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Equation of state for weakly coupled quantum plasmas
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We calculate thermodynamic properties for a dense hydrogen plasma and a quantum electron gas using
thermodynamic Green’s function techniques. Our perturbation approach is appropriate to give reliable results
in the weak coupling regime. In particular, the contribution of the exchange term of the efrderfully
included for the nondegenerate case as well as for the dense highly degenerate quantum region. We compare
our results for the equation of state with data obtained by different numerical simulations.
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I. INTRODUCTION 1 dn

<p—po>9=—f (V). (@)
An exact knowledge of thermodynamic properties, e.g., of 0

hydrogen or deuterium, is of great importance not only fo
scientific reasons but also for technical applications. Th :
models of the inner structure of stars or giant gas planetgf the ;ystem,(xv) the mean potential energy, a.”*dthe
depend on the equation of st{EOS data and so do model interaction strength parameter. In second quantization the
calculations concerning inertially confined fusion experi-tWo-particle Green's functioi®,, determines the mean po-
ments. Shock experiments on hydrogen and deutefisg]  tential energy

are usually evaluated by discussing hugoniots, for which the \ "

theoretical inputs are EOS data. The comparison of different _h o

hugoniots shows essential differences both between different (W) 2 2 2 d1draVap(12)

experiments and between different theories including nu-

merical simulations, and on the other hand also between XGab(121++2+)|t2:tl+. )
theory and experimend—6]. For this reason it seems to be

where the theoretical approximations are justified. We havenarged particles of speciesandb the interaction potential
then to demand that the numerical simulations coincide Withg the coulomb potential, i.eNap(r1—2)=0aly/|F1— |
y - g a .

analytical results. The region in between which is not accesy | giavistical information is contained 6. For Coulomb
sible to theoretical treatment should then be covered by nu- a

merical simulations or at least by Pattemulas[7]. .systems,l it is convenient to account. fc;r collgctive effects by
The aim of this paper is to investigate the thermodynamidmmdu_Ctlon of a screened potential,;, defined by the

properties of dense quantum plasmas using quantum statis§Sréening equation

cal theory. In particular, the imaginary time Green's function

technique is applied, which turned out to be a powerful Van(12)=Vay(12)

method for describing physical properties of dense quantum

gﬂerep— po is the excess part of the pressufethe volume

aoy bop JO

plasmas in thermodynamic equilibriuf@,10]. +> _IBdeEVgC(1T)Hm(2_1,2_1)vdb(§2),
First, the basic equations are presented and the scheme of cd Jo
approximation is given which is applied in the subsequent 3)

calculations. The numerical evaluation of the EOS is de-
scribed in detail in Sec. Ill. The different contributions such
as the Montroll-Ward and the* exchange terms as well as
the inversion procedure are discussed. Finally, we prese
results for thermodynamic quantities for the electron gas an
the fully ionized hydrogen plasma. Pressure and internal en- 1

ergy are compared to wave-packet molecular-dynamics (A\V)=— >, > | d1dr{\V,,(12)G,(11"")Gy(22")
(WPMD) calculations and to data obtained by path-integral aog bay

Monte Carlo(PIMC) simulations. +V8,(120)11,(12,12). (4)

Now the polarization functiodl,;, replaces the two-particle
Green’s function, while the screened potential appears in-
réttead of the Coulomb one:

II. BASIC EQUATIONS AND APPROXIMATIONS .
Q Here the Hartree term appears separaftig first term on

Considering the plasma in the grand canonical ensembithe right-hand sidewhile it is still included in Eq(2). Equa-
the EOS can be calculated using the charging formuldion (4) is our starting point for further calculations. We do
[8-10] not discuss the general problem, which cannot be solved ex-
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actly. For the goal of this paper it is sufficient to give the first Lo
terms of a perturbation series for the polarization function;  P({Brc})=> EIBIZ(:BP«a)"'Z LabaZnr(Bia)
for further details se€9]: é a

