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Energy loss of ions and ion clusters in a disordered electron gas
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The various aspects of the correlated stopping power of pointlike and extended ions moving in a disordered
degenerate electron gas have been analytically and numerically studied. Within the linear response theory we
have made a systematic and comprehensive investigation of correlated stopping power, vicinage function, and
related quantities for protons and extended ions, as well as for their clusters. The disorder, which leads to a
damping of plasmons and quasiparticles in the electron gas, is taken into account through a relaxation time
approximation in the linear response function. The stopping power for an arbitrary extended ion with a single
bound electron is calculated in both the low- and high velocity limitsy. Our analytical results show that in a
high velocity limit the main logarithmic contribution to the stopping power for an extened ion is significantly
modified and for instance, in the case of*Hei?*, and B&* ions must behave as (fw®), In(Av®?9, and
In(Av27%), respectively where is the ion velocity. This behavior may be contrasted with the usu@Pin
dependence for a point ion projectile. It is shown that the faétarhich depends on the damping can be
significantly reduced by increasing the latter. In order to highlight the effects of damping we present a
comparison of our analytical and numerical results, in the case of both pointlike and extended ions, obtained
for a nonzero damping with those for a vanishing damping.
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[. INTRODUCTION motivated, and number-conserving relaxation-time approxi-
mation (RTA), first considered by Mermifi9] and then by
Das[10]. In this approximation the effect of disorder which
leads to a damping of excitations enters the RPA dielectric
function, for a given electron-impurity collision frequengy
?nrougthpA(k,wHy) where y is used as a model param-

The energy loss of a charged particle moving in a degen
erate electron ga@EG) is of continuing interest. This is a
topic of direct relevance to a quantitative understanding, fo
instance, of beam-target interaction in the contexts of particl

driven fusion[1-3| and the implantation experiments which eter. In some investigations of ion stopping in carbon and

include a modification of metal surfaces using ion beamssilicon targetsy was determined by fitting —1pg~%(0,®, y)]

The ualence elcton system .ol can b fegarded, 0" erymona opca enery loss nctfti-13. Th
9 PP ' ) o disorder-inclusive dielectric function, with the collision fre-
sity ng. The energy losses of ions moving in such an electron

4 . guency as a free parameter, allows some physical insight and
?na: di(l:f:: tl):eollsg\j\?ilnegd tthO;gzggﬁnztc\)Egrllr(‘g gfomho;éhean d useful numerical estimates of the influence of disorder on

. . . energy loss in a DEG. The predicted effect is a shorter life-
\I/_vlirt]r?i:q[rr?e?rnadm\évvlvnc:nf g?']t’h:”lﬁ;;: rc;lcg:lastéophse(v;e’rae edone time and smaller mean free path of the plasmons resulting in
. ; P ¥€. €9 ynsiderable modifications of the wake field behind the pass-

Refs.[5-8] for reviews. The main part of these calculations

. Cn ing ion [14]. This is of particular importance for vicinity
was based on the linear response function in random—phase%ects on the energy loss of twi3] and multi-ion arrange-
approximation(RPA) which is usually valid in the weak cou- 9y 9

pling limit of an electron gas, i.e., for the density parameterments[ls’lq' For the stopping of a single ion, the broaden-

o 31/3 a . ~7ing of the plasmon peak with increasingshifts the thresh-
rs_—(3/47rn0a0) <1, wherea,=0.529 A is the Bohr ra old for the energy loss by plasmon excitation towards lower
dius. Electron energy band effects, electron-electron correl

. . o - yrojectile velocities. It now becomes possible for low-
tion beyond RPA, and electron-impurigglisordej collisions % J P

I Hibute to the li functi dh " thvelocity projectile ions to excite plasmorig addition to
all contribute fo the inear response function and hence 1o ingle-particle excitationsThis increases the SP at low pro-
linear response theory of SP, for real solids. To include al

. ) ectile velocities, compared to the disorder-free RPA result
these aspects at the same level is a formidable task. In th P

paper we shall consider a disordered electron gas in RPA a 2. Recently a similar study has been performed for a clas-
make a detailed study of effects of disorder on various as cal (nondegenerajetarget[17], where the parametey is

pects of SP. treated within the Faber-Ziman semiclassical expression in-
: . L . . luding the plasm mperature effects. For a DEG and for
In our work the effect of disorder is included in the linear cluding the plasma temperature effects. For a DEG and for a

; o ) . iven electron density, the damping parameter can be as-
response function within RPA through a simple, physlcallygumed to be a consta)r/n to a goog agppr)oximation. The damp-

ing parameter in RTA will be further commented on in Sec.
V.
*Electronic address: hrachya@irphe.am In an earlier work[18] we made a detailed study of the
"Electronic address: akdas@dal.ca respective contributions of collectiuglasmon and single-
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particle excitations to SP in a disorder-free DEG and found anduced electric fieldE;,q in the medium. For a three-
generalized sum rule for pointlike and extended charged pradimensional medium we have, for the $§ee, e.g., Refs.
jectiles and clusters. In a separate wftR] we investigated [6—8] and references thergin

the above-mentioned respective contributions to SP for

pointlike and extended projectiles in a disordered DEG SE_Jerext(r _Vt)!Eind(r:t)
within the linear response formulation, the effects of disorder

being taken included through a number-conserving RTA. The 1 K.v -1
present work, which is a natural sequel to but goes beyond = —f dk|G(k)[? >-Im .
[18,19, reports on our investigations of the individu&P) 2 k e(kk-v,y)
and correlatedCSP stopping powers of pointlike and ex-  Equation(2) is applicable to any external charge distribu-
tended ions as well as their clusters in a disordered DEG;on, \We shall apply it to a dicluster of two identical ions
Previously the CSP has been considered for diclusters angiih fixed nuclear chargge and one bound electron on each
within a simple plasmon-pole approximati¢20] and more  on moving in a disordered DEG at a given velooitylt is
recently in the context of an inertial confinement fusion scegsymed that the pointlike nuclei are separated by a variable
nario using the full Lindhardi.e., RPA dielectric function  gjstanceR, andd is the angle between the interionic separa-
and a variety of analytical and numerical methesise, €.9.,  tjon vectorR and the velocity vectow. For the projectile

Refs.[1,3,6,7,15,16,21,32%for reviews. In the studies pre- system under study we may Wri@u,(r) as
sented in this paper we use the full RPA dielectric function

and include damping through a number-conserving RTA for Qexdr) =Zd 8(r) + 8(r —R)]—€elp(r) + p(Jr —RP]. (3)
a DEG medium9,10]. The plan of the paper is follows. In o , ,
Sec. Il we briefly outline the linear response formulation forFOr Point-ions, only the delta-function terms in B§) need

SP of a dicluster of identical extended ions and use analytical® considered while for an extended-charge projectile all the
expressions for the disorder-inclusive dielectric function deeMS in Eq.(3) are includedp(r) is the spatial distribution,

rived in Ref.[19]. The dicluster SP formulation is then ex- assumed to be spherically symmetric, of bound electrons in
tended to am cluster system through a binary superposition.the ions. _

As in Refs.[18,19,23 we consider protoras a pointlike We use a 1s-type wave function of the forg(r)
projectile and an extended ion of arbitrary nuclear chaZge =(Z°I mag)""?exp(~Zr/ag) to describe the bound electron on
but having a single bound electron, as well as proton an@ach ion, witha, the Bohr radius. It may be remarked that,
N (N=2) extended ion clusters. As useful examples of ex-unlike in the work of Wang and Nag3], we are consider-
tended projectiles we consider He.i2*, and B&* ions, and ing an ur_lsc_reened 1s eIectron._The Fourier transform of the
He' ion N clusters. In Sec. Il we develop some analytical SPatial distributionp(r) =|¢a4(r)|* is then expressed agk)
techniques to calculate the SP of an extended ion in low- and (1+k?a§/42%)2,

high-velocity regimes. The two particular cases studied in For a dicluster of two identical ions we have

this section argi) low-velocity limit for extended ion SP _

moving in a damping-freéy=0) DEG, and(ii) high-velocity IG(k)[*=261Z = p( 1 + cogk - R)]. (4)
limit for arbitrary disorder(or ). Section IV contains sys- From Egs.(2) and(4) the SP of this two-ion system is then
tematic numerical calculations for the SP and the vicinagégound to be[19]

function. The results are summarized and discussed in Secs.

