key to understanding the motion of defects in many
physical and biological problems: motion of dislocations mui+ auy=K(Upp1—2Up+Up-1) = V' (Uy) +W. (D)
[1,2] or crackd 3] in crystalline materials, atoms adsorbed on
a periodic substratigt], motion of electric field domains and
domain walls in semiconductor superlatticS], pulse
propagation through myelinated nernje or cardiac cells
[7] and so on. A peculiar feature of these spatially discret
systems is that wave fronts and pulses get pinned for entire U+ YUl =D (Ups1—2Un+Un 1) —g(u)+F, (2
intervals of a control parameter such as an external force.
Typically, wave fronts do not move unless the external force 1
surpasses a control value. Such is the case with the static and S, s<§
dynamic Peierls stresses in dislocation dynarfiz;8] or the g(s)= 3)
dynamic and static friction coefficienf8] in continuum me-
chanics. Pinning and motion of wave fronts also explain the
relocation of static electric field domains and the self-
oscillations of the current in semiconductor superlattié&ds Here y and D are the ratios between friction and inertial

Wave front motion in systems of nonlinear oscillators forces, and between the strengths of the harmonic and on-site
modeling these phenomena are easier to analyze in the ovdiotentials, respectivelyr=Wa/v,. Atkinson and Cabrera
damped case, and less so if inertia is important. In the pred11] conjectured that only two branches of kinks are stable
ence of inertia, the wrong choice of boundary conditions ofor Eds.(2)—(3).
the numerical method may suppress important solutions of 1) A ranch of static kinks for values of the control pa-
the original system_ or yield spurious o_scnlat!ons. Thus tWOrameter|F| below a static threshol& (D).
problgms that are n_nportant in all spatially d!screte systems (2) A branch of traveling kinks fofF| above a dynamic
acquire even more importance: how do we find wave frontsthresholchd(y,D)sFCS(D), with speedsc larger than a

and what are their stability properties? minimum speed.4(y,D). This family has a distinctive fea-
We have solved the first problem in a recent WitR] by {re compared to eventual slower waJds]. The leading

choosing a damped system of oscillators with a piecewisggge of the kink is monotone whereas the trailing edge may
linear source term, see also R¢f3,11,12. Our results show  geyelop oscillations.

explicitly the existence of kinks with oscillatory profiles for

systems with little or no damping. In the latter case, these The valuesF.s andF.4 correspond to the static and dy-

wave fronts have at least one tail with nondecaying oscillanamic Peierls stresses of the literature on dislocafighdn

tions that extend to infinity. Depending on the control param-the overdamped limity—», F..=F.q and stable wave

eter, branches of oscillatory wave fronts may exist, coexistfronts can be found with arbitrarily small spedds].

ing for entire intervals of the external force and even In a previous papdrl0], we checked numerically the va-

coexisting with pinned wave front solutions. These facts lidity of Atkinson and Cabrera’s conjecture. This is a delicate

long-lived oscillatory profiles and coexistence of wave frontaffair and further analytical work is clearly desirable. In fact,

branches, highlight the importance of ascertaining the stabilmost numerical studies of kink propagation truncate the in-
finite chain to a finite chain, fix some boundary conditions,
and then use a Runge-Kutta solyer variants$ to investigate

*Email address: anacarpio@mat.ucm.es the dynamics of kinklike initial configurations. For instance,

We nondimensionalize the model by choosing the time scale
JmaZ/v,,, wherea is the interatomic distancey is the mass,
andv, the strength of the on-site potential. For a piecewise
éoarabolic potential, the nondimensional equation is
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1.5 , ‘ ‘ thanks to the positivity of the Green functions. As the damp-
ing decreases, we can ignore the oscillatory tails of the fronts
and compare the monotone leading edges of the solutions,
which drive their motion. The process of comparing solu-
tions is technically more complex than in the overdamped
case because the Green functions change sign, and the fronts
have oscillatory wakes. Summarizing, there are two key in-
gredients for stability. First, the leading edges of the fronts
have to be monotone. Second, the Green functions of the
linear problem must be positive for an initial time interval, of
duration comparable to the time the front needs to advance
one position. This restricts the possible values of the propa-
gation speed for small damping: only fast kinks are shown to

Q . ‘ : be stable. Our methods are quite general and can be extended

0 40 5{°~ 60 40 to Frenkel-Kontorova models with smooth sour¢és] at
the cost of technical complications.

FIG. 1. (Color onling Trajectoryu,(t) computed by solving a The paper is organized as follows. In Sec. Il we introduce
truncated system of differential equatioftashed and by integral a numerical algorithm and discuss the stability of static
expressiongsolid) for y=0.02,D=4, F=0.1,n=-70. kinks. The stability theory for traveling kinks is presented in

Sec. lll. In Sec. IV we discuss the role of oscillating Green

Peyrard and Kruskal14] applied this procedure to study functions in 'ghe appearance of sta_tic and dynar_nic thresholds
kinks in the conservative Frenkel-Kontorova model, includ-dué to coexistence of stable static and traveling waves. In
ing friction near the ends of the truncated chain in an attempp€¢: V We briefly comment on extensions to oscillator chains
to avoid reflections. On the other hand, our analytical work/ith smooth cubic sources. Section VI contains our conclu-
[10] shows that traveling kinks oscillate with almost uniform Sions. Basic details on the pertinent Green functions are re-
amplitude even for small damping. Then, artificial boundaryc@/léd in Appendixes A and B. Proofs of our main stability
conditions and time discretization may greatly distort their®Sults can be found in Appendixes C and D.

shape and dynamics. In fact, using Runge-Kutta methods to

solve Eq.(2) with constant boundary conditions generates Il. STATIC KINKS

reflections at the boundary, as shown in Fig. 1, after a wait- . .

ing time depending on the size of the lattice. Such oscilla- The stationary wave fronts, for Eq. (2) Increase from
tions end up distorting the right tail and may completely alterS—=—F 10 S.=1+F and solve the second-order difference
the shape of the kink giving rise to a complex oscillatoryequatlon

pattern.