H(12,1’2’)~><+ §><+ V><+ ,»«k>< +DMW({BMC})+§; PE"(B1a)

5 +3 8 (Bra). @)

o The arrangement of the terms is nearly the same as in Eqg.
These terms have their origin in the screened ladder approxig) The ideal contribution is followed by the HF, the MW,

mation of the polarization function. The wavy lines denote;,q poth of thee? exchange terms. Some abbreviations were
dynami_cally screened potentials determined by(B)q.From used:Z,= (20, + 1)/A§ and §a=e§/Aa- The sum runs over
left to right we see the random phase approximatigRA) the speciesAZ=27/(m.kgT) is the thermal wavelength,

contribution, the vertex terrffirst ladder diagram and two . .
. L I ; . =1/(kgT) the inverse temperaturé;,, the Fermi integral
first order self-energy contributions to the Green’s func'uonsgf order 3/2, and Z,p the HF integral [12] Z,

of the RPA. If this series of terms is inserted into &), we Bltay 2 N
get the following contributions to the mean value of the po-=J "« dalZy(@). The density is given by, =dp/du,,
tential energy. We want to establish a perturbation expansion

in powers ofe?, i.e., in powers of the Coulomb potential. For Na{Brch) = Lal o Bira) + Ladal 1A Bira)
this purpose, we express all screened potentials with the help P
of the screening equatiof8) and take into account only + —[p"W({ Bu)) + p§4n(ﬁﬂa)
terms with powers up te* (two potential liney [11]: Ipa
4
+pa (Bra)l. ®

. Further explicit calculations require the numerical evaluation
of the different contributions. Having pressure and density as
a function of the chemical potential, one has to eliminate the
(6) latter to get the usual EQOS, i.e., the pressure as a function of
the density. This is done in the next sections.

<w>~g++ H

From left to right we see the Hartree, Hartree-Fdekr),
Montroll-Ward (MW), normale* exchange, and anomalous lIl. NUMERICAL TREATMENT
e* exchange terms. The first gives the mean field contribu-
tion. This term vanishes in a quasineutral system. The second ] o -~
term (HF) is the exchange term of ordef. The MW term is The calpulatlon of the main |_nput guantities fo'r both pres-
the first nonideality correction due to the Coulomb interac-Suré and internal energy requires some numerical effort. In
tion. Here one screened potential must be retained in order {§iS section we want to analyze the different contributions
keep this term convergent. In the low density limit the Mw @nd give some results, especially for tfef’eexphange terms.
contribution is the Debye-ikel correction to the ideal gas !N full generality the MW term is given in terms of the
result. The HF and MW terms arise from the RPA approxi-(longitudina) dielectric functions(p, ),
mation of the polarization functionl,,. The first ladder 1 8
term of the polarization functioriverteXy gives the fourth MW __ T[T ” P
term in this series, the normal exchange term of omfer P Brch) 47T3J’o P dpPJo dwcotr( 2 )
The last two identical graphs are a result of first ord;;3 self- ime( )
energy corrections to the RPA and are called anomadus me(p,w
exchange terms. This expansion will be denotedehex- arcta ﬁes(p,w) ~Ime(p,©)
pansion in the rest of the paper although the MW term con-
tains infinite powers o&? in the screened potential to avoid In this term it is sufficient to take the dielectric function in
Coulomb divergences. This series takes into account onlthe random phase approximation. For the treatment of degen-
weak interactions. Therefore it can be used to describerate quantum plasmas it is necessary to retain full dynamics
weakly coupled plasmad’<1, I'=(Eq)/(Exin)). No ap- in the screening of the Coulomb potential and in the dielec-
proximations have been made concerning the degeneracy tifc function. In general, the calculation of the MW term
the plasma. The Fermi statistics is fully included. So thismeans computing a three-dimensional integtab plus one
expansion provides a good approximation for the low densityn the real part of the dielectric functiprFigure 1 shows the
and for the high densitynonrelativistig plasma. behavior of the MW pressure from the low density/
Using Egs(1) and(6) we get the pressure as a function of nondegenerate to the high density/degenerate region for fully
the chemical potentiaju for a weakly coupled quantum ionized hydrogen. We want to remark that, in contrast to the
plasma: exchange terms of ordef, this term is not simply the sum