(2)

IV and V. a)\,R, ﬁ) = and()\) + ZS:ON()\!Rv 19’), (5)
where §,4(\) and S.o;(\,R,9) stand for individual and
II. STOPPING POWER: PRELIMINARIES correlated SP, respectively,
A. SP of an ion dicluster 16223, [ A -1
== 2

Consider an external charge with distributigg,(r ,t) SndM) = 773)(4)\2f0 z (a’Z)Zdeo ImS(Z’u’F)udu, ©)
=Qex(r —vt) moving with velocityv in a medium character-
ized by the longitudinal dielectric functiasik, w, y). Within 16223, (* A _
the linear response theory and in the Born approximation th&(\,R,9) = —5— 2f Zz(a,Z)Zde Im udu

X'\ Jo o e(zul)

scalar electric potentiap(r,t) due to this external charge
screened by the medium is given py;24]

2uz _ u?
X co Tgcosﬁ Jo| 2éz sinv 1_P .

A exdik - (r —vt)]
r,t)= dkG(K)————, 1
olry (277)3f " etk v, y) @ (7)
whereG(k) is the Fourier transform of the stationary chargeJy,+(x) is the Bessel function of first kind and zero order,
Qexd(r). 30=€?/2a3=2.566 GeV/cmHere we have introduced the

The stopping power which is the energy loss of the exterdimensionless Lindhard variableg=k/2kg, u=w/kvg,
nal charge regarded as a projectile, per unit path length in theherevg and kg are, respectively, the Fermi velocity and
medium regarded as a target material, can be calculated fromave number of the target electrons=v/vg, é=kgR.
the force acting on the charge. The latter is related to theZ(a,z)=1-Z"p(a,2), where a=mx?’Z, x°=1/mkecay
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=(4/97*Y% 4, and p(a,2) is the Fourier transform of the 1 -
spatial distribution of bound electron in the ion written in f2(Zu.I) = 8_23{FZ[U ~Y1(zU) - U, Yy (zU)] +[Z(UZ
the Lindhard variablegz and u. With the notations intro-

duced above we have - 1) -T7Y,(z,U.) - [A(UZ - 1) - T?]Y,(z,U,)}
(12
4 .
with U, =uz%z,
pla,z) = RN (8) B
(@®+2) YizU)=1 AU+1)%+T17 13
zZU)=In>—5——,
! Z2(U-1)>2+T1?
We briefly note that in Eq(5) the term for correlated stop-
ping power(CSB S, vanishes for larg® (R— ) and SP 2AU-1) 2(U +1)
is then the sum of individual stopping poweiSP) for the Y,(z,U) = arctanT - arctanT. (14

separate ions. FOR—0 the two ions coalesce into a
single entity. ThenS,,,=S,y and SP is that for a total |n the case of vanishing dampirig— 0 andI" — 0) the ex-
charge 2z=2e(Z-1). pressiong9)—(14) coincide with the Lindhard resufd].

Let us now specify the disorder-inclusive dielectric func-  In many experimental situations, clusters of ions are
tion. The target medium is assumed to be disordered due f@rmed with random orientations &. A correlated stopping
impurities, etc., with which the target electrons will undergopower appropriate to this situation may be obtained by car-
collisions. The effect of disorder on the RPA dielectric func-rying out a spherical average ovrof S, in Eq. (7). We
tion egpa(k, w) is included, in a number-conserving approxi- find
mation, through a relaxation time=1/y wherey is the col- _
lision frequency[9,10]. For r—o this linear response Seorl\,R)

function e(k, w,y) reduces to the usual Lindhard dielectric 16225, [~ A _
function. With the notations introduced in the preceding =32 gf Zz(a,z)j0(22§)zdzf Im udu,
paragraphg(k, , y) reads XN Jo o e(zul)
(15
(zu+il")[egpa(z,u,I') — 1] wherej(x) =sin(x)/x.
e(zul)=1+—— , - - ol -
zu+il'erpa(z,u,l') = 1)/[erpa(z,0) - 1] One may consider an interference or vicinage function
which is a measure of the difference between the individual-
© particle contribution and its correlated counterpart to the
stopping power. This function is defined ]
where I'=Ay/4E;, Er being the Fermi energyﬁ-2k§/2m SR, D)
with m as the effective mass. The quantify(or I') is a g(\,R9) = ————, (16)
measure of damping of excitations in the disordered electron Sna(N)
gas.egpa(z,u,I')=egpa(k, w+ivy) is the longitudinal dielec- .
tric function of a zero-temperatur@egenerateelectron SeorM,R)
gas in RPA.egpa(z,0)=2gpa(k,0) is the static dielectric gav(A’R):W- an
function. The explicit analytical expression for nd
erpa(z,u,T) has been derived in Rdf19], which we recall  Equation(5) can then be put in the form
here for completeness: SR ) = 25,41 + g, R, 9], (19)
) whence
erpA(Z,U,) = egpalk, 0 +i7)
2 Sav()\!R) = 2Snd()\)[l + gav()\yR)]- (19)

=1 +X?[f1(z'“'r) +ifa(zu )], (100 g\ R, 9) describes the extent of correlation effects with re-
spect to an uncorrelated scenario. The vicinage function be-
comes equal to unity aB— 0 when the two ions coalesce
where we have introduced the functiorig(z,u,I') and into an single entity, and goes to zeroRs:  when the two
fo(z,u,I') as in the usual RPA expression of longitudinal ions are totally uncorrelated.

dielectric function,

B. SP of a linearN-ion chain

1 1 TR ; i ; i
f,(z,u,T) = , {[Z(U2 - 1) -T?]Y,(z,U.) In many situations, e.g., in the interaction of an ion beam

— + —
62 with a target medium, several ions are stopped simulta-
- 2_1y_T2 neously. This naturally raises the question of correlation ef-
[Z(US-1)-T*JYa(z,U.) fects due to mutual influence of the ions in a given ion con-
+4I'4U,Y,(z,U,) —U_Y,(z,U)]}, (11 figuration. Some interesting candidates for these correlation
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effects are, for instance, the ion clouds created by very fassP for the chain vanishes for lar§(R— «) and the SP is
fragmentation and ionizatioon a femtosecond scal®f  the sum of individual ion SP’s§y— NS,q(\).For R—0
large clusterions when passing through a target. A possiblge haveS,\,R,¥) — S,q(\) and the SP is then that for
stopping enhancement for such large clusters is important i resulting cluster of charg&,— N2Sq(\).

connection with the proposed use of cluster-ion beams for

inertial confinement fusion as mentioned in the Introduction.

As in the case of single ion stopping, the whole slowing, stoppiNG POWER: THEORETICAL CALCULATIONS
down process of some arrangement of ions involves the SP,

the charge states of the ions, and—as an additional aspect— The most characteristic features of a charged projectile

the Coulomb explosion of these clouds of ions driven by theare its charge strength and structure, and the velacigne

mutual repul_sion among _the charges. AC(_)mpIete_ descriptioQaag from Eqs(5)~(7) that the stopping power of any ex-

of the stopping of thesr—_: ion qlusters requires a simultaneo nded projectile with effective chargeq=Z- p(a,2) grows

treatment of all these including correlation effects on both uadratically withZ.g. This is a consequence (’)f the linear
eff:

the SP and the charge state. In this paper we do not discu gsponse approach which depends quadratically on the per-

the charge state evpluti_on of the p_rojectiles unqler study, butTUrbationZ However, even under these circumstances, for
concentrate on the ion-ion correlation effects with respect tg eff: ' '

the SP for a given ion confiquration. ie. for aiven relatiVeextended projectiles the dependence of SP on the projectile
9 9 T 9 chargeZ (or the dependence on the total chargeZ-1) is

positions and charges of the ions at some instant in the'r[nore complicated than for pointlike ions, as can be seen

slowing down process. . .

