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A wide region of beam parameters is numerically scanned and the dependence of wakefield properties on the
beam length and current is clarified for the blowout regime of beam-plasma interaction. The main regimes of
the plasma response are found, which qualitatively differ in the plasma behavior. To characterize the efficiency
of the energy exchange between the beam and the plasma, the energy flux through the comoving window is
introduced. Scalings of the energy flux for the linear plasma response and the main blowout regimes are
studied. The most efficient energy transfer occurs in the so-called “strong beam” regime of interaction. For this
regime, analytical approximations for various aspects of the plasma response are obtained.

DOI: 10.1103/PhysRevE.69.046405 PACS number(s): 52.40.Mj, 41.75.Lx, 52.35.Mw

I. INTRODUCTION

This paper is related to electron-beam-driven acceleration
of particles in plasmas[1] (termed plasma wakefield accel-
eration, PWFA). PWFA is of great interest due to availability
of high accelerating gradients(orders of magnitude higher
than those in conventional accelerators) and intrinsically
long acceleration distance that is not limited by driver dif-
fraction or dephasing (unlike laser-driven wakefield
schemes). Reviews of PWFA basics can be found in Refs.
[2–4].

Several PWFA schemes were proposed that differ in the
drive beam configuration[1,5–8]. Here we study the so-
called blowout regime in which the head of a short driver
ejects all the plasma electrons from its propagation channel
and most part of the beam propagates in the electron-free
region (termed the cavern henceforth). The blowout regime
has been extensively studied both theoretically[8–15] and
experimentally[3,16–22].

Most of the recent theoretical studies of the blowout
PWFA were concentrated on the beam and plasma param-
eters of SLAC E-157 experiment[11–15]. However, the op-
timum regimes of the wakefield accelerator may not fall into
parameter regions accessible with today’s facilities. In this
paper we scan a much wider parameter area and study the
plasma response to a dense drive beam for various beam
sizes and currents. We also introduce the total energy flux as
a measure of beam-plasma energy exchange and study its
scalings.

The paper is organized as follows. In Sec. II we describe
the mathematical model adopted for the beam and plasma
and the code used for simulations. In Sec. III we present the
map of blowout PWFA regimes and describe the main
asymptotic cases. In Sec. IV we derive an analytical approxi-
mate formula for various cavern parameters in the special
case of a “strong beam.” In Sec. V we show the main scal-
ings for geometrical parameters of the cavern and describe
the motion of plasma electrons in various regimes. In Sec. VI
we introduce the total energy flux and study its scalings in
the linear and blowout regimes of PWFA. The main results
of the paper are emphasized in the Summary.

II. THE MODEL AND THE CODE

We consider a dense axisymmetric ultrarelativistic elec-
tron beam propagating through the infinite fully ionized cold
plasma of a constant densityn0 (Fig. 1). Our aim is to study
the plasma response to beams of various length, radius, and
peak current. The long-term beam dynamics, a role of the
plasma temperature or inhomogeneity, and the plasma re-
sponse to beams of exotic shapes are beyond the scope of
this paper. We also neglect the motion of plasma ions since,
in the time of interest, the ions cannot shift considerably.
There is no external magnetic field in the system.

Since the time scale of beam evolution is much longer
than the plasma time scale, the problems of beam dynamics
and plasma response get decoupled, and we can consider the
beam as a “rigid” nonevolving charge distribution propagat-
ing with the velocity of lightc. Correspondingly, the picture
of plasma fields and currents does not change in the window
that moves with the beam.

In the comoving window we use the cylindric coordinates
sr ,w ,jd, wherej is related to the laboratory coordinatez and
time t asj=z−ct. The beam density is taken in the form

nbsr,jd =
Ib,max

4pecsr
2e−r2/2sr

2F1 + cosS j

sz
Îp

2
DG ,

uju , sz
Î2p, s1d

whereIb,max is the peak beam current,sr andsz are the beam
dimensions, ande.0 is the elementary charge. This cosine
distribution overj is more convenient for simulations than
the Gaussian one because it smoothly vanishes outside an

FIG. 1. (Color online) Geometry of the problem.
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interval of finite length. It is close to the distribution

nbsr,jd =
Ib,max

2pecsr
2 expS−

r2

2sr
2 −

j2

2sz
2D s2d

and contains the same number of particles.
For calculation of the plasma response, we use the code

LCODE [15,23]. In simulations, plasma electrons are modeled
by macroparticles, while plasma ions are the immobile back-
ground charge. Each macroparticle is characterized by six
quantities: the transverse coordinater, three components of
the momentumspr, pw, andpzd, massM, and chargeq. The
longitudinal coordinatej is not a parameter here, but an ar-
gument. Since the beam is rigid, all particles starting from a
given radius copy the motion of each other, and their param-
eterssr, pr, pw, andpzd can be found as functions ofj.