A. Special contributions

X

. (9
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FIG. 1. Ratio of MW pressure and ideal pressure for hydrogen
(solid) and an electron ga&lashed as functions of the electron
density. TheT=0 results(dotted are additionally showrupper,
hydrogen; lower, electron gasThe dash-dotted line gives the
Debye-Hickel low density result for the electron gas.

FIG. 2. Normale* exchange energy for hydrogésolid) and an
electron gagdashed as function of the electron degeneran:&(g.
Additionally, low density (dash-dotted: upper curve, electrons;
lower curve, protonsand T=0 limiting results (dotted: upper
curve, protons; lower curve, electrorere shown.

of electron and proton contributions. Due to electron-proton o )
correlations it cannot be split into a sum over the species. "€ évaluation is simple and can easily be extended to re-

The normal exchange term of ordet can be written in gions where exact limiting results are known. Figure 3 shows
momentum-frequency space as the behavior of this term, which is very similar to that of the
normale* exchange term.
With the knowledge of all of the terms in E{?), calcu-

peA”({,B,uc})=Q§ maJ' % lation of thermodynamic quantities is now possible.
Vaa(P)Vaa(p+0d1+dz) B. Inversion and thermodynamic quantities

Now the contributions to the EOS given by ET) are

2+ 2 + 2 + 2
A2~ (PF )"~ (pF ) explicitly known. Therefore all thermodynamic quantities are

X{fa(a1)fa(a2)[1—fa(q1tp)] determined on this level of approximation. Because of Egs.

(7) and(8) we have an EOS in the grand canonical ensemble.

X[1=f4(detp)]—fa(ar+p)fa(a+p) In any case, we have to satisfy the condition of quasineutral-

[1—f 1—f _ 10 ity in the two-component plasma, i.e., for a given chemical
! a@ll (@)1} (10 potential u, of speciesa Eq. (8) defines the corresponding

chemical potentiaju, due to=.e.n.=0. Although there is

Here V,, is the bare Coulomb potential arfg are Fermi X . .
functions. After some manipulations there remain only sixSUch an equation of state as a function of the fugarlty
=ePra) it is also of great importance to get the explicit

integrations. The integrations can be done using Monte Carlb?a=€
integration. Both in the low density and in the high density

region, the exactly known limiting results for this integral ~ 10°
_[9,13] are reproduced with high accuracy. In Fig_. 2 this term "Qg: 102 T=1x10°K
is shown for a temperature df=1° K as a function of the 3 10,
electron degeneracy parameteX?. In this case, the excess E 184
pressure contribution according to E@) can be calculated g 10°
as pe4”= - (1/2)<V)e4n from the mean exchange energy. For E 10% ]
low degeneracy it is dominated by the electrons, whereas the 2 10'} .
protons determine the behavior of this contribution for .= 10_(; ./_ -
higher values of the electron degeneracy parameter. °p 10 7 . Teo
For purposes discussed below we still consider the > 10° / . .

4 . T V102 low density
anomalous™ term and analyze especially its limiting behav- > L - z — .
ior. The term reads 107 10 10 10 10 10 10 10 10

3
nA,
a dkdpdq
P a({Buc)=—208> ——— Vaald—k) FIG. 3. Anomalous* exchange energy for hydrogésolid) as
a (2m) function of the electron degeneracy parametar: . Additionally,

_ _ low density(dash-dotted: upper curve, electrons, lower curve, pro-
XV fa(k)f f 1-f .
aa( 4= P)fa(k)Ta(p)fa(q)l a(@)] tons andT=0 limiting results(dotted: upper curve, protons; lower