: . . . . from Egs. (5)—7). In this context it may be recalled that
dic\I/l\Jhstthe:hI\?vgrg\éﬁoc%r;gigzlrn?hte)et)alggg anlsgéegszdl;gga?ng Svithin the linear response theory but for a classical or par-

P ergy : r}ially degenerate electron gas medium, the classical Bohr re-

beam projectile modelled by a chainNfions each of which sult with the upper cutoff parametéy,,.=m?/|Z|e? (which
moving with velocityv. In this study we restrict ourselves to epends on the ionic charg® leads a{(o a SP behaving as
a sinr:gle geometry rf]or the chain, which assulmes 2 neare§2ln(1/|z|) for large velocities(see, e.g., Ref{6]). In our
neighbor distanc® having an orientation anglé with re- g e N
spect _to the_ion velocity ve(_:tolr. This ion configuration has ﬁ%si \\/I:rgci;ugr{e?;;nl?sn; Epgvogﬁli?riﬁéugzttlgz_eg)ptrr;ision
been intensively explored in ear_ller worksee, e.g., Refs. Z2In(2m?fia) where w, is the plasmon frequency. This
[1,15,16,2] and references thergimnd can be viewed as a logarithmic f;ctor does IC;1ot depend on the ionic cHade

useful model to describe the overgédveragey behavior of id how bel he d q h locity |
ion distributions as produced in the fragmentation process oies' €s, as we show below the dependence on the velocity in

cluster ions when impacting a target. Furthermore, it allowsh® high-velocity limit is more involved than its low-velocity
for relatively easy analytical and numerical calculations. counterpart. In this section we W|Il_der|v_e some analyt_lcal
We can apply Eq(5)~7) to any selected pair of ions EXPressions for SP of extended ions in low- and high-
within a given configuration ok-ions Considering this con- Velocity limits with special attention given to the ISP.
figuration to be arlN-ion chain the energy loss for the chain
is obtained as a linear superposition of the corresponding

quantity for a dicluster, and is given by A. Low-velocity limit: General formulation

N-1 Let us consider SP for slow projectiles. A consequence of
SV R, 9) = NSpg(h) + 22 (N=n)Seon(A,NR ) the linear response theory, confirmed by experiments, is that
n=1 for ion velocitiesv low compared to the Fermi velocity,
16225, (* N _ the stopping power is proportional to(see, e.g., the latest
=3 gJ ZZ(“’Z)Zde Im experiment[25]). The coefficient of proportionality may be
XN Jo o e(zul) called a friction coefficient. Using analytical results obtained
XY \(z,U, §) udu. (20) for egpa(z,u,I) the general expressions for SP follow from

Egs.(5)—14):
Here Y\(z,u,d) is the structure factor of the linedt-ion
chain which depends oN and the orientation anglé. For

such a structure we expect a strong dependence of the SP on 87%3, [~ Za,2)E(z,1)Zdz

the orientation of the chain with respect to its velocity. For Sind(N) = 3712)(27\ o [+ OP

velocities parallel to the chain, that is f&|v (9=0), the ,

correlations between ions are maxinjdb,16,2] and the _ 8773, 2

structure factolY is then given by - 3ﬂ2X2)‘R‘nd(“'F'X ), (22)

sin(Nzug/\)

Sin(zué/\)
4725, (* Z%e,2)E(z,])Zdz
In Eq. (20) Spa(\) and S,on(X,NR,9) stand for individual Sord N, R 9) = 22 f 2+ 21T

and two-ion correlated SP’s and are given by E$.and X 0 X
(7), respectively. We again briefly note that the correlated + By(z&)sint 9], (23

2
Yn(z,u) =Yy(zu,0) = { } . (21)

[D4(z8)
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82220)\f°° Z%(a,2E(z,1)Zdz

S _~ i _ r,=2.677 (Cu) ="
SorA.R) 3% ) Jo(225) 2+ @2 081 7, =2.069 (Al) -7

(24)

0,6
where the dimensionless friction coefficieRq(a,I", x?) N;E
depends on both the target and projectile properties and ~ 04l
hence also on the dimensionless damping paramgter ES% ’
We have introduced the following functions: gi
0,24
- 2z f(29[f(2) - ¢z )]
Bzl =— , 25
@h)=—% szD) (25) y
"0,0 0,1 02 03 04
(., 1). r
<1>1(§)=? &= )sin2d) +£cos(2) |, (26)

FIG. 1. The friction coefficientRi,g(a,I', x?) for the He ion
(Z=2) vs damping parametel’ for various materialsrs=2.677

11/3 3 - ° : : e
® N 2) in2é - > 29) |, 27 (solid liney, rg=2.069(dashed lines The lines with circles are for
A9 53{(4 & )sin(2é) 2§COS( §)] @7 the proton(pointlike) projectile.
1 1 Z(z-1)2+T? The approximation(22) implies that the SP is propor-
#z,T) =3 +8_z3{[22(22_ 1)—F2]|”m tional to velocity. The velocity region in which the linear
proportionality between SP and the projectile velocity holds
—arA arcta 22+Z_arcta -z 29) may be inferred from the numerical calculatiofsee Sec.
n n r ' IV) and the recent experimental resul&b] on low-energy

proton and antiproton energy losses. It is seen from those
results that the approximatiof22) remains quite accurate

1+z (29)  even whern\ becomes as large asl.

1-7
4z 1-

From Eqgs.(26) and(27) it follows that ®,(£)—2/3 and

D,(¢)—0 at ¢—0. Consequently, as expected, .
SioiM R, 9)— Sog(\) whenR— 0. Since in the low-velocity , Ve shall now evaluate the last expression for ISP of ex-

limit both ISP and CSP are proportional to the velocity of thetended lons. To evaluate E1) we split it into two parts as

In

1
(@)= z0=>+

B. Low-velocity limit: Extended ions (y=0)

projectile the vicinage functiog(\,R,9) at A<1 depends follows:
only on the interionic distancR and orientation angle. R 2 = L. (+A) + Z2Z(a)L 2 32
When the damping vanishé¢k — 0) Eq. (28) becomes nd(X) = LX) (@)Lale ), (32
where

Wzl — 1@~ T a1-2+0007),  (30) Ot Pd i
Ll(X)—fO 2+ 2P Lo(a, x%)
where 6(z) is the Heaviside unit-step function. Therefore 1 A4
E(z,T')— 6(1-2) whenT — 0 and from Eq(22) we find :f z
0 (Z+ A2+ D
8723, f ! Za,22dz _ 87%3,
32 o 2+ 2@ 3m

(33

Sna(N) = ARing(a, X?).

) = {(Zg)iii_éi 34
(31) w-a 16/ da 169a® 489a3|

For pointlike projectile$ Z(z, «) — 1] the last expression be- Here the differential operataZ(«) is as introduced in Refs.
comes the known resulsee, e.g., Ref4]). These approxi- [18,19. The first term in Eq(32) is responsible for the en-
mate analytical results are well supported by full numericalergy loss of pointlike nucleus with chargé The second
calculations. In Fig. 1 we show the friction coefficient term describes the energy loss of an individual bound elec-
Ring(a, T, X% for He' ion (Z=2) vs damping parametd?  tron and the vicinage energy loss due to an interference in-
for two values of the density parameter=2.677 andr,  teraction between pointlike nucleus and the bound electron
=2.069corresponding to the valence electron densities irwith its spherically symmetric spatial distribution. We note
Cu and Al respectively. The lines with circles are for athat the functions ;(x?) andL,(«,x? can be approximated
proton projectile. As expected, the friction coefficient andquite well by substituting forf(z) the first two terms in a
hence the SP increase with an increasing damping paranseries expansion in powers e, i.e., for f(2)=1-7%/3. It
eterI'; this was previously reported in Refgl2—-14]. then follows from Eq(33) that
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1 2 1\ 1-)%3 45
e (2 2)- 0] e
10 2(1- Xz/s)z[ 3 2 1+23 39 4,07,
3.5
1 304
Lo(a, x2) = ’
2O A(1-x23) - ¥ % 2]
o (1 +2¢%3) & 2,04
X = 2 2N~ 2 B
a“(1-x713) - x x(1+a) =" 1.5
1 1,04
-— . 36
1+ 2)(2/3} (36 0.5
Equation(35) was obtained by Lindhard and Winthiet]. 0’010_4 i 103 o 102 o 101 o 100
For some further simplification of E¢36) we note that even )
for a light ion like He and for a metallic target materiad, X