A good way to avoid the spurious effects of inappropriate
boundary conditions is to recast E®) as an integral equa- | ) ) o ) )
tion. Integral reformulations provide an analytical expressiod? Which H(x) is the Heaviside unit step function. These
for the solutions of Eq(2) which we use to develop numeri- fronts ar? translation invariant. We fix their position by set-
cal algorithms. Spurious pinning and spurious oscillationdiNg So<z<s:. Then,s,=F+ar" for n<0 ands,=1+F
are suppressed. The introduction of these numerical methogsPr " for n=1, wherer = (2D +1+y4D +1)/2D. Insert-
based on integral reformulations of E®) is one of our ing these formulas in Eq4) for n=0 andn=1, we finda
main results. andb. Our construction of the stationary frorgg is consis-

The main analytical results of this paper concern the nontent with the restrictiorsy<z <s; when|F|<F (D). Fig-
linear stability of stationary and traveling wave fronts in ure 2 shows a static wave front f&® =4 andF =0.05. As
chains of oscillators. Besides leading to good numericaP grows, the number of points in the transition layer between
methods, we have also used the integral equation formulatiotfie constants increases.
to investigate the nonlinear stability of wave front patterns.

We provide a criterion to decide whether certain kinklike A. Stability

initial configurations evolve into stable wave front patterns. . . .

In discrete overdamped models the nonlinear stability of A Sta“o_”ar)’ wave frons, is stable for the dynamice)
traveling wave fronts follows from comparison principles. When chains initially close tc, remain nears, for all t
This strategy was applied to the study of domain walls in~ 9+ @S shgwn in Fig. 2. The |n|t|(z)al states chosen in this
discrete drift-diffusion models for semiconductor superlat-figure areup=F+ &, whenn=0, up=1+F+§, whenn
tices in Ref[15]. =1 andul=65%. Both 6+ and &2 are small random pertur-

Common belief is that comparison principles do not holdbations.
in models with inertia. This belief is wrong. How can we  To find the stable profiles, we proceed as follows. it
assess the stability of traveling wave fronts in such models@and u,l1 be the initial position and velocity of the chain. In
For large damping, we can directly compare solutions of Eqterms of Green functions calculated in Appendixuy(t) is
(2) using its equivalent formulation as an integral equationgiven by Eq.(A12) with f,(t)=F 4+ H(u,(t)— 3):

D(Sn+1_23n+snfl)_5n+H(Sn_%)'H::O (4)

046601-2



NONLINEAR STABILITY OF OSCILLATORY WAVE . ..

1 1as e Tt -
@ 7 o
=205 f
3: g‘/’. &
- %A
--w‘.mv:@:;liﬁmr;‘gi
5 10 15 20

n
7

/\
Sl - SR U BN S w:_mg,ﬁ*ga&«ﬂeﬂ'—&
£ 4 - kY S
1 1’
-0.1 ",‘I
L 1 * L
5 10 15 20
n

FIG. 2. (Color onling Convergence to a static kink, when
D=4, y=10, andF=0.05: (a) asterisksu,(t), squaress,, (b)
asterisksu, (t), squaress,=0.

un(t)=2k ng(t)u,i+2k Gl (tyu?
t 1
+J > Gﬂk(t—z)H<uk(z)——)dz
0K 2
t
+Fj0§k: Gl (t—2z)dz (5)
If initially u?<2 for k<0, u>% for k=1,

Up(t) =, [Gﬂk(t)uﬁ+Gﬁk(t)uE]+J’t > GO(t—2)dz
k 0 k>0

t
+FL; Gl (t—2)dz (6)

as long aqu,(t)<3 whenk=0, u,(t)>3% whenk=1. For
|[F|<F (D), the static wave frons, with sy<3<s, is a
solution of Eq.(5) that satisfies

t
s-3 st [ 3 aht-adz

k>0
+Ff;2k Go\(t—2)dz (7)

for all t>0. Subtracting Eq(7) from Eq. (6), we obtain:
Un(1) == 25 [GR(DUCH G D(Ug=s0]. (8

This expression holds far>0 providedu,(t)—3 does not
change sign for any andt>0. For which profilesu,(t) is
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FIG. 3. (Color onling Trajectoriesu,(t), n=8,4,0-4, ...
whenD=4, y=0.4, F=0.15.

with R=min(ls,—3|,5,—3) and C,,C; to be defined below.

For y>0, we show in Appendix B thatG? |<Cye ",

|Gﬁk|scle* 7 with y>0. This boundedness property of the

Green functions and Eq9) yield
|un(t)_sn|$(CO+C1)eimM- (10)

Then, |u,(t) —s,|<R andu,(t)— 3 cannot change sign for

anyt>0. Moreover,u,(t)—s, ast—0.

In summary, the static kinks are exponentially and asymp-
totically stable in the damped case. Their basin of attraction
includes all initial configurations® andu selected accord-
ing to Eq.(9). In the conservative case, the static kinks are
merely stable, but not asymptotically stable, because the pre-
vious argument withy=0, =0, Cq=C;=1 only yields
|un(t) —s,|<2M for all times.

In the continuum limitD — o, the number of points in the
transition layer between constants increases and the distance
between points decreases. Thenands, tend to3 and the
set of stateg9) attracted bys, shrinks asD grows. It be-
comes more likely that initial kinks in the chain propagate
for a while and finally become pinned at some shifted static
kink Un=Sn+1: U_|<%<U_|+1.

B. Numerical algorithm

Formula(5) can be used to compute numerically the dy-
namics of the chain. However, the computational cost is
high, due to the integral terms and the Green functions. In
this section, we exploit the static front solutiogsto reduce
the cost and derive formulas far,(t) which clarify the dy-
namics of the chain.

We will focus on initial kinklike initial states that generate
ordered dynamicss,(t)— 3 changes sign in an ordered way
as the kink advances. Once the kink has passed, the configu-

this true? Let us select the initial state of the chain in the setiation of the chain is close to a shifted static kink. That is

Co+ cl)
©)

> ul-s, <M, X Jull<mM, M<Rmin(1

why we use static kinks to obtain simplified expressions for
u,(t). Forinstance, let us choose a piecewise constant initial
profile ul=F for n<0 andul=1+F for n=1, with u}
=0. ForF>0, Fig. 3 shows thati_,(t)— 3 change sign at
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time t,, k=0,1, ..., with to<t;<---<t,<---. Eventu-

ally, the kink may get pinned at some static configuration and

this process stops at sorkeWe then use a slightly modified
version of the integral expressiof?) for the static wave
fronts to successively remove the integral terms in €.
and obtain simple formulas far,(t) similar to Eq.(8). In

this way, we find a relatively cheap algorithm for the com-

putation ofu,(t).