(11 curve, electronsare shown.
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1.2 The pressure due to inversion 2 is correct in the interac-
~—— DH —— MW, golden rule tion order but suffers from a different shortcoming. In the
L1 T=0 — e, goldenrule low density nondegenerate case this expansion becomes a

"""" MW, inversion 2 real density expansion, but is inconsistent in the order of the

1.0 density. So we have to neglect the anomalefixchange
- term, because it is of order’. At T=0, the same term is
%0-9 compensated by some contributions arising from our inver-
sion procedure[15]. Therefore we completely omit the
0.8 y / anomalous exchange term and the compensation terms. This
T=1x10°K \.\ s _proce(_:iure can be summarized under the so called golden rule
0.7 I inversion.
06 v\ We arrive at the following expression for the pressure as a
9 20 21 22 23 24 25 26 function of the density ¢°=Bu"):
3
logion (cm ) 0 E {a 0 2 0 MW 0
P{ach) =2 S lanlay) + 2 aéaZur(ay) +p" " ({act)
FIG. 4. Pressure with respect to the ideal part for an electron gas tac) a B é z é tac)
as function of the density. Different approximations and different
types of inversion for the EOS are shown. The solid cured, ( + e*n %) — | a\ ol o°
golden rulg is given by Eq.(12). MW means that the norma’ ; Pa (a) ; fatal -1nl@a)ld @)
exchange term is omitted. DH denotes the low density Debye-
Huckel correction to the ideal gas. TAe=0 curve is the limiting |1,2(a2) J MW
result of Gell-Mann and othefd.3,16]. - —— = [BP" " ({ac})

2 Bl ia]) I

dependence on the density=p(n). This procedure of the +,8p§4”(aa)]|ao. (12
elimination of the fugacity from the pressup=p({z}) ‘
through n,=2z,(9/9z,) Bp({z;}) is called inversion. This The density can now easily be calculated from,
means having the thermodynamic quantities in the grand ca=z,1,,,(a?). For a given density, the chemical potentials for
nonical ensemble first and then going to the canonical enthe species are different. Now it is possible to derive expres-
semble. Equation&7) and(8) are no fugacity expansions in sions for any thermodynamic function. WitHJ=F
the usual sense. They contain all powers of the fugacity as a T(dF/dT), we get
consequence of the quantum nature of the treated systems,
which is fully included in our approach. U 0 0 0

To solve Eq.(8) analytically for the fugacity is impos- € kaTza‘ §a|3’2(aa)+§ {ataTur(ag) — P ({ac))
sible. Furthermore, to have such an expression would not
necessarily result in a more exact equation of state than using
approximate equations for the fugacity. This is due to the
approximation in the starting equations. Because of our limi-

3
-2 0@ 5 2 Latal v alinla))

. . . . 9 4
tation of_ taking into account o_nly powers up ¢b the final T — pMW({ag},T)+2 pe n(ag) (13)
expression should also contain only terms up to the same aT a - const
order.

The inversion procedure is done in detail as folldd4].  These expansions are valid for weakly coupled multicompo-
We split the chemical potential into an ideal and differentnent plasmas at any degeneracy. In TheQ limit they re-
interaction parts each containing zero, oneef), two  duce to ther¢ expansion ( is the Brueckner paramejeof
(~e*, or more interactionge=pu’+ M+ @ +.... In  Gell-Mann and other§13,16. In the low density high tem-
our case it is appropriate to suggest thet<u® VieN. perature limit, Eqs(12) and (13) reduce to density expan-
Then we can do a Taylor expansion of E8) aroundu®. In  sions up to fie?)? [17].
this way we get expressions for all of the interaction parts of In Fig. 4, the results from different types of inversions are
the chemical potential as functions of the free chemical pocompared to each other. It is clearly visible that, especially in
tential if we demand that the density is given by  the region where no limiting law is valid, one has to be
={,l 1,2(,8,u2). According to our starting approximation all careful in using one approximation or another. Unphysical
terms of higher order in the interaction thahare dropped. behavior of the pressure arises if not all terms of a particular
Doing the same Taylor expansion in E@) and inserting the order are taken into account. As pointed out before, we prefer
results for the interaction contributions of the chemical po-the consistent approximation up to ordgrobtained by the
tential as obtained in the previous step, we get the pressure golden rule scheme. The anomalafsexchange term is of
the canonical ensemble as a function of the free chemicdligher order at low densities and is compensatel=ad and
potential u° and thus of the density. This procedure we callwill thus be omitted from our further discussion. In contrast,
inversion 2, and the curves obtained with this inversion carihe inclusion of the norma¢* term is necessary for a con-
be seen in Fig. 4. sistent approximation. The difference between our rééw
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1.1
0} e
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. 24 -3
0.25 -——- n=2.6% 1023cm ;
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0.0 <
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0.6 1 (units of ag)