=my’Z=2. Thus the parametes can be very large for
heavy ions withz> 1. Therefore from Eqg32), (33), (35),
and(36), and using the equation

FIG. 2. The friction coefficienR,q(«, x°) [Eq. (31)] of the He
ion vs material densityyx?). The solid and dashed lines correspond
to exact and approximate expressioi3d), (35), and (38)—(41),

N 1 1 (I+1(+5) | 1 respectively. The dotted line corresponds to the proton projectile.
Za|=|=|=-z2+——— |75 @37
o 16 48 a2

with chargeZ moving in a DEG without dampingy=0)
reduces to the simple Bethe-Bohr formiig,
85,22 (3 2%€w? [ 2mf
2y A2 2 2 — 0 — p

Rindad = GLOA + AL(ay®, (38 S ﬂzﬁﬂn(?z Z,

In the presence of damping and for extended ions this for-

mula is shown to be significantly modified. We derive below

a generalized expression for SP, in a high-velocity limit, for

extended ions moving in a disordereg=0) DEG. Only ISP

2 2 in a high-velocity limit is considered. In order to show
22 2[1+5X2/3 - 2X2 |n<2 1 )] how ISP in a high-velocity limit is affected we consider

(A-x737L1+2¢I3 1-X3 the stopping number of an extended projectiléq,\),

(40) which relates to ISP as follows:

for an arbitraryl, we finally find the following asymptotic
expressior(for large a):

) . (42
@p
where

3 —
Al = 241,00 - L2100, @9

AL;(x?) = —+
l(X) 3 X2

87°3,
1 1-11)%3 — 44*9 SndN) = =—555L(aN) (43
ALy(x?) = " 22
2(x%) 2(1_X2/3)3|: 1+2X2/3 3mx°N
6x* (2 1 )} 6 [Mdu
In{=+=|. 41 L
+ 1 _X2/3 n 3 + X2 ( ) L(av)\) WXZJO u A'(al u)l (44)

We have introduced the notatiogs 1/Z andg;=1-g. Now  \yhere

the coefficientsAL;(x?) and AL,(x?) depend only on the

target density. The accuracy of the derived asymptotic result o -1
is illustrated in Fig. 2 both for protoKdotted ling and ex- Alau)=u fo 2 (a’z)lmg(z,u,r)
tended Hé ion (solid and dashed ling¢projectiles, where R

the approximate expression fo®;4(a,x? is compared = Ao(u) + Z2Z(a) A 1(a,u), (45)
with the result of a numerical integration of E(1). As

zdz

seen from Fig. 2 both exacsolid line) and approximate o -1

(dashed ling data for R;,q practically lie on the same Ao(u):uzf Im ( F)zdz, (46)
curve. Also Fig. 2 shows an enhancement of the friction o &zl

coefficient for extended ions. This is due to the effective

charge for extended ions remaining higher than the pro- _ o[ -1 zdz

jectile total chargez, [see Eqs(22) and (31)]. Ag(a,u) =u . Ims(z,u,F) EL (47)

In Eq. (45) the first term is the SP of projectile pointlike
nucleus and the second term is responsible to the energy loss
Consider next the limit of large projectile velocities. In by individual bound electron and the interference effect.
this limit the general expressiqi®) for poinlike projectiles The expressioi4) can be written in the equivalent form

C. High-velocity limit: General formulation
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L(a,\) = Lo+ %[Amln A=1(aN)], (48)
mY

where A .=A(a,u— ),

6 | (tdu “du
LO_W_XZ{L FA(Q’UHL U[A(a,u)—/\m]},
(49)
|(oz,)\)=f)\Oc d?u[A(a,u)—Aw]. (50)

The first two terms in Eq(48) give the leading logarithmic

PHYSICAL REVIEW E 69, 046404(2004

2

__I"q
16ma’®

5(16 - 21g) + %(33q - 16)} . (55)

Note that asymptotic expansi@hl) is valid for the val-
uesu> a. Also in order to arrive at Eq$51)—<55) we again

assumed thatr>2 for a realistic medium and for extended

ions, and used the following approximate expressions:

(22t - 32;; 2), (56)

Z(a)— 0)1 = 2;) 3(zt— i). (57)
a [SQ (o)=-1] 7x« 16

18
a5[§$)(a) -1] - ol

Z(a)

term in the case of an extended ion moving in a disordered oM EAs(51) and(52) we find that

DEG. The second term inside the square brackets if(48).
gives a high-velocity correction to the main logarithmic con-
tribution. This requires an evaluation kfx,\) at A\>1 and

s

X2
A== (14 ). (58)

hence we need to derive an asymptotic expression for Now we can calculate the functidtw,\) at high-velocity

A(a,u) at largeu. The evaluation of the functionsy(u) and

A(a,u) is done in detail in Appendix A.

Using the parameters andq;, the asymptotic expansion
for A(a,u) then finally readgsee Appendix A for more de-

tails)
2
] G, G, 3G, 2
Alenu) = 3 {CO+2u+u2+2u3+ Yo ’
(51)
where
1+0f Fq( 35)
Co=—2, C,=—1(3-=—q], 52
0T 1= \° 716 2
3(1+0) 2qq1(x2 ) 12q1*
C,= +—= & -T?) - , 53
2 10 a® \ 3 5x* 63
2Iq) 9 3 3 5
c,= 2 _(3__SQ)_£(1_;4)
3 | 10a 16/ 2 16
5(3I'? - 2x?) ( 21q 4 |5q-3
T3 \qe Yo 5| T
6a 16 3ra o
7(16 - 33))
+—— 10,1, 54
24ma® Q1” (54
1+02( 3 X2\ 202 27m?( 14 14104
4:_%<_+X_>+L SN I Y
2 \14 3 7 | 5x* \5y X
2 _ _ 4
+ﬁ)_1_19_3fq(2 A , (59 3)(X_+F4
25¢2) 12 2 204 \ 9
4 2 2 4 2 2
_F2X2>_qi+2q_gl[x_+£_g(x__r_)
2 a?|5 20 5¢%\3 2
+r_2<r_4+211r2_49)(2_3r6)}
¥’13-T2%4\5x*> 240 60 10y*

limit. From Eqgs.(50), (51), and(58) we find for A >« (Or
v>Zyy=2€1h)

W_Xz(&_l_&_l_%_l_%.l....) (59)
6 .