Let us describe the algorithm f6r=0 and an initial step-
like stateu® with uJ<i<u?, as in Fig. 3. We must distin-
guish two cases: @F<F (D) andF>F_(D).

1. CaseO<F=<F (D)

In this case, the stationary wave fronts can be used t

generate a faster algorithm for obtainiog(t). We remove
the integrals in Eq(5) by using the static wave front solution
of Eq. (2), s,, such thats,<3<s;.

Initial stage.Formula(8) allows to computeu,(t) up to
the timet, at which ug(t)—3 changes sign. For>t, we
computeu,(t) using as initial datai,(ty) andu/(ty) att,.
The latter is obtained differentiating E(B):

), dGy(to)
)= [ SOy, SOl

<u2—sk)}. (11)
Forto<t<t,, Eq. (5) becomes

t)—E [G (=) Ui (to) + G (t—to)uk(to)]

2 GO (t—2)dz+F

>-1

f S 63(t-2)

to k

12

Now, u_4(tg)<3<Uug(ty) and we must use the shifted sta-
tionary solutionv,, =S, 1, Which satisfies _;<3<wv,. Ob-
serving thats,,; solves Eq.(2) with initial datas,.,0 at
time ty we obtain the formula

t
Sn+1=2k G#k(t_to)skq.l'f‘f:ft zk Gﬂk(t—z)dz
0

2 Gl (t—2)dz (13)
tg k>—
Subtracting Eq(13) from Eq. (12) we find
Un(1)=Sn 1+ 2 GR(t=to)Ui(to)
+2 Gri(t—to)[Uk(to) — Sk 1], (14

up to the timet; at whichu_,(t)—3 changes sign.
Generic step.Once we have computed the tinie at

which u;(t)— 3

datau,(t)) andu;(t):

changes sign, we calculate the new initial

PHYSICAL REVIEW E 69, 046601 (2004

Un(t) =Sn 1+ 2 Gt =t ) uj(t)

+; Gt =t D[ U(t) = Sy, (15
dG?
Ur’1(t|)=; Tk(h—tl—l)uﬁ(h)
by o 5 Gt DUt —sel. (19
X

hen the evolution of the chain fdar>t, is given by the
ormula

un<t)=sn+|+1+§ Got—t)ui(t)

@ Got—tD[u(t) =S54l (17

until eltheru a+n(t)—3 or u_(t)—3 change sign. If

u_ (|+1)(t) 3 changes its sign at a timig, ;, We start a new
step usings, .|+ 1 to computeu,(t). If u_,(t)— 3 reverses its
sign at a timet, 1, we start a new step using,,,_; to
computeu,(t).

2. Case B>F_ (D)

In this case, it is convenient to remove the integral in Eq.
(5) by using ass, the static wave front solution of Eq@2)
corresponding to an applied for€e=F (D), and such that
Sp<3<s,. Recall that there are no stationary wave fronts for
F>F..

Initial stage.Subtracting Eq(7) at F.{(D) from Eq. (6)
we find

un(t)= sn+2 G k<t>uk+2 Ghd D) (up—sy)

+(F—ch)f0t % Gl (t—z)dz (18

The remaining integral term can be removed by observing
that 1 is a solution of Eq(2) with F=0 and initial data
u,(0)=1,u;(0)=0:
1= G%k<t>+f 2 G(t-2)
K

(19

Multiplying Eq. (19) by (F—F.¢) and inserting the result in
Eq. (18) we obtain

un<t>=sn+<F—ch>+2k Gt

+Ek GhO[Ul—s—(F-Fe)] (20

046601-4
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up to the timet, at which ug(t)—3 changes sign. Fot

>to:

un<t>=sn+1+<F—ch>+2k Go(t—to)Ug(to)

@ Ght—to)[U(te) = Ser1— (F—Feol,

dG(to) , dGh(to)
Ui(to) =2 | —gr— Ukt —gr— (U= S F+Feg) |,

(21)

up to the timet, at whichu_,(t)— 3 changes sign.
Generic stepSimilar to the generic step fdF<F . but

replacings, by s,+(F—F¢g). FIG. 4. (Color onling ForD=4, y=2.2, andF=0.2: (3) Com-
pared time evolution ofw,(t+7) (dot-dashed ling wy(t—7)
3. Numerical implementation (dashed ling and u,(t) (solid lineg whenn=0,-1,-2,..., (b)
. Compared profilesi,(T) (circles, w,(T=7) (asteriskg (c) Com-

We will use Eqs(17), (16), and(21) to study the dynam- ) A n )
ics of the chain in Sec. lll. Due to translational invariancepareol time evolution ofv, (t+ 7) (dot-dashed and dashed linesd

Gp=Gy 1 0andGp=G;_, . To calculateu,(t), we only Un(1) (solid fing).

need to computéyy(t), Guo(t) for a time interval[0,T],  technique allowing for a finite number of turning points.
T<max|t,;1—t| and for [n|<N, whereN is sufficiently Complex variable methods yield families of explicit wave
large. We calculate the integralsGlo(t), Gno(t),  solutions but give no information on their stability. Numeri-
dG2,(t)/dt, anddGL,(t)/dt by means of the Simpson rule, cal tests[10] and physical contextl1] suggest the stability
choosing a step smaller than the period of the oscillatonof traveling kinks that have monotone leading edges and
factors. The valueN is selected so as to make the error in-large enough speeds. Figures 4—6 depict the wave profiles
troduced by the truncated serigg, <y sufficiently small.  for decreasingy. We now confirm that these wave fronts are
This is possible because the Green functions and their destable. The traveling wave,(t) is stable for the dynamics

rivatives decay agnh—k| grows. of the chain when the solutiong,(t) of Eq. (2) remain near
A more general version of our algorithm will be presentedw,(t) for all t>0 if the initial statesu’, u' are chosen near
elsewherg 16]. w,(0),w/,(0). Controlling the evolution ofi,(t) is more or
less difficult depending on the properties of the Green func-
Il. STABILITY OF TRAVELING KINKS tions. We distinguish two cases: positive Green functions

] ) ) _(large damping and oscillatory Green functiongsmall
In this section we introduce a strategy to study the Stab"'damping.

ity of traveling wave fronts in Eq(2).