log,on (em™) FIG. 6. Radial distribution function for an electron gas at tem-
peratureT=1x 10° K for different densities. Curves not especially
FIG. 5. Pressure of an electron gas normalized by the idealienoted are calculated in tle8 approximation(Eq. (14)].
pressure at different temperatures as function of the density. DH
means the nondegenerate Debyéekéil correction to the ideal gas anomalous® term, the RDF for an electron gas can then be
result. TheT=0 result is due to Gell-Mann and Brueckrdi6]. written as
The dashed curves are in MW approximation; the solid curves take
into account also the normaf term[Eq. (12)]. g(r)=1+gHF(r)+gMW(r)+ge4”(r). (14)

Using momentum representation the Montroll-Ward and the

approximation and our older MW schenithout the nor- " i
normale® exchange terms are given by

mal e* term) is essential and can be seen in Figsdlid line

versus long dashed line
MW( ):E d_wMUmg—l( w)—Ime(p,w)]
9 P n2) 2m Ved P) P . ’

IV. RESULTS AND DISCUSSION

on 2m [ dq,dqg, VedP+0:+02)
. 9" (p)==— 6 2., 2 2 2

Now we want to discuss our results for the EOS and com- n (2m)° q1+0d2—(P+01) = (P+0z)
pare our findings with results from different methods. Let us . _
start with the equation of state for an electron gas. Three *{1(Quf(a)[1=F(a+p)][1-F(dz+p)]
isotherms for the pressure according to EtR) using the —f(g+p)f(g+p)[1—f(g)][1—f(gz)]}.
golden rule scheme are shown in Fig. 5. For low and high
densities the pressure approaches the ideal result. In these (15

limiting cases it is not necessary to evaluate the full expresagier Fourier transformation, the RDF in position space is
sions of Eq(12). As is shown, simple analytical expressions ¢, nq. |n Fig. 6 results for the RDF of an electron gas are

[16,17) describe the pressure with high accuracy. Only in theshawn. For comparison a RDF calculated by a hypernetted
intermediate range of densities from?@o 107 cm 2 do chain (HNC) scheme was drawn. We used a pure Coulomb
we find deviations from th'e'limiting slopes. From higher to potential and theaLLNAT algorithm to calculate the HNC

lower temperatures the minima become more developed angdpr 1o this density and temperature correspond the follow-

move tc_) lower dens_ities. This is due _to the relevance of th‘?ng values of the coupling parameter and the degeneracy pa-
interaction terms with respect to the ideal parts of the PreS;ameterT =2.4. nA3=9.6. Whereas the HNC scheme sums
: 4,nA;=9.6.

sure. At higher densities quantum corrections are of |mporUp nearly all the interaction contributions but does not ac-

tf"lce I\‘Fjlmd the curves tr)nerge intf? thﬁ ideal Ze'eha\;]mp‘( count for quantum effects, the opposite is the case foethe
=1). Moreover, it can be seen that the norrealexchange approximation of the RDF given by Eqél4) and (15). It