Parameters of plasma macroparticles are initialized ahead
of the beam(at j=sz

Î2p) and then calculated layer by layer
according to the equations

dpW

dj
=

dpW

dt

dt

dj
=

q

vz − c
SEW +

1

c
fvW 3 BW gD , s3d

dr

dj
=

vr

vz − c
, vW =

pW

ÎM2 + p2/c2
. s4d

The plasma current and electron density are obtained by
summation over the macroparticles lying within a given ra-
dial interval:

jW = Ao
i

qivW i

c − vz,i
, n = − Ao

i

qi/e

c − vz,i
, s5d

whereA is a normalization factor. The denominator in Eq.
s5d appears since contributions of a macroparticle to the den-
sity and current depend on the macroparticle speed in the
simulation window. This plasma model is similar to that
used in Ref.f24g for fast simulations of laser-plasma inter-
actions.

Knowing jW and n at somej, we obtain the fields in the
corresponding layer from the Maxwell equations that, under
the condition

] /] j = ] /] z= − ] /] sctd, s6d

are reduced to the equations

1

r

]

] r
rEr = − 4pesn + nb − n0d −

] Ez

] j
, s7d

] sEr − Bwd
] j

=
] Ez

] r
=

4p

c
jr . s8d

The plasma response is calculated layer by layer towards the
decreasingj sfrom right to left in Fig. 1d. Both r andj steps
are 0.005c/vp, wherevp=Î4pn0e

2/m is the unperturbed
plasma frequency. Thej step is automatically decreased
near field singularitiesf15g. Typically, ten macroparticles
per r step are used.

Deriving various scalings, we use dimensionless quanti-
ties and denote them by tildes, for example,

Ĩm =
eIb,max

mc3 , s̃z =
szvp

c
, ñ =

n

n0
, Ẽz =

Ez

E0
, s9d

whereE0=Î4pn0mc2.

III. MAP OF BLOWOUT REGIMES

There are three parameters in our model which determine
the plasma response:Ib,max, sz, andsr. For beams of a small
radiusssr !c/vpd, the plasma response weakly depends on
sr, so we can plot a two-dimensional map of cavern regimes
on the planessz,Ib,maxd [Fig. 2(a)]. The casesr *c/vp is less
interesting since wide beams always produce a weaker wake-
field than narrow beams of the same current.

All simulations presented in the paper are made forsr
=0.1 c/vp unless stated otherwise. The map is deliberately
extended to the region of high beam currents. These currents
can be obtained by longitudinal compression of a high-
energy beam and should also be analyzed.

For long beams, we observe the regime at which the beam
smoothly moves plasma electrons aside and leaves no much
perturbations behind[Fig. 2(c)]. In this regime, the longitu-
dinal electric field is rather small; it decelerates the front half
of the beam and accelerates the tail half. The cavern is long;
it is usually termed “ion channel.” The channel has its maxi-
mum width at the place of maximum beam current. Dimen-
sions of the channel, electromagnetic fields in the system,
plasma current, and density are in a good agreement with the
infinite beam model[25–28]. According to the model, the
plasma response to the beam is local, i.e., it is completely
determined by the beam current at this cross section. The
theoretically predicted channel radius is shown in Fig. 2(c)
by the “theory” line. The beam in the ion channel regime is
subject to the instability of two-stream nature, when a trans-
verse shift of the beam couples with a disturbance of the
channel boundary[29–31].

As the beam shortens or the beam current increases, there
appear strong oscillations of the cavern boundary[Fig. 2(e)]
which continue after the beam passage. Most part of the
beam energy remains in the plasma, and field oscillations
take a singular form. The widest place of the cavern shifts
behind the cross section of maximum beam current, and the
cavern itself gets wider than predicted by the infinite beam
model (theory line). In Fig. 2(a) we show several lines that
quantitatively characterize these changes(from bottom right
to top left): the line where 95% of the energy taken from the
decelerated beam head is recuperated by the accelerated
beam tail, the line showing 0.5sz lag of the widest cavern
place behind the beam center, the line where the cavern is
20% wider than predicted by the infinite beam model, the
line showing 5% of energy recuperation by the accelerated
tail of the beam, and the line where the cavern radius has its
maximum as a function ofsz.