DD D SR
Let us consider some particular cases for the expansion
coefficientsCy, C4, C,, C3, andC,. For a pointlike projectile
moving in a disordered DEG at the lin#t— « we find from
Egs.(52—55)

[(a,\) =

Co=1, C,=C3=0 c—§—1—2F4 (60)
0~ 1= %~37 Y 2_5 5X41
3 ¥ a2r?|2m?/r* 1404 24
Ca= o+t — | cal\ca 3t a1+ 2
4 3 7 | 5x" \5x X 25y
_ 119
12 |’

In another case when an extended ion moves in a
damping-free mediunil’=0) we obtain from Eqs(52)—«55)

1+q%
COZ 2 ,

2qaux®  3(1+q))
C;=C3=0, GC,= 3a12 + 101,

(61)

_1+qf(3 X%, 29ax*  x'a5a-3) go*
4= — + L o+ R .
2 \14 3 Sa 18« 2
For a pointlike projectile moving in a DEG without damp-

ing both Egs.(60) and (61) lead to the known resultsee,
e.g., Ref[4])

C,=C3=0, C 3 C —3+X—2 (62)
1mTR Ty T4 30
The calculation oty merits a separate presentation and is
done in detail in Appendix B. From Eg&l8), (58), (59), and
(B7), for stopping numbek(a,\) we finally find

C():l,
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J—
[

o | T2Y3 o 20 C, C Cy C I".However, for heavy ions witd> 1 the dependence of the
L(a,\) =qgin ?e TN - TS m5T N logarithmic term in Eq(63) on Z becomes less important
X and the stopping number is similar to the Bethe-Bohr expres-
- (63) sion. Then an enhancement of the SP is caused due to the
) ) ) usual quadratic dependen(‘azrz2 in Egs. (42) and (43).
wherea, ando, are given by Eq(B2). The functionQ(7) IS | et ys note, however, that for heavy ions the nonlinear cou-
given by Eq.(B2) and depends on damping parameler jing petween the projectile and the target may play an im-

through relationy=1"3/2y (see Appendix Band has been portant role[6] and Eq.(63) then breaks down.
obtained under the assumption tha& 2w, When the

damping vanishegI'—0). this function Q(7)—0. The

X . ; : D. Asymptotic (N— o) SP of N-ion chain
function Q(#) increases with the damping paramelteand

at p=1, Q(7)=1. It is of interest to consider the asymptotld — ) limit of
For a pointlike projectil(o,=0, o,=1) but for nonzero the SP of aN-ion chain. _ .
damping from Eq(63) we obtain From Eqs.(20) and(21) and using the mathematical rela-
tion
2m? | C, C, »
L(a,\) = In{ — } ———————— , (64) 1 | sin(Nx) |2
o) | A2 A8 L] sty = sx-m) (66
7N SII’](X) N—o n=—x

whereo(I')=w,e?. So, the leading logarithmic term in the _

stopping number depends on the target conditions throug€ find

the electron density and the paramdteihe coefficientsC,

andC, are defined as in Eq60). Equation(64) is the modi- K(\,R) = S
fied Bethe-Bohr SP formula with the excitation energy N
fiw(I') which now depends on the damping paramétett

increases monotonically with an increasing damping param- xlm_—lﬁ, (67)
eterT. e(Z/unu,T) u

To make contact with an experimental situation in which a,nare ,=ml & (é=keR). Equation (67) shows that for a
carbon foil is used, we choose values of the parameters COfigh N-ion chain, with the ions not necessarily uniformly

responding to the valence glectrons in c_:arbon. With fourdistributed along the chain, SP is linearly proportional to the
electrons per atom the density and damping parameters e mberN of ions: Sy=K(\,RIN, whereK(\,R) depends on

r«=1.6 andzy=15 eV (or I'=0.19, respectively. For this ; A ;
, L . the target densityy and the individual ion structure factor.
values we find thai(I") = 1.520, and the damping effect can One can find close analytical expressions &y in some

?;\r/](;:n observable effect for projectile intermediate Veloc'typarticu!ar. cases. Before present.ing these results we note
. . . . some limiting values of the SP with respectRoRecalling
Consider now an extended ion moving damping-free elecy o o, oot RPA expression for théion chain SP[see Eq.

tron gas(I'=0). From Eq.(63) (20)] we see thaR enters only in the chain structure factor,

2% 1
= 1%2220(%)) >n f Z%a,£yu)

n=1 0

N—oe

2R s\ ¢ c i.e., the quantity in square brackets in Eg1). In the usual
L(a,\) = qfln{—az(—> ] -2 units zué/ A = wR/2v. Then the SP depends &through the
hwp Zv AT A combinationRN which is a measure of the size of the en-

(65  semble of ions in the chain. Because of this combination it is
seen that in the exact and also in the asymptotic expressions
where the coefficient€, andC, are given by Eq(61). Here  for the SP atN>1, R can be arbitrarily large but not arbi-
the parameters; and o, depend only the projectile nuclear trarily small. This can be understood if the one-dimensional
chargeZ [see Appendix B, Eq(B2)] and hence from Eq. chain ofN ions is viewed as a lattice and not as a continuum
(65) it is now seen that the leading logarithmic term dependsf charges. An estimate of this minimum interionic separa-
also on an extended ion property through the paraniter tjon lengthR,,, can be made from the following physical
For a pointlike projectile and from Ed65) in the limit  considerations. In a velocity limit~ v such that the lin-

0,—0 and o,—1 we obtain the Bethe-Bohr logarithmic ear response theory can still be vaR};, may be esti-
stopping number l2m#/fiwy) [see Eq(42)]. Therefore the  mated from the argument of the sinus function in E2{),
Bethe-Bohr SP asymptotic formula is significantly modifiedwhich involves NwR/2v. For (N—©), it is sufficient to
both for extended ions and due to the presence of dampingssume thatR>v/w implying a minimum lengthR,,
Now the logarithmic term depends aA*’t which may be =/, where the frequency corresponds to either the
contrasted with the usual quadratic, i.#,dependence. For collective or single-particle excitations. For smaller ve-
light He" (Z=2), Li** (Z=3), and B€" (Z=4) ions, for in-  |ocities v< 1 not invalidating the linear response theory,
stance, 0,=3, 0,=3, 01=1.25, 0,=1.68, ando,=7/9 R, is of the order of the Thomas-Fermi screening length.
=0.77, 0,=1.4, respectively. Then for the logarithmic SP  As we discussed in Sec. Il B the per SP ion Nfion
we find IM0.378J(v/1p)°], 4 IN0.428J(v/v)*?%, and  chain,Sy/N, becomes the individual SP of an ion for large
9 In[0.481U(v/ vp)*""], respectively, where the functiod interionic distance®. This result can be recovered from Eq.
=72x%\3e A" depends on the target parametgysand  (67) if the sum inR— o limit is replaced by an integral over
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the variable {,/u=mn/ué—z which gives againK(\,R N-ion chain SP for vanishing damping. Within PPA and for
— ) =§,4(\). v— 0 using the variableg andu we present the imaginary
part of 1/¢(z,u,I') in the following form[20]:

1. Low-velocity limit
In a low-velocity limit whenv<wg, the linear response Im 6( uz- \/—+ 22+z4) 72
clocly n : VS g P s(Z uI’) 6uz (72)

theory of SP is still valid provided the projectile ions are of a

low ionization level, e.g., for singly charged ions like"H The argument of the Diraé function in Eq.(72) gives the
He', and Bé, etc. (For highly charged ions when the total dispersion relation between andk. In the usual units this
projectile charge in a chain is quite high, the linear responseg|ation becomeﬁ)ﬁpA(k):w§+(3/5)k2u§+ﬁ2k4/4mz.

theory may not be valid in a low-velocity limjtin this limit Substitution of Eq(72) into Eq.(67) gives the expression
Eq. (67) can be replaced by (C1) (see Appendix C for detailsFor a further simplifica-
3% * (@222 )d tion of Eq. (C1) we assume that(i)é=p/A=(\3/y)
_qa 5672y Y[% 3 n2 £ta2)=(z,1)dz X (R/\p) <1, wherexp=2mv/ wp is the plasmon wavelength
K(\,R) = 87°x°Z°3, n 2 2
w\R/ o J, [+ XH(2)] or R<\p (long-wavelength limix, (i) A>max1;1/p;a].