Traveling wave fronts are constructed by insertumg(t)
=w(n—ct) in Eqg. (2) to produce a nonlinear eigenvalue ]
problem for the profilew(x) and the speed. Assuming For large dampingy®>4, we know that the wave front
w(x)<} for x<0 andw(x)>1 for x>0, the problem be- profiles are monotonically increasing and that the Green
comes linear. The wave profiles are computed as contour
integrals, imposingv(0)= 3 to find a relationship between 14l
and F [11,1Q. The law F(c) and the shape of the wave
profiles are controlled by the poles contributing to the con-
tour integrals. The relevant poles depend on the strength of
the damping. For large damping, we have complex poles
with large imaginary parts. The dependence IB¢c) is = 1f
monotonically increasing and the wave profiles are mono- ¢
tone. For small damping, poles with small imaginary parts
become relevant, in increasing number as the spedd-
creases. The functioR(c) oscillates for small speeds. Dif- ;
ferent oscillatory wave profiles with different speeds may 0.6
coexist for the samE. At zero damping, those poles become
real and the wave profiles develop nondecaying oscillations.
For some ranges of speeds, the waves constructed in this way
violate the restrictiorw(x)<3 for x<0 andw(x)>3 for x
>0. Those ranges should be investigated with a modified FIG. 5. (Color onling Same as Fig. 4 wheR=0.45.

A. Strong damping
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FIG. 7. (Color onling (& Trajectoriesw,_4(t) (dash-dotted
w,(t) (solid), w,.,(t) (dashedt (b) same forw,_,(t), wj(t),
W, 1(t); (c) initial configurations fow,,(7) (circles, w,(0) (aster-
isks), w,(— 1) (squarey the vertical line definesy; (d) same for
w/(7), w,(0), w;,(—7), the vertical lines defina;.

FIG. 6. (Color onling Trajectoriesu,(t) whenD=4. (& y
=0.2, F=0.2, (b) y=0.2, F=0.45, (c) y=0.1, F=0.2, (d) v
=0.1, F=0.45.

functions are positive and decay exponentially in tifo&
Appendix B. The main result of this section is the following
stability theorem, whose proof can be found in Appendix C:

Theorem.Let us select the wave front profile so that
w,(t)=w(n—ct—13), with c<0, andF>0. If we choose
the initial states for Eq(2), u} andu?, in the set:

B. Conservative dynamics

For small dampingy®<4, we know that the kink profiles
develop oscillations in the trailing edgsee Fig. 6 and that
the Green functions oscillate and change digfn Appendix
B). However,G2,(t) and G?(t) are positive for Bst<T*
=T(y,D). This critical timeT* plays a key role for the
stable propagation of waves. We will show in this section
that kinks are stable provided|> 1/T*. Our argument does
not say anything about the stability of kinks with lesser
speeds. Moreovel,* —0 and our lower bound on the wave
front velocity tends to infinity, in the continuum limit.

We show in Appendix B that a rough estimate fof is
provided by 27/\/4(1+4D)—»%. For y=0 andD=4, as
chosen in our Figs. 6 and T.*>1. Then, kinks with|c|
>1 are stable. In Ref$11,1Q, stability was conjectured for
for all n andt>0. speeds larger than the last minimumFefc), which is at-

In other words, if the initial oscillator configuration is tained atc.q~0.74.
sandwiched between two wave front profiles with different For small or zero damping we cannot use the previous
phase shiftsw,(—7) andw,(7) (with a sufficiently small ~comparison arguments because the trailing edge of the trav-
7), then the oscillator chain remains trapped between the tw8ling wave front oscillates and monotonicity does not hold
shifted profilesw,,(t—7) and w,(t—7) forever, provided there. If we look at the traveling wave front profiles, it be_—
|Ur11—Wr’1(0)| is sufficiently small. This implies the dynamical €Omes clear that we ;hould compare thel monotone leading
stability of the wave. The more involved argument explained®dges of the fronts. Figure@ and 7b) depict the trajecto-
in Sec. Il B for conservative dynamics can be used to provéi€s Wy(t) and their time derivativesvy(t) for a particular
that the wave fronts are also asymptotically stable. traveling wave front. We observe that,_(t)<wu(t)
Furthermore, the basin of attraction of a particular travel-<Wq1(t) and wy_,(t) <wy(t)<wg,(t) up to a certain
ing wave is larger than Eq$22) and(23), as shown in Figs. time. Figure Tc) shows the initial configurations faw,(0)
4 and 5 forF > F (D). The initial oscillator configuration in and the shifted waves,(—7), wy(7). w,(0) is sandwiched
this figure is a step functiony°=F for n<0 andul=1  betweenw,(—7) andw,(7) up to a pointn,. Figure 7d)
+F for n=1, with a superimposed small random distur- depicts the initial velocity profilesw;(0), wy(—7) and
bance. The initial velocity profile fluctuates randomly aboutw/(7). w}(0) is sandwiched between,(—7), andw/(7)
zero with a small amplitude. After an initial transient, the up to a pointn,. ng andn; mark the onset of the oscillatory
trajectories get trapped between advanced wave fiopts  tails. In general, &ny<n;. As the wave advances, the
+17) and delayed wave fronts/,(t—7). Moreover, they ranges of n for which wy,(t—7)<w,(t)=w(n—ct—3)
converge to a shifted wave fromt,(t+ «) ast—o. <wp,(t+ 7) change witht.

o P

Wo(— 7)<US<Wp(7), 0<7<

Wi(—7) = ugl<up—wy(—7),
|/ () — u}|<wp(7)—ul, (23)
then

Wy(t—7)<up(t)<wg(t+7) (24
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The main result of this section is the following stability
theorem, whose proof can be found in Appendix D:

Theorem.Let us select the wave front profile so that
w,(t)=w(n—ct—3), with c<0 andF>0. Let T* be the
maximum time up to which the Green functio@8,(t) and
Gl.(t) remain positive. We assume that the spdefl
>1/T* and choose the initial states for E@), u} andu?, in
the set

Wi(—7)<ud<w,(7), n<ng, 0<r< o (25)
Wi(=T)<UR<wi(r),  n=ny,
2 [up—wn(0)[<e, X Jup—wi(0)<e  (26)

for e>0 small andr<<e. Then, we can find an increasing
sequence of timeg, k=0,1, ...,with t_;=0, such that:

Wo(t—7)<un(t)<w,(t+7), n=ng—Kk,

W, (t—7)<uj(t)<w/(t+7), (27

n=n;—k

for t,_,=<t<ty. Furthermore, fot>0 and anyn, we have
|un(t) = wn()]< 2 |Gl ug—wi(0)]

+Ek |GRo(D]]ue=w(0)| +C(1),

(28)

C(t)=

J’min(Tk+ 7,t)
k$0,t>Tk—7 Tk—'r

in which T, ,=k/|c|+ 1/2|c|. Thus, the traveling wave front is
stable wheny=0 or asymptotically stable whep>0.