At high beam currents and moderate beam lengths, we
observe the “strong beam” regime of the blowout[Fig. 2(g)].
In this regime, most part of the beam sees high-amplitude
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decelerating field and efficiently transfers the energy to the
plasma. The cavern is essentially asymmetric, its widest
place is located near the beam end, and the cavern itself is
noticeably longer and wider than predicted by the theory
(theory line). A narrow high-density electron layer is formed
near the cavern boundary(screening layer) so that perturba-
tions do not deeply penetrate into the plasma.

In the strong beam regime, some plasma electrons get
captured by the large electric field at the end of the cavern

and get accelerated up to hundreds of MeV. This phenom-
enon cannot be self-consistently modeled within the adopted
plasma model and causes a code fault. Thus, for sufficiently
strong beams this code can simulate only the first period of
the wakefield up to the singularity. The area of correct simu-
lation beyond the singularity is located in Fig. 2(a) below the
gray line.

For short beams, we observe the third main regime of the
blowout [Fig. 2(d)]. In this regime, the beam acts similar to

FIG. 2. (Color online) The map of blowout regimes(a), the palette used for electron density maps(b), the plasma electron density
(grayscale maps), longitudinal on-axis electric fieldEz, and beam currentIb for various regimes: ion channel(c), short beam(d), perturbed
ion channel(e), E-157 beam(f), and strong beam(g).
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the point charge. Nearby electrons receive an instant push
and form a clearly visible diverging jet. Far electrons form
the screening layer(not as dense as for strong beams) and
define a tear-shaped form of the cavern(which is wider at the
front half). Near the singularity, the second jet of plasma
electrons is formed. The field singularity itself is asymmetric.

The transitions between the main regimes are smooth, so
the definition of regime boundaries is somewhat arbitrary. To
draw several boundaries in Fig. 2(a), we use the energy flux
described in Sec. VI. In the “short beam” area, the scaling
(77) is correct up to 20%. In the “strong beam” area, the

dimensionless energy flux(69) behind the beam isC̃.20.
The regime of E-157 experiment[11–15] is shown in Fig.

2(f). It is located at the transition between the main cavern
regimes and contains a mixture of the above-discussed fea-
tures. As for long beams, the dimensions of the cavern are
close to theoretical values. As for strong beams, most part of
the beam is decelerated. As for short beams, we observe the
jet of scattered electrons and asymmetric field singularity.

IV. ANALYTICS FOR STRONG BEAMS

Before describing specific properties of the strong beam
regime, we recall some general features of the blowout
PWFA. In the absence of plasma electronss j r ;0,n;0d, it
directly follows from Eq.(8) that the longitudinal electric
field is constant across the cavern:

] Ez

] r
= 0. s10d

From the Poisson and Maxwell equations

1

r

]

] r
rEr = 4pesn0 − nbd −

] Ez

] j
, s11d

1

r

]

] r
rBw = − 4penb −

] Ez

] j
, s12d

we find that the focusing force on the ultrarelativistic beam
is linear inside the cavern:

Fr = − esEr − Bwd = − 2pn0e
2r . s13d

An analytical treatment of the strong beam case is pos-
sible owing to the narrow screening layer that separates the
cavern and surrounding unperturbed plasma. The electrons in
this layer move coherently with nearly equal velocities. The
j dependencies of layer velocity components are shown in
Fig. 3(a) [all illustrations in this section are made forIb,max
=51 kA, sz=2.4 c/vp, Fig. 2(g)].

We can introduce the surface density of the screening
layer

L =E
layer

n dr, s14d

e.g., by integration overn.2n0 regionsthe result is insensi-
tive to the layer detection thresholdd. As follows from Eq.
s8d, this quantity approximately relatesEz inside the cavern
with the layer velocity:

Ezs0,jd =
4pe

c
E

0

`

nvr dr <
4pe

c
Lvrsr ld, s15d

where r l is the layer radius. To estimateL we notice that
most of the plasma electrons flowing into the moving win-
dow in the circle of radiusr l gather in the screening layer of
the thicknessDr fFig. 3sbdg. The electron flux is steady in the
moving window:

pr l
2n0c < 2pr lDr nsr ldfc − vzsr ldg, s16d

from which

FIG. 3. (Color online) (a) Electron velocity in the screening
layer(obtained by averaging overn.2n0 region), (b) trajectories of
plasma electrons in the moving window(for estimation ofL), (c)
test of the estimate ofL, (d) correction factora, and(e) test of the
estimate ofa.
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L < nsr ldDr <
r ln0c

2sc − vzd
; Lest s17d

shenceforth we omit the argument in designation of layer
velocitiesd. To check the precision of this nonrigorous esti-
mate, in Fig. 3scd we compare the exact value of the on-axis
Ez with its approximations15d ands17d. In the wide interval
of j, the estimate is correct up to 20%.Introduction of the
correction factora=1.20 essentially improves the esti-
mate. This factor may be explained by the fact that not
only then.2n0 layer contributes to field creation. In what
follows, we definea as the factor that makes the formula