:erm g_lrvr:es relgvantf corll'gr!tbutl?ns onlytfo[) Igwer tempe.ra'accounts for correlation and quantum effects up to the order
ures. 1he region ot vaidity ol our perturbation expansiongs ;, o consistent manner. As can be seen in Fig. 6, quantum

has to be proven carefully. We mention that this intermediatee ects shift the RDF at small distanceso values greater
region is, at present, not covered by a consequent theory afflan zero. This is a result of the uncertainty principle, which

should, thus, be subject to numerical simulations Wh'Chcan also be observed if an effective potentaicounting for

could support Padapproximations. : )
. . e guantum effects in lowest order, e.g., a Kelbg poteniil
Let us consider additionally the radial distribution func- used in the HNC scheme.

tion (RDF) which is of interest for many investigations. It is

obtained by a functional derivative of the mean potential
energy with respect to the interaction potential. From the
mean potential energy given by E®), one may deduce the We find the same qualitative behavior as for the EOS of
corresponding approximation for the RDF. Neglecting thethe electron gas for fully ionized hydrogen, which we want

A. The quantum electron gas

B. Fully ionized hydrogen
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FIG. 8. Pressure of hydrogen as a function of the electron de-
generacy parameterA® for different values of the classical cou-
pling paramete =e?/(kgTd) (d=[3/(47n)]**—mean particle
distance in different techniques: DPIMC results of Filinaat al.

[22] (crossey our results(solid). The value ofl" belonging to a
certain curve changes from top to bottom as indicated.

P/py

grow. Both the MW ande* expansions fail to meet the
WPMD points. Taking into account the* exchange term
leads to a pressure larger than the ideal part. In this region
the electrons form a weakly coupled quantum gas and the
protons form a strongly coupled classical fluid. Our approach
fails to describe these strong correlations. We want to remark
that for protons the degeneracy parameterf; is equal to
unity at n~6x10°" cm 2 for T=10°K and at n~2
X 107° cm ™2 for T=1C° K.

FIG. 7. Pressure of a fully ionized hydrogen plasma normalized Another numerical method is the PIMC simulation. There
by the ideal gas result at=10° K (upped andT=10° K (loweny  are two different techniques called RPIM@stricted PIMC;
as a function of the electron density in different approximations.Militzer and Ceperleyf21]) and DPIMC(direct PIMC; Fili-
The WPMD data points were computed by Knd@g]. The solid "oV et al. [22]). Both methods use a path-integral represen-
line is oure* approximation{Eq. (12)], the dashed curve gives the tation of t_he partition fur}ct|on, but they differ in d.eta|ls of
MW approximation. The low density Debye-ekel result is dash- the€ handling of the density matrix and in the solution of the

dotted, whereas th&=0 result is dotted. Additionally, some pa- fermion sign problem. Filinowet al. use an analytical high
rameters are shown: the classical coupling paramefer temperature expression for the two-particle density matrix,

=e%/(kgTd) (d=[3/(4mn)]¥*—mean particle distangethe de- Whe.reas Militzer and Ceperley solve the Bloch equation nu-
generacy parametatA® (for electrons, andr., the nonideality ~Merically for the same purpose.

parameter in the quantum case. ~We compare our res_ults_ to results _of both PIMC tech-
niques. First, we show, in Fig. 8, data given by Filinstval.

22] for I'<<1. There is a very good agreement with less than
.5% deviation al’=0.2 up to 5% deviation af=0.8.

logion (em™)

to study next. Although hydrogen is the simplest element i
shows features which are not easily described, even in ther- A gimilar good agreement can be found at lower densities
modynamic equilibrium. Several very different theoreticalin Fig. 9, where we show our results for an isotherniat
and numerical methods were developed in the past to over: 1 og 006 K together with RPIMC results by Militzer and

come those difficulties. We mention here wave-packeicenerieyi21]. Additionally we show, in Fig. 9, a low density
molecular-dynamics calculatiod8,19 and path integral expansion up to ordem@?)®2 [17]. For higher densities, as