Let us clarify the meaning of Eq28). For y>0, the
sums2|GL . (1)], =GP (t)| decay exponentially with time.
For small 7, the function |C(t)|~272y<oi=1, ,|Ga(t
—TW|. This sum is finite and decays with time. This ex-
plains our asymptotical stability claim. Whep=0, the
sums 2| G (t)||ug—wi(0)], Si|Gri(t)||ug—wy(0)| are
bounded by a constant time —w,(0)] + max]u?
—w,(0)|. The function|C(t)| is bounded by a constant time
7 and is made small by choosingsmall. This explains our
stability claim in the conservative case.

The inequalitieg27) tell us that the leading edge of the

Gl (t—2z)dz,
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IV. COEXISTENCE

The results in Sec. Il B indicate that stable static and
traveling kinks may coexist. The only restriction on the trav-
eling kinks is the monotonicity of the leading edge and a low
bound on the speed. These conditions are satisfied by travel-
ing wave fronts for a range of forces in which static wave
fronts also exist. We show in this section how oscillating
Green functions may force initial kinklike configurations
(which would be pinned for large dampintp evolve into a
traveling wave front provided the damping is small enough.

We fix F<F_.s and select the static kind, constructed in
Sec. Il for Eq.(2) with sp<3<s;,. Let the initial condition
for Eqg. (2) be a piecewise constant profileﬂzF for n
<0, ul=1+F for n=1 andul=0. Let T* the maximum
time up to whichGS, and G}, remain positive.

As long asu,(t) — 3 does not change sign for anyu,(t)
is given by formula(7) in Sec. Il. We haves, GC,(t)ur=0
for t<T*. Initially, Gﬁk(t) is concentrated dt=n and the
sign of =Gl (t)(up—sy) is decided by the sign ofi
—s,. If uﬂ>sn, uy(t)=s,. In our case, this is true fan
=1. If ul<s,, uy(t) increases towards, asX,G2(t)(u?
—sy) decays. By our choice of the initial staig(t) grows
faster than the other componentg(t), n<O.

Now there are two possibilities depending on the value of
the damping coefficients. For large dampiﬁij,k(t) is posi-
tive for all times andGﬂk decays fast. Them(t) cannot
surpasssy. These initial data are pinned for large damping.

For small values of the dampin@ﬁk(t) changes sign.
Thenug(t) given by Eq.(7) may surpass, and; since the
term =, G} (t)(ul—s,) becomes positive fot=T*. This
process can be iterated to get a stably propagating wave, see
Fig. 1. A prediction for the speed is found in this way: it is
the reciprocal of the time that,+ Géo(t)(F—so) needs to
reachs.

V. MORE GENERAL POTENTIALS

We have focused our study on periodic piecewise para-
bolic potentialsV(u)=u?/2, |u|<3. For these potentials,
families of static and traveling wave fronts can be con-
structed analytically. Schmidil7] and later author§18,19
found exact monotone wave fronts of conservative systems
by constructing models with nonlinearities such that the de-
sired wave fronts were solutions of the models. For damped
Frenkel-Kontorova or quartic double-well potentials, stably
propagating wave fronts have been found numericdly.
Numerical studies of kink propagation in the conservative
Frenkel-Kontorova model were carried out in Reif4].

The stability of propagating kinks in these models can be
studied adapting the methods developed in this paper, but the
analysis is technically more complicatgt]. For instance,
taking V(u)=u?2 for |u|<3}, 1—(u—1)%2 for |u—1|
<3 we get acontinuouspiecewise linear source

propagating kink is sandwiched between the leading edges of

the shifted traveling wave fronts,(t+ 7) andw,(t— 7). As
the kink u,(t) advances, the timet, at which u_,(t)— 3

changes sign are bounded by the times at which the ad-

vanced and delayed wave fronts cross T,—r<t, <T,
+ 7. This fact is the key for obtaining the stability bound
(28).

<1
S, S E
g(s)= 1 13
— —_ — <_
s+2, 2<s 5
s—1, s=3/2.
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A. CARPIO PHYSICAL REVIEW E 69, 046601 (2004
The arguments in Secs. Il A and Il B can be adapted byDifferentiatingp with respect td and using Eq(Al), we see
including new terms [{31/2<u,<3/2G° (t—2)[2u(z)  thatp solves the ordinary differential equation

—1]dzin the integral expression€1) and(C2) and using
that the functionh(s)=2s—1/2 is increasing in 1RZs
<3/2. Similarly, for a Frenkel-Kontorova potential, we write
9(s) = —_as+[sin(s)fas], a>0. Then, we find the iptegral ditions for p(#6,t) follow from those foru,(t).
expressmn(_AlZ) with a nonlm_ear sourcefk_z —sin(u) The solutionp depends on the roots of the polynomial
+au+F, using the Green functions for the linear operatorr2+ 1+ w(6)2=0. Wheny?/4> w2(6)
up+yu,—D(Upy1—2uU,+U,_q)+au,. The parametea is ' '

chosen to ensure adequate monotonicity properties fey

p"(0,0)+yp' (0,0)+w(0)?p(0,0)=1(0,1), (Ad)

wherew(6)%=1+4D sir?(6/2) and the obvious initial con-

e - (g)—e+(D_(g)

=—Sin(S)+aS [16] p(01t):p(070) r+(0)_r7(0)
VI. CONCLUSIONS 60 el +(Ot_ ar (o)t
NN