(69) The second conditiorn>1/p, gives for an ion with a given
velocity v, the valueR,= m\pg, WhereApg=f/muv is the
with the quantities introduced earlier. For a further analyticalde Broglie wavelength of a target electron. The third condi-
manipulation of Eq(68) let us consider the case of vanishing tion, A > «, is equivalent to the conditiomsZe?/% of the
damping but for an extended projectile. In this limit first Born approximation, which is valid here only for light
E(z,I')=6(1-2) [(cf. Eq.(30)], whered(2) is the Heaviside projectile ions. In this limit we findn,=1, n,=E|\p|>1,
unit-step function. It then follows from Ed68) that /N and Eq.(C1) yields (see Appendix C for details

=0 for O=p=<1 wherep=kgR/7. The last result indicates 2
that Eq.(68) is not valid for y=0 (i.e., for a disorder-free K(\,R) = 2% IN(y\p) + 11 7TZP 1 p2L(3)
DEG) whenR is small such thaR< 7/ke=R,. For p>1 ' 3712 22| T T 0 ) TP
F in- p
and for y=0, Eq.(68) can be expressed as >
X 4 3 1
o (- 200 ‘5‘_12,32] 73
v
K(\,R) = 8775)(22220—(@) > n2®(—>. (69)
w\R/ 4 p Here {(2) is the Riemann zeta function witl(3)=1.202,
C—
Heren, stands foiE[p], whereE[p] denotes the integer part 71=€"=1.781, andC=0.5772 is thekuler's constant.
of p, and
> IV. NUMERICAL RESULTS AND DISCUSSION
0(9 = * 1 Z%(a,2)dz 70
s) = —_—s. i i i i
X . [22+X2f(2)]2 Using the theoretical results obtained in Secs. Il and llI,

we present here detailed numerical calculations of stopping
The function®(s) can be approximated quite well by sub- power and related quantities for a target material with the
stituting for f(z) the first two terms in a series expansion in density parameter=2.07 corresponding to the valence elec-
powers ofZ, i.e., for f(z)=1-72/3 (see Sec. Il B. For  tron density in Al. The target material is modelled as an
further simplification of Eqs(69) and(70) we note that even e!ectron gas whose I|ne.ar response function, V\_nthm RTA, is
for a light ion like He and for a metallic target materiat, ~ 91Ven by Eqs(9)«14) with y as a model damping param-
=mx?Z=2. Thus the parameter can be very large for the eter. In Figs. 3-5 and(é) based on numerical calculations

heavy ions withz>1. It then follows from Eq(70) that we choose four values of:fy=0 (solid lines, iy=3 eV
(dashed lines #Ay=10 eV (dash-dotted lings and %y

® ql 2qd2 1 S =15 eV (dotted line$. The values 8Ay<3 eV are compa-

(8) = 2 PR+1 R+ rable with the damping parametgirelated inversely to the

collision timeg in some metal targets, e.g., Al for whichy
+dql<q—1 + qu)(arctan% _ arctan§), (71 can be~0.1 eV. The last valuéiy=15 eV corresponds to
2 the damping parameter in carb@i?—14.

As examples of ion beams we have considered three types
of projectiles:(i) individual He" ion, (ii) He" ion dicluster,
and (iii) N—He" ion chain with the orientation angl§=0.

For case(ii) we choose two values, 0 and/2, for the di
-He* ion cluster orientation angled. Correlations between
two He' ions in the dicluster are maximum and minimum,
respectively, for these two values @f. For high-velocity

In the high velocity limit the simple plasmon-pole ap- projectiles it is useful to introduce the wavelengky
proximation(PPA) for the linear response function with the =2mv/w, which can be expressed by the density and veloc-
plasmon dispersion is widely usedsee, e.g., Refs. ity parametersgsandA, respectivelyhp=3. 6831’2)\ (@in A).
[7,20,27). Here we consider the high-velocity limit of the The velocity parameter i&=0.52/v,. For the valuer

where d=y/\1-x°/3. The numerical calculations show
that the relative difference of exafEgs. (69) and (70)]
and approximatéEqgs. (69) and (71)] expressions is less
than 1 % for metallic densities.

2. High-velocity limit
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FIG. 3. ISP of an individual Heion vsuv/ue for rg=2.07. y
=0 (solid line), Ay=3 eV (dashed ling Ay=10 eV (dash-dotted

line), 1y=15 eV (dotted ling.

=2.07 one finds\,=5.31\ (in A) and\=1.08/ v,

For projectiles(i) and (ii) we present theoretical results
for the stopping powefS/2, vicinage functiong, together
with the dependence @&/2 andg on R, the interionic sepa-

v/vF

1.5 _
R=3A,N=5
fr N — hy=0
1.2+ Za% -===-hy=3eV
_ AN ——— hy=10eV
E ol 4 N e hy=15eV
S 0.9
= N
C 06 S
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F

FIG. 5. Sy/N of an N-helium linear chain withR=3 A andN
=5 vsv/ v for rg=2.07. y=0 (solid line), #y=3 eV (dashed ling
hy=10 eV (dash-dotted ling 7 y=15 eV (dotted ling.

ration distance within the cluster. As in our previous paper
[7], SP has been divided by a factor of 2. The reason, as

discussed in Sec. Il A, is that the SP results for a di-té@
cluster are expected to reduce asymptoticédlyR tends to

24

a)R=34; 8=0

$/2 (GeV/cm)

e)d=0; v=3v,

)R=34; d=ai2
1,5 -\E\\
—~ RN
§ 12] 2
> N
8 091 RSN
12
’a‘,‘
06 N
&

h)¢=x/2; v=3v,

08

0,6

Loa

Loz

00

FIG. 4. S/2 andg of a di-helium cluster va/ v (left column)
andR (right column) with (a) and(b) R=3 A and9=0; (c) and(d)
R=3 A and 9=x/2; (e) and (f) v=3vg and ¥=0; (g) and (h) v
=3vg and 9=m/2. r4=2.07, y=0 (solid line), Ay=3 eV (dashed
line), 1y=10 eV (dash-dotted ling A y=15 eV (dotted ling.

2 4
RA)

6

infinity) to those for two uncorrelated ions, the latter being
referred to as individual SP ISP. The SP for the projeciiilg
Sy has been treated in the same way.

Figure 3 shows ISP while Fig. 4 shows di-Hen cluster
SP and vicinage functiotvF) as a function ofv/y- andR
for the two above-mentioned values 6f In a low-velocity
limit these figures show an enhancement of the SP with an
increasing damping parametgr The numerical calculation
of the friction coefficient shows this result more cleafbge
Fig. 1). As discussed in Sec. |, this is due to the broadening
of the plasmon peak with increasing which shifts the
threshold for the energy loss by plasmon excitation towards
lower projectile velocities. These results have been reported
previously[12]. However, in a high-velocity limit the damp-
ing decreases the energy loss r@ee Figs. 3 and)&and this
is shown explicitly by the logarithmic term in E¢63). The
numerical calculations of the last expression for ISP in a
high-velocity limit show that the asymptotic curves coincide
with the exact onefbased on Eq99)—(14)] beginning with
N~ 2. Hence it can be a good approximation for analyzing
the experimental data on beam-target interactions.

Consider now the angular dependence of SP. It is seen
from Figs. 4a)-4(d) that in a medium velocity range
(v<4vg), SP has a remarkably higher value for the larger
value of . This is likely due to single-particle excitations in
this velocity range. In the higher velocity range, the dicluster
wake field excitations become important and we find that the
situation is reverse in the higher velocity range> 4v¢) for
which SP ford=0 is slightly larger than fold=/2.

The interplay of correlations between the two ions and of
damping can be explored by the plots in Fig&)dand 4d).
Correlation effects are expected to be maximum when the
two ions are aligned with each other in the direction of
propagation of the dicluster motidi=0) while they decay
when ¢ tends tow/ 2, the latter behavior being related to the
wake field due to the leading ion. For a chosen value of the
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13 - oscillation wavelength in the longitudinal direction is about
HR=34;1=2 A\p=5.31\=16 A for y=0, while in the perpendicular direc-

12 . :t;’ev tion [see Figs. @) and 4h)_]_the charaqterjstic length sca!e

' ——. hZ:weV N <\, and is not so sensitive to a variation of the damping

parameteriy, as shown in Ref{19]. It is noteworthy that in
accordance to Ref19] the wavelengths of oscillations,
=2mvl w, at 9=0 {see Figs. &) and 4f)] increase withiy
because the plasmon energy becomes smauq,reh(wf,
—-¥?14)Y2, But the amplitudes are now weaker due to the
collisional damping of plasmons. Let us note that the SP’s in
Figs. 4e) and 4g) tend asymptotically to the values of
Snd(M) atA=3 andR— o while at smallR— 0 the values of
S/2 becomeS, 4(\).