Ezs0,jd <
4pea

c
Lestvr = 2pn0ear l

vr

c − vz
s18d

strictly correct at the point of maximum positiveEz fmarked
by the cross in Fig. 3scdg. In the strong beam region,a
weakly depends on the beam current and linearly decreases
as the beam length increasesfFig. 3sddg:

a < aest; 1.29 − 0.033szvp/c; s19d

the precision of this approximation is illustrated by Fig. 3sed.
With the expression forL, we can relate the shape of the

cavern and the longitudinal field inside it. From simple geo-
metrical considerations(Fig. 4) we have

drl

dj
< −

vr

c − vz
, s20d

whence

Ezs0,jd < − 2pn0ear l
drl

dj
= − pn0ea

drl
2

dj
. s21d

The precision of this approximation is illustrated by Fig. 5.

As follows from Eqs.(11) and (12), the transverse fields
in the cavern depend on the derivative]Ezs0,jd /]j. Let us
relate this quantity to other cavern parameters. To this end,
we integrate Eq.(7) and divide the integration interval into
two parts as follows:

0 =E
0

` S4pesn + nb − n0d +
] Ez

] j
Dr dr < E

cavern
+E

layer
.

s22d

Each part can be calculated or approximated:

E
cavern

=
r l

2

2
S ] Ezs0,jd

] j
− 4pn0eD +

2Ibsjd
c

, s23d

E
layer

<r lDrS ] Ezsr l,jd
] j

+ 4pefnsr ld − n0gD , s24d

whereIbsjd.0 is the absolute value of the beam current. For
the field derivative in the layer, we havesFig. 6d

] Ezsr l,jd
] j

, −
Ezs0,jd

Dj
, −

Ezs0,jd
Dr

Dr

Dj
, −

Ezs0,jd
Dr

vr

c − vz
.

s25d

Inserting Eqs.s23d–s25d and s17d into Eq. s22d, we find

] Ezs0,jd
] j

< 4pn0eS1 +
2Dr

r l
D −

4Ibsjd
crl

2 +
2vrEzs0,jd
r lsc − vzd

−
8peL

r l
< −

4Ibsjd
crl

2 −
4pen0vz

c − vz
+

2vrEzs0,jd
r lsc − vzd

.

s26d

Denote the resultant three termsA1, A2, andA3, respectively.
These terms are plotted in Fig. 7 along with their sum and
the field derivative itself. The approximation is seen to be
quite good everywhere but the very beginning of the cavern.

As follows from Fig. 7, in the beam region(at the forepart
of the cavern) the largest terms in Eq.(26) are the firstsA1d
and the thirdsA3d ones, while the field derivative is small.
Physically, it means that the beam current is mainly compen-
sated by the displacement current in the layer rather than by
the layer current or displacement current in the cavern. Ne-
glecting the smaller terms in Eq.(26), using Eq.(18), and
omitting the correction factora, we obtain

FIG. 4. Motion of the screening layer.

FIG. 5. (Color online) Relation between the cavern shape and
the on-axis electric field.

FIG. 6. Calculation of the field derivative in the layer.
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4Ibsjd
crl

2 <
2vrEzs0,jd
r lsc − vzd

<
Ez

2s0,jd
pn0erl

2 . s27d

This approximate equality gives us a remarkably simple es-
timate of the electric field in the firstsbeamd part of the
cavern:

Ezs0,jd <Î4pn0eIbsjd
c

, Ẽzs0,j̃d < ÎĨbsj̃d. s28d

The check of this estimate is given in Fig. 8sad. Notice that
the whole beam is predicted to fall into the region of decel-
erating field.

Now we can derive the shape of the diverging part of the
cavern from Eq.(21),

r l
2 < E

j

` Î4Ibsj8d
pn0ec

dj8, s29d

and estimate the maximum radius of the cavern for the
Gaussian beams2d,

rm
2 < 4szÎ Ib,max

n0ec
. s30d

This maximum radius is reached approximately at the beam
end. The fieldEzs0,jd changes its sign also here. The pre-
dicted cavern shape for the cosine beams1d is shown in Fig.
8sbd sright curved.