We have developed a nonlinear stability theory for wave
fronts in conservative and damped Frenkel-Kontorova mod-

t @ +(O(t=s) _ar_(0)(t-s)
els with piecewise linear sources based on integral formula- f . 0)-1_(0)
tions. Our results provide an analytical basis for the distinc- 0 + -

tion between static and dynamic Peierls stresses, which arise, . _ 2 2
as thresholds for the existence of stable static and travelin 'Lh ri(zlei;( 27’; Vtﬁ(e))/f<0 anda(4|9)—. Y —4o(6)".
wave fronts. With little or zero damping, stable propagation'’ €N y"/4<«?(6), the roots are complex:

of fronts is possible when their speeds surpass a critical

f(0,s)ds (A5)

inf1(0)t
value. The corresponding wave front profiles have a mono-  p(6,t)=p(6,0)el” 2" cog|(6)t]+ ysinti(6)t]
tone leading edge, and, possibly, an oscillatory wake. Wave 21(6)

fronts can be oscillatory and yet stable. Whether slow wave . sin1(6)t]

fronts showing oscillations in the leading and trailing edges +p'(6,0e (0

are stable remains an open questjdg]. It is remarkable (6)

that high order quasicontinuum approximations such as those t sif1(6)(t—s)]

by Rosenali20] or by Boussines§21] have wave solutions + fo e(~72)(t=s) Tf(f),s)d&

comparable to the fast waves of the discrete conservative

model[12]. (AB)
Together with the stability theory we have presented an

algorithm for the numerical computation of the dynamics ofwherel (6) =/~ a(6)/2. When y?/4= w?(6),

kinks. Our scheme has good stability properties and avoids

distortions originated by artificial boundary conditions and

. . K R )= (—y/2)t
time discretization. p(6,t)=p(6,0)e

1+ %t) +p’ (6,072

t
ACKNOWLEDGMENTS +J (t—s)el= 729 (g s)ds. (A7)
0
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pap un(t):f_ ﬁe'“ep(ﬁ,t). (A8)
APPENDIX A: GREEN FUNCTIONS

Here,p(40,t) is defined by Eq(A5) whenéel,
We want to find an integral representation of the solution p(6.1) y EqAS) ch

of the problem y2
|1:(06[_7T,7T] Z>w2(0)], (A9)
u:+7ur’1:D(un+l_2un+un—l)_un+fnv (A1)

un(0)=u2, u,’1(0)=uﬁ (A2) by Eg. (A6) whendel,,

2

with y=0,D>0. Firstly, we get rid of the difference opera- |2:{ gc[—m, ] VZ< w¥( 0)}' (A10)
tor by using the generating functiopg6,t), f(6,t):
) ) and by Eq.(A7) whenfel,
p(6,t)=>, uy(the ™0, f(o,t)=>, f (e "’ )
n n

(A3) P=[0€[—Tr,ﬂ'] %=w2(a)]. (A11)
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NONLINEAR STABILITY OF OSCILLATORY WAVE . ..

Notice thatl,=P=0 if y*<4 andl,=P=0 if y*>4(1
+4D). P+ only if 4(1+4D)< y?<4 and it then consists

of two points.
Formula(A8) can be rewritten as

Un(t) = E [GOL(DUL(0)+ GE (D uK(0)]

t
+JO Ek GO (t—9)f(s)ds, (A12)
where
T do
ng(t): J‘iﬂ- Z e|(n*k)0g0( 0,t),
1 ™ dé i(N—K) 81
Crdt)=| 59796, (A13)
with
e"+(‘9)t_ef—(9)t
Tt '
g%o,0)={ e, geP (A14)
LU CI0) I
|(0) ’ 25
r er,(ﬂ)trJr(0)_er+(0)tr7(0)
y 06'1
ro(0)—r_(0)
gl(ﬁ,t)=< e(_')’/z)'[ 1+%t), 06'3
ysin1(0)t]
(—v/2)t S -
Le cogl(o)t]+ 2100) } Oel,.
(A15)

For conservative chaing,=0, G},=dG?,/dt, and

Goi(t)= JW

do eln-ko

2 o 0) (A16)

siM w(6)t].

Green functions for Hamiltonian chains were studied in Ref.b

[22] and earlier in Ref[23]. For overdamped chains, they
were computed in Refl13].
APPENDIX B: PROPERTIES OF THE GREEN FUNCTIONS

The Green functions for EqAL1) and (A2) have three
relevant properties: they decay in time, they decay/ras

—k|—c, and are positive for some time. The property of %‘:c

spatial decay follows from integration by parts in E413):

(-1)" (= dé 3'g%(6,t)
0 (ty= el(n-Ke
Gl V=T ) . 24 Fr
(=" (= d6 d'gt(0,t)
1ity= el(n=k)o
CndV= T ) . 27 a0 B
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FIG. 8. (Color online Time evolution of the Green functions for
D=4 andy=10: (a) t=0, (b) t=0.5, (c) t=5; (d) t=0, (e) t
=05, (f) t=5.

whenn#k. An immediate consequence is th&g| G2, (t)|P
and=,|G!(t)|P are finite for anyp=1. Therefore, we may
obtain decay results @s|— o for the solutiongu,(t) of Eqs
(Al) and(A2) given by Eq.(A12) decay when the data’,

, n(t) decay Flgures 8 and 9 illustrate the spatial decay
of G? MO Gn (1) andGn(t) Gn (t). Notice that, initially,
both are concentrated abaut 0.

Time decay and positivity depend on the strength of the
damping. Let us start by thetrongly damped casey?
>4(1+4D). The Green functions are given by E¢a13)—
(A15) with 1,=P=(.