Having discussed SP’s for a di-Héon cluster, we now
present results for the projectile tyjgié), i.e., the quantity
Sy/N for an N—He" ion chain with the orientation anglé
=0. Figure 5 showsSy/N vsv/y while Fig. 6 shows
SW/N vs ion numbem at fixedR and \ [Fig. 6a)], and at
fixed N and\ [Figs. §b) and Gc)]. Figure 5 may be com-
pared with Figs. 3 and(4). There are similarities but also
some interesting differences, the latter being due to a multi-
0.00: . . . : ion interference effect. We note that the interference effect
OA=2 hy=5¢V —— R=05A betweenN=5 ions decreases the strength of SP per particle

----R=24 except in an extreme high-velocity limit,> (N-1)R, where

—==R=54 (N-1)Ris the total length of thé-ion cluster chain. In this
limit the N-ion chain can be regarded as single entity and
hence Sy/N~NS,4(\)>S,4(\) [see, e.g., Eqs(20) and
(2D)].

Next we present Fig 6. For a more detailed presentation
we show the different plots in the same graph. It is clearly
seen from this figure the asymptotic regime of the SP when
the ion numbeN becomes very large. The SP per particle is
saturated rapidly with increasinyy. This regime has been
investigated analytically in Sec. Il Psee Eq.(67)]. Here
N again the collisional damping of the plasmons decreases the
values of SP$Fig. 6a)]. Figures ¢b) and &c) show the SP
in low- and high-velocity limits, respectively. The numerical
data presented in these figures are well described by the ana-
lytical results given by Eqs68)—<71) (low velocitieg and
Eq. (73) (high velocities. As discussed in Sec. Il D, the
curves saturated rapidly rather for large interionic distances
interionic distanceR, the vicinage function is negative at than for small one. It should be noted that the sawtooth pro-
v<4uy for an aligned dicluster but it is positive in all veloc- file of Sy/N vs N obtained within simple PPAsee Ref[1])
ity ranges ford=/2. In the first case the correlation effects is now replaced by the smooth curves in Fig. 6.
decrease the full SP and this is shown in Figa)4dy the
formation of a short plateau on the SP curve near the value  \/ syMMARY AND CONCLUDING REMARKS
A~ 2. As to the role of damping, it considerably softens the
correlation effects for both values &f at v> v. In this paper we have presented a detailed theoretical

We have so far plotted S@livided by a factor or VF vs  study of the stopping power of point ion, extended ion, ion-
the beam velocity/ v, for some fixed value of the interionic cluster, as well adl-ion linear cluster projectiles in a degen-
distanceR=3 A. We now look for some complementary in- erate electron gas containing disorder. In the course of this
formation about SP, and plot SP as a functionRofvith a  study we have also derived some analytical results for the
given value ofv=3u. The objective is then to see how, for disorder-inclusive RPA linear response function and for the
the maximum and minimum angular configurations, SP angorresponding plasmon dispersion relations. These analytical
VF depend orR and v/ u. Figures 4e)-4(h) show SP and results go beyond those obtained in our previous pgjdér
VF for a di-He" ion cluster, ford=0 and 9=#/2. These After a general introduction to SP of a cluster of two and
figures show an oscillatory character of SP and VF with reN(N=23) extended ions, in Sec. II, theoretical calculations of
spect toR. The oscillations are the highest fér=0 and SP based on the linear response theory and using RTA are
lowest ford=1/2. It is seen from Figs.(@) and 4f) thatthe discussed in Sec. lll. A number of limiting and asymptotic

0.9 T T T T
0.36 b)A=0.2; Ay =5eV R=05A
1 ----R=2A

S /N (GeV/cm)

FIG. 6. Sy/N of anN-helium linear chain v for rg=2.07 with
(@ R=3 A and \=2, y=0 (solid line), Ay=3 eV (dashed ling
fy=10 eV (dash-dotted ling #y=15 eV (dotted ling; (b) A=0.2
and(c) A\=2 with iy=5 eV, R=0.5 A (solid line), R=2 A (dashed
line), R=5 A (dash-dotted ling R=10 A (dotted ling.
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regimes of low and high-velocities, large ion humibeand
vanishing damping have been studied. These approximate ¢-Plane
expressions are well supported by our numerical calcula- . P

tions. To our knowledge this is the most comprehensive

study of the SP-related physical quantities using RTA in the ’
linear response function. The theoretical expressions for a /

number of physical quantities derived in this section lead to iau > c /’I
a detailed presentation, in Sec. IV, of a collection of data 2 Vi
through figures on individudi.e., single-ion and correlated L
stopping powers, vicinage function, of a single ion*Hien, G
di-He" andN-He" cluster projectiles for the target with den- | -

sity parameter,=2.07 corresponding to the valence electron
density in Al. For the damping parameter, we have chosen a
wide range of values €A\ <15 eV, the damping param-
eters(which are inversely related to the collision timder
some metal and semiconductor targets fall within this range.
The results we have presented demonstrate that with regatd?,28 and references thergirThe resulting dielectric func-
to several physical quantities of primary interest the differ-tion is somewhat involved and has not yet been much used.
ence between RTA and usual RPA without damping is sub- In our calculations of SP and related quantities we have
stantial while for others, specially for angular averaged quanmodelled the disordered target medium as an electron gas
tities, this difference may not be of practical significance. whose linear response function is constructed in RTA in or-
It is of particular interest to study the high-velocity limit der to include scattering of electrons with disorder impuri-
for the SP of an ion beam. Such asymptotic expressions cotiies. In our theory the phenomenological quantjtys the
tain some useful information on a projectile ion structureinverse of the electron relaxation time. The numerical values
factor and specially on the target medium properties. Equaef y used in our calculations are within a physically expected
tion (43) with Eq. (63) which are a generalization of the range for the specific target medium. In principtecan be
Bethe-Bohr asymptotic formulg] can be used for analyses calculated to varying degrees of approximations. In the sim-
of experimental data on high-energy beam-targeflest approximation, its inverse can be calculated through
interactions. We note that the analytical method developedFermi's golden rule for a model electron-impurity potential.
here for the derivation of high-velocity SP is general andThis may allow us to see how SP and related quantities de-
may be applied within a linear response treatment for othepend on the target properties through their influencey.on
types of extended multicharged projectiles as well as for any We expect our theoretical findings to be useful in experi-
particular form of the linear response functietz,u) for the ~ mental investigations of ion beam energy losses in solids.
target material. For given target material this approach reOne of the improvements of our model will be to include
quires only the asymptotic form of the plasmon dispersiorsome short-range correlation in the linear response function.
relation at highu=w/kue. In particular, for heavy energetic A study of this and other aspects will be reported elsewhere.
ions our method has been previously applied using the
Brandt-Kitagawa variational statistical approximation for the ACKNOWLEDGMENTS

structure factor of projectile iofsee Ref[8] for detalil. .
We shall make some brief remarks on the RTA in the Itis @ pleasure to thank Professor C. Deutsch and Dr. G.

linear response function. In the literature on SP and relate§Vicknagel who directed us to some useful references.
problems, the disordegcollision)-inclusive linear response
function containing in the RTA, which is often referred to as ~ APPENDIX A: EVALUATION OF FUNCTIONS  Aq(u)
the Mermin dielectric function, has so far been considered AND Aj(a,u)
only in RPA. Going beyond RPA with electron-electron in-  For a calculation of the functiondy(u) and A;(a,u) at
teraction and disorder treated at the same microscopic level>1, it is convenient to introduce the following contour
is a difficult task. We may mention that recently the linearintegral:
response function has been considered in RTA which con-
serves the particle number, momentum and enésgyg Refs. | = f (1 _ 1 ) {d¢ (A1)
2 2,27
Cy sl(g,u,l—‘) g +a’u