Let us obtain the law of motion for the screening layer at
the converging part of the cavern[where Ibsjd=0]. We as-
sume that the motion is determined by fields at the layer
inner boundary:

Ez < Ezs0,jd <
2pn0ear lvr

c − vz
, s31d

Bw < −
r l

2

] Ezs0,jd
] j

<
2pn0erlvz

c − vz
−

vrEzs0,jd
c − vz

< 2pn0erlS vz

c − vz
−

avr
2

sc − vzd2D , s32d

Er < 2pn0erl −
r l

2

] Ezs0,jd
] j

< 2pn0erlS c

c − vz
−

avr
2

sc − vzd2D
s33d

fwe have used Eqs.s12d, s18d, and s26d hereg. The law of
electron motions3d in terms of velocities reads as

dvr

dj
=

e

gmsc − vzd
FS1 −

vr
2

c2DEr −
vrvz

c2 Ez −
vz

c
BwG ,

dvz

dj
=

e

gmsc − vzd
FS1 −

vz
2

c2DEz −
vrvz

c2 Er +
vr

c
BwG ,

whereg is the relativistic factor of electrons. Substituting the
fields s31d–s33d into this law yields

dvr

dj
<

vp
2 r l

2g3c s1 − vz/cd2S1 −
avr

2/c2

1 − vz/c
D , s34d

FIG. 7. (Color online) The field derivative Ez8 and its
approximations.

FIG. 8. (Color online) Simulation results and analytical approxi-
mations for the longitudinal electric field(a), cavern radius(b), and
radial layer velocity(c).
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dvz

dj
<

vp
2 r l

2g3c s1 − vz/cd2

avr

c
s35d

and forms, together with Eq.s20d, a closed set of equations.
We can relate the velocity components dividing Eq.(34)

by Eq. (35):

dur

duz
<

aur
2/uz − 1

aur
, ur = vr/c, uz = 1 −vz/c. s36d

The solution to this equation is

aur
2 = 2uzS1 −

uz

u0
D, u0 = const, s37d

or, in the dimensional form,

vr
2 <

2sc − vzd
a

Sc −
c − vz

1 − vz,max/c
D , s38d

where vz,max is the layer velocity at the widest part of the
cavernswherevr =0d. The test of Eq.s38d is shown in Fig.
8scd.

Dividing Eq. (35) by Eq.(20) and excludingvr, we obtain

duz

dr̃l

<
ar̃ l

2g3uz
, s39d

where

1

g2 = 1 −
vr

2

c2 −
vz

2

c2 <
uzfau0s2 − uzd + 2suz − u0dg

au0
, s40d

r̃ l =
vprl

c
, u0 = 1 −vz,max/c. s41d

Equations39d has the analytical solution

r̃ l
2 <

4Îau0uz

sa − 1dÎau0s2 − uzd + 2suz − u0d
, s42d

the test of which is shown in Fig. 8sbd sleft curved. The
maximum cavern radius is thus related to the layer velocity
at this place:

r̃m
2 <

4

a − 1
Î u0

2 − u0
, s43d

or, in the dimensional form,

rm <
2c

vp
Îa − 1

Sc − vz,max

c + vz,max
D1/4

. s44d

Notice that, due to the factorÎa−1 in denominators, ap-
proximationss42d–s44d are very sensitive to the choice of
a.

Substituting Eqs.(37) and (42) into the dimensionless
form of Eq. (20),

dr̃l
2

dj̃
< −

2r̃ lur

uz
, s45d

we obtain the equation for determination ofvz as a function
of j:

duz

dj̃
<

uz
1/4fau0s2 − uzd + 2suz − u0dg5/4Î2su0 − uzd

a3/4u0
7/4Îa − 1

; Usuz,u0d. s46d

This equation has no solutions in elementary functions ex-
cept for the whole integration interval from the cavern end
sat jcavd to the widest placesat jmaxd:

sjmax− jcavdvp

c
< E

0

u0 duz

Usuz,u0d

=
Î2 fGs0.75dg2

Îp
S u0

2 − u0
D3/4

< 1.2Sc − vz,max

c + vz,max
D3/4

, s47d

whereG is the Gamma function. Using Eqs.s44d, s30d, and
s19d, we obtain

j̃max− j̃cav < s4 3 10−3d Ĩm
3/4 s̃z

3/2s39 −s̃zd3/4s8.8 −s̃zd3/2.

s48d

In our illustrative case, this formula predicts the value of
7.8 c/vp for the length of the converging part, while the
simulation gives 6.2c/vp.

The above illustrations show the precision of the analyti-
cal estimates for one special case only. The general map of
precision for key formulas is shown Fig. 9. It is seen that the
above estimates are correct in a wide region of parameters.
Surprisingly, the estimate(28) for the peak decelerating field
turns out to be very accurate between the strong beam and
short beam areas.