(1) G, (t) and G, (t) are posmveThe rootsm(e) being
even with respect t@, both G? nk(t) andG? ~k(t) are real and
ek can be replaced by cgs—k)¢]. The kernels
go(ﬁyt)=(e’*(")t—e'*(g")/[u(@)—r-(0)] and g,(6.t)

0.1 0.01
b c
0.3 ’,{ (@) (b) (©
s I
x %
£
. h £
é 0~~f L‘LN Of\} %’\
-40 0 40 -50 0 50 -50 0 50
n n n
0.1 0.01
*
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0.3 il
— i
! tal *%
| K f
I
o i D f &
4 L C ook £ C 8
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-10

n n

FIG. 9. (Color online Time evolution of the Green functions for
D=4 andy=2.2: (a) and(d) t=0.5, (b) and(e) t=2.5, (c) and(f)
t=5.
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A. CARPIO

=M (9)—+Nr_(0))[r,(6)—r_(6)] are even, posi-
tive, reach their maximum values a0, and decay a#
increases tor. The dominant contribution to the integrals
(A13) comes from a neighborhood centered¥at0, where
the oscillatory multiplier cdgn—Kk) 4] is positive. Thus, both
G, (t) andG} (1) are positive. Figure 8 illustrates their evo-

lution as time grows. Notice the resemblance with the time

evolution of heat kernels.
(2) GO (t) andG},(t) are bounded uniformly im,k by
decaying exponentials in time:

er+(0)t_

—41+4D)’

e (M (m)—e+O_(0)

Vy*—4(1+4D)

We come now tointermediate dampingd<y?<4(1
+4D). In this case botl; andl, are nonempty. The piece-
wise defined kernelgy andg, are still even, take the largest
values near zer@n |;) and the smallest near (in 1,). The
dominant contribution t@ﬂk(t) andG! ~k(t) comes thus from

er,(ﬂ')t
|Ga(D=

[HOIE (B2)

I, and is positive. This is helped by the fact that the contri-

bution coming froml, is initially positive and the factor
e~ ("2 in the oscillatory region, decays faster than the
factore’+ (Yt in the positive region,. Therefore G (t) and

PHYSICAL REVIEW E 69, 046601 (2004
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FIG. 10. (Color online Time evolution of the Green functions
forD=4 andy=1: (a) t=0, (b) t=0.5,(c) t=2.5; (d) t=0.5, (¢)
t=2.5, (f) t=5.

APPENDIX C: STABILITY OF TRAVELING WAVE FRONTS
FOR STRONG DAMPING

We now prove the stability theorem of Sec. Il A for
strong damping. The key idea of the proof is suggested by
formula (5). When we solve Eq(2) starting from different
steplike initial states, we observe three types of terms in Eq.

Gy (1) are essentially positive in this |ntermed|ate regime,(5). The second and the third are increasing functions of the
see Fig. 9. This means that their large components are positeplike configurations. The fourth term does not depend on
tive, despite the appearance of some negligible negativehe initial configuration. The first one can be made small by

components. They can be roughly bounded by

|Gok(D)[=Coe™= ", |GR(t)]=Cqe+ON.

(B3)
We address finally theveakly damped problems wityt
<4. In this case|l;=P={. Gﬂk(t) and G’ ak(t) are no
longer globally positive. However, the kernajg(6,t) and
01(6,t) are positive for|t|<2m/\4(1+4D)— y?*=2T and
|t|<7r/\/4(1+4D) ¥?=T, respectively. That means that
nI((t)>0 andG? ~(t)>0 for t in those intervals. They re-

main essentially positive in a larger interval. The kernels £ i

go(6,t) andg;(6,t) become negative fof nears and re-
main positive for smalld. This is enough for the relevant
values ofG},(t) to remain positive up to a critical time*,
often larger tham. We can get uniform bounds in time:

[ s e (72,

Y _
|Gh(b]= +—2)e o2, (B4)
4—vy

The same positivity properties and bounds are shared by th:

Green functions in theonservative case=0. Figures 10

choosing a small velocity profile. Our proof proceeds in two
steps. First, we establish a few properties of the traveling
wave fronts. Second, we prove the stability boy2d).

Step 1: Basic properties of the traveling wavEer every
k, we know thatwj(t)>0. Thus, eaclw,(t) crosses; at a
definite timet,. Recall that we have selected the unique
wave profilew(x) satisfyingw(0)=3. Therefore,w_,(t)

0.6 - ©
: c
1 a (b)
ro@ o, ATh
¥ 0 /
) i A Lt
i 0.2 Y -0.2 1
0.5 i 141 Ay
i 0 xoX -0.4 +
T
0 . 0.6
0 0 10 -10 0 10 -20 0 20
n n n
@ | o6 1o 03 wE ()
0.1 * ! 0.2 ]
I 1
= i . g 0.1 £
o c [ 'I I
o L 0.2 ;* OaM@Ms
)
0 0 ‘s -0.1 H
-10 0 10 10 0 10 20 0 20
n n n

and 11 illustrate the time evolution of the Green functions. A F|G. 11. (Color online Time evolution of the Green functions

detailed study of the decay properties with respect émdt
for conservative problems can be found in R&R].

for D=4 andy=0: (a) and(d) t=0.05, (b) and(e) t=0.5, (c) and
(f) t=2.5.
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NONLINEAR STABILITY OF OSCILLATORY WAVE.. ..
—3 changes sign at timeT,=k/|c|+1/2|c|>0, k
=0,1,2 . ... For theshifted wavesw,(t+ ) andw(t— 7)
the changes of sign take place at the shifted tifigs= T,
—randT, =T+ 7.

The wavesw,(t= 7) solve the integral equatiofb) with
initial dataw,(+ 7) andw},(* 7). Using the timesT, , we
can rewrite formula5) in a more explicit form:

Wi(t=7)= 2 [GoOWi(£7)+Ghwi(£7)]

+|:f E G k(t—z)o|z+f 2 GO (t—2)dz

N 2 l\iax(t,TE)

2 Gl (t—2z)dz

(CY

T

A term ftTteﬁ «(t—2)dz is added whenever a factov,(z
29,

+7)— 3% changes sign.

Step 2: Comparing \(t) and w,(t= 7). During the initial
stage of the evolution of the chainy(t) <3 <u,(t) and for-
mula (5) reads

Gl (t—2z)dz

t
E [GO(Dui+Gh(tu E]+f >

0 k>0

+|:ft > Go(t-2z)dz (C2)
0 Kk

By Eq. (22) and the positivity ofG2(t),

E Gh(Hw(— r><2 G k<t>uk<2 Gl (HW(7).
(C3)

By Eq. (23),

Z G D[Wi(7) = U]+ G ([ Wi (1) — Ui ]>0,

E G O[up— Wy (— )]+ G (D[ Uuf— Wi (— 7)]>0.
(C4)

Therefore, Eqs(C1)—(C4) imply

Wi(t—7)<up(t) <wy(t+7), (CH
for all n andt<T, . Recall thatTy < Tg by definition. Af-

terwards,wy(t+ 7) has crosseg and fT+G o(t—2)dz>0
must be added in the expression \W(H 7). The ordering

(C5) still holds. At time T, , wy(t—7) crosses;. By Eq.
(C4), ug(t) must cross before, at a tintg.