"After completing our work we became aware of a paper byyhere we introduce the new variable accordind tu and
Kaneko[26] in which the high-velocity limit an extended ion SP (L, u,T)=e(¢/u,u,T). The integration contourC, is

has been investigated using the Brandt-Kitagawa model of the io . . . . .
and within RPA but without disorder. The scope of our investigation_%r;o())w?hlenlgvlvge'rzug?tlgrcgrnctlzurtﬁs T::;%Smg]gaf:‘?ﬂi(%)

is larger than in Ref[26]. Where our work makes some contact LT .
with Ref.[26] we find that Kaneko’s results are consistent with ours_and an infinitesimal semicircl€,. In order to calculate the

if we considery=0 in our results. Kaneko’s work furnishes only the integrall, we have to know the poles of &/({,u,I'), i.e.,
modified Bethe-Bohr logarithmic term while our results in E@8) ~ the zeros{,(u)=uz(u) of &4({,u,I), for a fixedu. The so-
and(65) contain also high-velocity corrections to the basic logarith- lution of the plasmon dispersion equation for a disordered
mic SP. DEG has been investigated in detail in Ref9]. It has been

FIG. 7. lllustration of contoulC, in the complex{ plane. Iso-
lated pointP below the reak axis indicates the plasmon pole.
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shown thatZ,(u) lies in the lower quarter of the complex ~ APPENDIX B: EVALUATION OF L, FOR EXTENDED ION

plane as shown in Fig. 7 with an isolated pohbelow the In this appendix we give detail derivation of the param-

real { axis. eterLq which contributes to the leading logarithmic term of
For large values of, the dielectric function must behave high-velocity SP. First we write Eq(49) in another but

as e(z,u,I')— 1+x?/37* according to Ref[19]. Therefore equivalent form,

the integrall vanishes within the lower quadrants, and from

. . . Zm
Eglsé.s(fo and(Al) we find by evaluating the residues at the Lo= 2z, a)_ _ Q1(2 + )N Zy + q1(|1 1),
Zmin
& u’ m B1)
Aq(a,u) =27R > ol .
de1(&(u),u,1)/d ¢ F(u) + U e 2 where we introduce the cutoff parametezg,— and
1 Zmin_>0!
- , (A2)
S(a,u) 1 q 11q
0'1:—2—1,"10'2 1—5 (B2)
whereU=u-T"/a, 1 o
. (au - F)[SR(CY,U,F) - 1] 6 Zmax Zmin -1
Sa,u,) =¢e(=iaq,ul) =1+ , | :—f f Z? I
- TQ(a,u,T) a3 R udu . (@,2) ms(z,u,F)ZdZ
(A3) (B3)
(a,u,I) =1
Q(a,u,IN) = SR—, (A4) l,= uduf Zz(a 2)im
K@) -1 R F T . e(zu, F)
(B4)
¥ Jut-a?-1 @
SK(a,u, N =1+ arctan For derivation of Eq(B1) the Bethe sum rule in variables
207 2 Uu+1
z andu has been used,
_ arctani) U, Ur12+a® . ,
U-1)"2"u-12e a2 ) f m— 2t ydu= "X (B5)
(A5) o e(zul) 62>
From Eg.(B1) at z4— % andz,;,— 0 we find
2 2
X |1t Zm
SK(e) =1 2a2{ arctan+ 1}' (A6) J 2z, a)— = 2y 725 (o) J 12 __ jpZmax
Zin " i o 2Z2+0D) 2
It should be noted that Eq$A3)—(A6) follow directly from z. 1 an
our analytical results, Eq$9)—(14), obtained for the dielec- +7722(a) ( ax_ x )
tric function of a disordered DEG. Equati@A2) provides Zmin 2 Zr2nm+ @
an explicit expression for .the func'tioml(a,u). It is now Znan0 Zmax
easy to evaluate the functioly(u) directly from Eq.(A2). =qiin 7 + o 1In (B6)
in

We then obtain
Substituting this result into EqB1) we obtain

0-2 e Q(ﬂ) )
71 ZninZmax

Z(u) ] A7)

Aol = ZWRQ[ oG (W)L

For a calculation of asymptotic values of the functions in

Egs.(A2) and(A7) we must know the asymptotic expansion where Q(#)=1,(7)—1,(7). Here as in Ref[4] we assume
for largeu of {,(u) and also forey(¢,(u),u,I'). The expres- that zy,,=s and z,i,=2(S), where z(s) is the solution of
sions for these functions have been found in R&8]. We  dispersion equation for plasmons without damping and
recall that is some free and large parameter. It is kno(see, e.g.,
Refs. [4,19)) that ats—c, z(s)— x/sy3—0. Therefore
ZmaZmin— x/\3at larges. Now we calculate the functions
I, andl,. After some transformation from EqéB3) and
(B4) at s— = we find

Lo=qln ( (B7)

L) =G0+ Q + % y (A8)

where the coefficientso,zz, andz4 are independent omand d 2
are found from Ref{19]. Finally, using the analytical results NOE _f ZJ udu —, (B8
obtained in Ref[19] we arrive at Eq(51). ut=2(1-27u% +1
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z(n)——f dzf

where 77=F\s"3/2X. The integrals over variable can be
calculated as follows:

u?du
-21 -2+ 1’

(B9)

JZ u’du ~ 1 iml 572
0U4—2(1—2772)U2+1_477\"1—772 T T+2z]|

fc u’du 1 Im{ Inz—r}
; W=21-2A0+1 4142 Tz

(B11)

where r=\1-7°+i%. The last expressions have been ob-

tained under assumption that< 1 (or y<2w)) as it takes
place for real disordered media.
Then after final integration over variakdene finally find

Q(n) = (B12)

Larcsm\,l 7.
Vi-77

From Eg. (B12) it follows that the functionQ(7) in-
creases with increasing of damping paraméteand at the
value 7=1(y=2wp), Q(7)=1.

APPENDIX C: DERIVATION OF EQ. (73)
Substituting Eq(72) into Eq. (67) we find the following
expression for the coefficiel:

ZZEO Nk,
K\, R , C1l
Rt
where
3 qa“xﬁ ]2
=({1+ 1- Cc2
K ( 10w>[ (%, + 1) (€2

X,=1/(W,-3/10, W,= \'9/100+7\2§n X213, and 8=p/\.
In Eqg. (C1) n1—1+E[)(p/v()\)x3] n,=E[v(\)p]=n; with

oo 1, 3 (§>44
v()\)—z[)\ 5+ A 5 3 | (C3

The expression foK(\,R) given by Eq.(C1) is valid for
N> Nin (Whenh <A, this expression vanishgswvhere
3, Bip) +4x*13

)\2 L= ,
min 5 ZB(p)

(C4)

and

PHYSICAL REVIEW E69, 046404(2004

1 +4ﬁ). (C5)

/

)( 1
Blp)=—7=+— ( 1+
3T V

V
Note that from the conditiom >\, one can estimate,
for a given and fixed ion velocity, the minimum distarRg,,
between ions discussed in Sec. Il D.
An evaluation of the sum in EqC1) is facilitated if we
write it in an equivalent form,

2
K(\,R) = 32 2202[C +1n Ny + Gy(a,\) + Gy, N)],
(Co)
where
n2 1
Gy(a,N) = >, oo Inn, - C, (C7)
Gy x)—%%ﬁ—l) (C9)
2@ mem MANZ= )23 )

In the limit A>1 we can have, to the leading orde,
=1/N\{,, ni=1,n,=\p>1. Therefore, using the asymptotic
result for the sunG;(a,\) [29], we obtain

GuaN) = 5~ o+ Ol = 5~
N o, 1 2 T 2ap 13?
1
+O()\3—p3). (C9

In a high-velocity limitG,(a,\) is approximated as

-3
3/
(C10

Both the sums in EqiC10) can be expressed in terms of
the dilogarithm functiori29]. In a high-velocity limit when
n,=Ap>1, using the asymptotic expressions for this func-
tion we find that the first and second sums are equal to
m216—1/\p and {(3), respectively. Hence

mp_ 1|3, , ( _X_2>]

200 AZLO P3| 200" =77 ]|
(C11)

=In(\p)—3/1Q\2, we finally

Gy(a,\) = 10)\2
n=1 N

62(01,)\)

Taking into account that
arrive at Eq.(73).
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