There is an interesting observation which can be ex-
plained by the above theory; namely, in the strong beam
regime,Ez decreases almost linearly in a wide interval ofj
[dotted line in Fig. 2(g)]:

FIG. 9. (Color online) Map of precision for several analytic
estimates. The numbers in parentheses refer to the equations in the
text.
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] Ezs0,jd
] j

< 2pn0e. s49d

This contrasts with one-dimensional strongly nonlinear
wakefields for which this derivative is twice greaterssee,
e.g., Ref.f32gd. Formulas49d follows from Eq.s26d and Fig.
7. Around the widest part of the cavern, the main contribu-
tion to the field derivative comes from the second termA2,
which approaches 2pn0e as the layer velocity tends to the
relativistic limit svz→−cd. The constant field derivatives49d
makes the right-hand sides of Eqs.s11d ands12d nearly equal
in absolute values, and we have

Er < − Bw < pn0er s50d

just behind the beamsFig. 10d.

V. SCALINGS FOR GEOMETRICAL PARAMETERS OF
THE CAVERN

The best place for location of accelerated particles in the
blowout PWFA is near the cavern end, where the accelerat-
ing field is the highest. Shortening of the cavern caused, e.g.,
by the driver depletion or a plasma density variation, may be
fatal for accelerated particles if they fall into the defocusing
region of the wakefield. Therefore it is important to realize
scalings of cavern geometrical parameters. The main param-
eters are the maximum radiusrm, location of the field zero
sjmaxd, location of the field singularitysjcavd, and closing
angle of the cavernsacd (Fig. 11).

The behavior of the cavern radius is shown in Fig. 12(a).
The radius monotonically increases with the beam current.
As a function of the beam length, the radius has a maximum
in the strong beam region and slowly decreases toward the

ion channel value while the beam length increases. In the
main blowout regimes, we have the following approxima-
tions for the cavern radius:

ion channel:r̃m < ÎĨm fsĨmd, fsĨmd P s2,2Î2d; s51d

strong beam:r̃m < 3.8 Ĩm
1/4s̃z

1/2; s52d

short beam:r̃m < 4.2ÎĨms̃z; s53d

the accuracy of which is illustrated by Fig. 12sbd–12sdd. For-
mula s51d follows from the ion channel theoryf26g, expres-
sion s52d is the dimensionless form of Eq.s30d; and Eq.s53d
is obtained empirically. Note that, although the surfaces in
Fig. 12scd and 12sdd have no plateau, they cross the
asymptotic values at correct places, which means an agree-
ment with the approximate formulas.

The location of the zero-field cross section is shown in
Fig. 13(a). For short beams, the length of the decelerating
field region (limited by jmax) linearly increases with the
beam current:

uj̃maxu < 1.95 + 0.6Ĩm. s54d

For strong beams, the theory predicts thatjmax is located near
the beam end and its absolute value grows proportionally to
sz. The thick line in Fig. 13sad marks the place wherejmax
=−2.5 sz. For the ion channel regime, the field changes its
sign near the beam center, and we observe the decrease of
ujmaxu, as the beam length increases. At low currents, the
oscillating component of the longitudinal field affects the
location of the zero-field point and somewhat shifts it for-
ward or backward relatively to the beam center.

FIG. 10. (Color online) Radial field profiles behind the beam
sjvp/c=6d.

FIG. 11. Geometrical parameters of the cavern and the method
of approximation ofac.

FIG. 12. (Color online) Radius of the cavern(a) and its scalings
in ion channel(b), strong beam(c), and short beam(d) regimes.
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The location of the field singularity is shown in Fig.
13(b). We do not find simple scalings for this quantity. Near
the boundary of the ion channel region we observe an abrupt
change ofjcav caused by merging of the first and the second
caverns[Fig. 13(d)].

The closing angle is shown in Fig. 13(c). It is close to 90°
for high beam currents and moderately long beams. This is
favorable for wakefield acceleration, since the region of the
good field is wide. In the ion channel regime, the cavern ends
gently sac→0d. The experimentally investigated area of
E-157 experiment falls into the transition region between the
two extreme cases.

The closing angle also shows the velocity of plasma elec-
trons near the end of the cavern, since

tan ac =
vr

vz − c
. s55d

The right closing angle means that the electrons move along
the beam axis with relativistic velocityvz<c. Zero closing

angle indicates that the electron motion is not relativistic.
Intermediate angles are possible only for a relativistic motion
with vr ,vz,c.

It is instructive to look at the motion of plasma electrons
in the laboratory frame of reference(Fig. 14). In the ion
channel regime[Fig. 14(a)], the electrons move backward
and remain at the shifted positions. Strong and short beam
regimes have no qualitative differences[Figs. 14(b) and
14(c)]: near-axis electrons are scattered away, mainly in the
radial direction, while most of perturbed electrons make a
circle near their initial position. Some of electrons are even
entrained by the beam and move forward.