Monte _Carlo simulation$21,22. . . can also be seen in Fig. 10, the simulation data and our
In. F'g.' 7 we show a comparison between dlﬁergnt AP results fail to match. This is due to strong correlations, i.e.,

proximation levels of our theory and WPMD results given by bound stateghydrogen atomsand other complexes which

Knaup [20] for two different temperatures. The WPMD change the behavior of the thermodynamic quantities in this

simﬂ!ations dtreat prottons aij ((:jlassipk?l t)harticllest havirtl)g bO’;Farameter region. Additionally, in Fig. 10, the Pademula
position and momentum and Adescribe the €lectrons by antiqjts and WPMD data taken frofh8] are shown.

symmetrized wave packefd9]. We find agreement with
simulation data especially in the regiom\3<1, i.e., for

weakly degenerate plasmas. In this region, some of the

WPMD data show pressure aboph,= 1, in contrast to our We calculated the equation of state of dense hydrogen in
findings. For densities higher thag=1 deviations begin to the e* approximation using thermodynamic Green’s func-

V. CONCLUSION
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1.2
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*
gz ————— — - —— — — — — — 0.8 * :
(=3
o 0.6
g 2
= 0.8 S '
T=125000K 0.4 P
4 . :
—e N Padé /7 T=125000K
0.6 MW _ & .
B 0.2 :
A RPIMC K - MW A RPIMC
"""" low dens. exp. s T= ; * WPMD
0.4 : 0.0
205 210 215 220 225 230 235 240 21 22 23 24 25 26 27 28
3 -3
logipn(cm ™) logion (cm )

FIG. 9. Pressure of hydrogen with respect to the ideal gas as FIG. 10. Internal energy of hydrogen with respect to the ideal
function of the electron density in different techniques. RPIMC datagas as a function of the electron density in different techniques.
(triangles is of Militzer and Ceperleyf21], the solid line and the DPIMC data of Militzer[21]; WPMD data of Knaupet al. [18];
dashed curve are oef [Eq.(12)] and MW approximations, respec- Padeformula from[23]; the solid and dashed curves are our results.
tively. The short dotted line gives a low density expansion up toAdditionally the T=0 limiting result is showr(long dotted.

ne?)®2 due to Riemanret al. [17]. . ,
(ne) [17] sufficient only for small” values; for higher ones one should

add(classical HNC based contributions to the pressure. The

tions. Our approximation is valid for weakly coupled sys- physical situation becomes easier to describe again when the
tems of any degeneracy. In these parameter regions our eideal part of the pressure of the degenerate electron gas
pansion is of high accuracy. We mention that the inclusion oflominates, and additionally the protons become degenerate.
the exchange contribution of ordet gives an essential con- For this situation up to now there exist no simulation data for
tribution to the thermodynamic functions for the electrons.comparison. A future task will be the inclusion of higher
From Figs. 4, 6, 7, and 10, one can see that there is sonffder correlations, which will allow the approach presented
need for further efforts in the intermediate density region,ere to be applied to strongly coupled degenerate quantum
which should be covered by numerical experiments. plasmas. Furthermore, it Would_be of interest to consider the

We compared our results to those of very different simuf€9i0n where protons behave like Fermi particles and com-
lation methods. FoF<1 we found good agreement with all P&re our results to simulations.
of those techniques. Some of the WPMD results showed
larger deviations from our results than the PIMC data. For
higher coupling we must state that our approach is not good We gratefully acknowledge collaboration and discussions
enough to describe the strong coupling in the proton subwith Burkhard Militzer, Michael Knaup, and Vladimir Fili-
system. Strong coupling may also occur in systems of ions imov. We want to thank B. Militzer, V. Filinov, and M. Knaup
a trap[24]. In ion systems and in the proton subsystem thefor providing simulation data. This work was supported by
exchange contributione* does not give an essential contri- the Deutsche Forschungsgemeinschaft through SFB 198
bution. However, the approximation up to the MW term is “Kinetik partiell ionisierter Plasmen.”
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