PHYSICAL REVIEW E 69, 046601 (2004

In this way, we obtain a sequence of timgsat which

u_(t)—3%, changes sign satisfyingT, <t,<T,, k
=0,1,2....Then,
Gl (il ! 0
Un(t)= Z [GO(Dui+ nk(t)uk]+FJO }k) Go(t—2)dz

Max(t, ty)

Gl (t—2)dz

+ft > GO(t— z)dz+2
0 k>0

k=0 ty

(C6)

and Eq.(C5) holds for allt. Our stability claim is proved.

APPENDIX D: STABILITY OF TRAVELING WAVE
FRONTS FOR CONSERVATIVE DYNAMICS

In this section, we prove the stability theorem of Sec.
11l B for small or zero damping. The notation is the same as
in Appendix C and the proof is organized in two steps.

Step 1: Initial stageWe comparau,(t) given by Eq.(C2)
with the shifted wavesv,(t= 7) given by Eq.(C1), whereas
u;(t) is compared withw, (t= 7). The time derivatives are
calculated by differentiating Eq$C1) and (C2). Notice that
dGOk(t)/dt>O for small dampmg when<T* Up to a first
critical time Ty , u(t)— 3 andw,(t= 7)— 3 keep their sign
for all k. Therefore,

Wo(t—7)<uy(t)<w,(t+7), n=ng,

w(t—7)<uj(t)<w/(t+7), n=ng, (D1)

for t<Tg . Recall that, initially,G}, andG?,, together with
their derivatives, take on their maximum valuesKalose to
n. This fact and Eqgs(24) and(25) imply

Wo(t— 7)<un(t)<wg(t+7), n=nyg—1,

w,(t— 1) <u/(t)<w,(t+7), n<n;—1, (D2

for Tg<t<T;, choosing 7<T*-T,.
Uo(t) —

<T;.
t<T,

This means that
3 changes sign at a timg such thatT; <t,<T,
We then obtain formuldC6) for u,(t) restricted to
. By substracting Eq(C1) from Eq. (C6), we find

2 |un—wn|<t><; |Gﬁo<t>|§ Uy —W,|(0)

+§ |Gﬁo<t>|; luj—w}|(0)+C(1),
(D3)

where
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0, t<Tg
C(t)= "
® fo Go(t—2)dz, t>Tg,
To
and
2 |U - n|(t Wn|
+2 w}|(0)+R(t)
(D4)
where
0, t<Tg
R(t)= fTOdGO .
— >
T(_;_ dt ( Z) Z! t TO’
for t<T;. Let Sl—Max{Ow)En|Glo(t)| S,

—Max[ow)En|Gno(t)| S;= Maxow)2n|(dG O/dt)(t)| and
S4—Max[ox)2n|(dGnO/dt)(t)| Then, fort<T; ,

2 [Un(t) —wo(D)| < (S +Sy)e +27G2(To)|,

0

4G
>, ul(t) —wh(t)|<(Sg+Spe+27 dt”o

(To)|.

(D5)

The distancesu,(t) —wu(t)|, |u,(t) —w;(t)| remain of or-
dere. In particular, the oscillatory tail ofi,(t) for n>nq is
contained in the same band that containpgt) for n>n,.

Step 2: Generic stag&\Ve iterate Step 1 starting at times
T,+ , 1=1,2, ..., according to the following induction pro-
cedure. For a fixedr,”, Eq. (D2) holds for n<ng—I, n
<n,—I, T, <t<T/, and

> un(D) =W ()| <(Sy+Sp)e +278,
(D6)

> ul (1) =W (1) <(Ss+Sy)e+27S

holds fort<T,”, with S=Max 2,|G°(TW)|,=|(dG2,/dt)

PHYSICAL REVIEW E 69, 046601 (2004
Wi(t+7)= 2 Got=T HWi(T £ 7)
+2 GL(t—T W (T = 7)

+F > Go(t—2)dz

T, K

t
+f . 2 G(t—2)dz
TI k>—1

Max (t, Ty
S f+ T
k=—1 T

un(t)= Z Golt=T ) u(T >+Z Gh(t=THu(T))

Gl (t—2)dz, (D7)

t t
+|:J+ > Gﬁk(t—z)derJ+ > G)(t—2)dz
T K T K>

+ 2

P Gﬂk(t—z)H

(DY)

1
Uk(Z)_§ dz

T

Notice that we have taken as initial data the valuesvg(ft
+17) andu,(t) at timeT,". In this way, formulagD7) and
(D8) only involve the values of the Green functions in a
short time interva[0,1/c|+27]. Since 1jc|+27>T*, the
Green functions are both positive. Recall that for this short
time interval G}, and G?,, together with their derivatives,
take on large values fdk close ton. We can then use Eq.
(D2) for n<ng—I, n<n;—I| at timeT,", Egs.(D6)—(D8)

to obtain Eq.(D2) for n<ng—(I1+1), n<n;—(I+1), and
T, <t<T,,,. This means that _(t)—3 changes sign at a
time t, such thatT;”<t,<T; <T,.,. We then obtain for-
mula (C6) for u,(t) restricted tot<T," ;. Subtracting Eq.
(C1) from Eq.(C6) for t<T, . ;, we find

2 [un=wil(=(S1+Sp)e+27 2 [GRyTol,

dt

; U/ —W.|(1)<(Sy+S,)e+27 kz

(D9)

This implies Eq.(D6) for t<T;".,. We are now ready to
repeat the process starting at timg ; .

Step 3: ConclusionFrom Step 2 we obtain a sequence of
tlmest| for 1=1,2,...,with T"<t,<T, , at whichu_(t)

><(T|<)|] Now, we shall show that these properties also hold— 1 changes sign. In this way, we keep track of the tirges

for T, ;.
ForT,"<t<T/",;, the evolution ofw,(t*+ 7) andu,(t) is
given by

at WhICh changes of sign take place and obtain forniGB
for u,(t) for all t. Subtracting Eq(C1) from Eg. (C6) we
find the bound28) on |u,—w,|.
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