VI. ENERGY FLUX

In the presence of the beam, there appears an energy flow
along the comoving window. This flow is composed by the
energy flow in the laboratory frame and the energy transfer

FIG. 13. (Color online) Location of the zero-field point(a), location of the field singularity(b), and closing angle(c) as functions of beam
length and current; illustration of merging of the first and second caverns(d).

FIG. 14. (Color online) Motion of plasma electrons in the laboratory frame for ion channel(a), strong beam(b), and short beam(c)
regimes. Insets show trajectories of the same electrons in the moving window.
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due to motion of the window. Denoting the unit vector in the
beam direction byeWz, we can write the flux density of the
electromagnetic energy as

SWem= − c eWz
E2 + B2

8p
+

c

4p
fEW 3 BW g s56d

and the total energy flux density in the comoving window as

SW = SWem+ o sg − 1dmc2svW − c eWzd, s57d

where the summation is carried out over plasma particles in
the unit volume. For zero-temperature fluid plasma models,
the energy flux density is

SW f = SWem+ nmc2sg − 1dsvW − c eWzd. s58d

Integrating Eqs.s56d–s58d yields us the energy fluxes along
the window, for example,

C = −E
0

`

Sz 2pr dr, C f = −E
0

`

Sfz 2pr dr . s59d

It is easy to check straightforward that the total energy flux is
the measure of beam-plasma energy exchange:

] C

] j
=E

0

`

jbzEz 2pr dr, jbz= − enbc. s60d

The difference betweenC andC f can serve as a measure of
the lost energy which cannot be retrieved by the accelerated
beam. In the absence of beams and nearby walls, the deriva-
tive ]C /]j must be zero; this can be used as a good test of
precision for simulation codes.

For low-density beams and a linearly respondent plasma,
the expression for the flux density can be written analytically
in the most interesting cases. To this end, we use the text-
book formula[2] for the longitudinal wakefield:

Ezsr,jd = 4pekp
2Èj

dj8E
0

`

coskpsj − j8dI0skpr,d

3K0skpr.dnbsr8,j8dr8 dr8, s61d

where

kp = vp/c, r, = minsr,r8d, r. = maxsr,r8d, s62d

and I0 andK0 are the modified Bessel functions of zero or-
der. If the beam density is factorable, i.e.,

nbsr,jd = nbmRnbsrdZnbsjd, s63d

then the field behind the beam has the form

Ez = Ezm cosskpj + w0dRezsrd, s64d

Rezsrd = kp
2E

0

`

I0skpr,dK0skpr.dRnbsrdr8 dr8. s65d

For the Gaussian beams2d, we have

Ezm= E0
2Î2ps̃zĨm

s̃r
2 e−s̃z

2/2, w0 = p. s66d

In the case of linear plasma response, the longitudinal veloc-
ity of the electron fluidvz plays the role of the wakefield
potential and no magnetic field is left behind the beam:

Ẽz =
] ṽz

] j̃
, Ẽr =

] ṽz

] r̃
=

] ṽr

] j̃
, B̃w = 0, s67d

whence, in the highest term, we obtain the energy flux den-
sity behind the factorable beams63d:

− S̃z ; −
Sz

n0mc3 =
Ẽz

2 + Ẽr
2

2
+

ṽr
2 + ṽz

2

2
=

Ẽzm
2

2
FRez

2 + S ] Rez

] r̃
D2G .

s68d

It does not depend onj and is directly related to the ampli-
tude and radial distribution ofEz.

The behavior of the energy flux for a low-density beam is
illustrated by Fig. 15, where the second beam is accelerated
by the wakefield of the first beam. The flux densitySz is
maximal on the axis, though most part of the energy is trans-
mitted at radii of the order ofsr or c/vp, whatever is greater.
Note that the electromagnetic energy flux[Fig. 15(a)] oscil-
lates around half of the total flux, as it should be in linear
Langmuir waves.

Figure 15(b) also shows how a weak plasma nonlinearity
changes the above idealized picture. As the on-axis electron
density increases, the energy flow shifts toward the axis, and
vice versa. Small oscillations ofC between the beams are a
numerical artifact; this is the way how the finite radius of the
simulation window can disturb the energy balance(for the
twice wider simulation window, the oscillations become in-
visible).

FIG. 15. (Color online) Example of a weakly nonlinear wake-
field: (a) the beam currentIb, excited wakefieldEz, electron density
n, and energy fluxesC and Cem; (b) spatial distribution of the
energy flux density.
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A typical behavior of the energy flux in the blowout re-
gime is shown in Fig. 16. A major part of the energy is
transmitted via the electromagnetic field[Fig. 16(a)]. There
appears a small difference betweenC andC f, which means
that some energy is irretrievably lost with scattered near-axis
electrons. The map of the energy flux density[Fig. 16(b)]
shows that the cavern boundary acts as a “mirror” that fo-
cuses the energy to the singularity point at the end of the
cavern[Fig. 16(c)].

The dependence of the dimensionless energy flux

C̃ = C
4pe2

m2c5 s69d

on the beam parameters is shown in Fig. 17 for two cross
sections. Given a peak current, the most efficient energy

transfer occurs in the strong beam regime. The maximum of

C̃ is exactly at the beam length for which the cavern width is
maximalfFig. 2sadg. For a fixed beam charge, the maximum
energy is transferred to plasma atsz<0.6 c/vp independent
of the beam current. The difference between Figs 17sad
and 17sbd shows the energy taken back by the tail of a
long beam.

Let us write out approximate formulas for the energy flux
behind the beam in two blowout regimes. In the strong beam
regime, it is convenient to calculate the total flux at the wid-
est place of the cavern, whereEz=0 on the axis. For the total
electromagnetic flux, we use Eqs.(56) and (50) to obtain

Cem<
c

8p
E

0

`

sEr − Bwd2 2pr dr

<
c

4
E

0

rm

s2pn0erd2 r dr

=
p2e2n0

2c

4
rm

4 . s70d

The contribution of plasma kinetic energy to the energy flux
is made mainly by the screening layer. It can be approxi-
mated as

Clayer< E
layer

nmc2sg − 1dsc − vzd 2pr dr

< mc2Lsg − 1dsc − vzd2prm

<
2pn0mc5

vp
2sa − 1d

S r̃m
2 sa − 1d

4
− 1D2

, s71d

where we use Eqs.s58d, s17d, and the consequence of Eq.
s44d:

g − 1 <
1

Î1 − vz
2/c2

− 1 <
2

r̃m
2 sa − 1d

S r̃m
2 sa − 1d

4
− 1D2

.

s72d

The total energy flux in the dimensionless form is

FIG. 16. (Color online) Energy flow in the strong beam regime
[the same beam as in Fig. 2(g)]: (a) the beam currentIb, excited
wakefieldEz, and the energy fluxes(total C, electromagneticCem,
and thermalC−C f), (b) spatial distribution of the energy flux den-
sity, and(c) directions of the energy flow on the density map.

FIG. 17. (Color online) Total energy flux at the zero-field cross-
section(a) and at the cavern end(b).
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C̃ = C̃em+ C̃layer<
pr̃m

4

16
+

2p

a − 1
S r̃m

2 sa − 1d
4

− 1D2

; Ca.

s73d

The precision of this estimatefwith the expressions19d for
ag is illustrated by Fig. 18sad. Insertion of Eq.s30d into Eq.
s73d does not result in a satisfactory estimate ofC since the
error of rm raised to the fourth power is too large.

For the short beam regime, the energy flux can be found
in terms of the instant push. An electron located close to the
beam at some radiusr gets the transverse momentum

Dp' <
2eQ

r
, Q =

Î2pIb,maxsz

c
, s74d

where Q is the total beam charge. The energy lost by the
beam per unit path length can be estimated as

C

c
< n0E

sr

c/vp Dp'
2

2m
2pr dr <

4pn0e
2Q2

m
ln

c/vp

sr
s75d

or

C̃ < sĨms̃zd28p2Lc, Lc ; − ln s̃r . s76d

For the illustrating case ofs̃r =0.1, wehave

Lc < 2, C̃ < 160sĨms̃zd2 s77d

in good agreement with numerical observationsfFig. 18sbdg.

VII. SUMMARY

We numerically scanned a wide region of beam param-
eters and clarified the dependence of main cavern properties
on the beam length and current for the blowout type of
beam-plasma interaction. Three main regimes of the plasma
response were found, which qualitatively differs in the
plasma behavior. These regimes are the ion channel regime
which can be described analytically by the infinite beam
model [25–28], the strong beam regime which allows us to
make analytical approximations correct up to tens of per
cent, and the short beam regime which can be understood in
terms of interaction of a point charge with the plasma.

To characterize the efficiency of the beam-plasma energy
exchange, we introduced the energy flux density and the total
energy flux in the comoving window. We studied scalings of
the total energy flux for linear and blowout plasma responses
and revealed that the most efficient energy transfer occurs in
the strong beam regime of interaction. Operation in the
strong beam regime requires high beam currents(tens of ki-
loamperes) that are not available at today’s experimental fa-
cilities, but achievable in future experiments by a longitudi-
nal compression of a high-energy beam.
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