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lon acceleration by beating electrostatic waves: Domain of allowed acceleration
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The conditions under which a magnetized ion can be accelerated through a nonlinear interaction with a pair
of beating electrostatic waves are explored. It has been sfBemistiet al, Phys. Plasma 5, 3224998 ] that
the electric field of the beating waves can, under some conditions, accelerate ions from arbitrarily low initial
velocity in stark contrast with the well-known nonlinear threshold criteria for ion acceleration by a single wave.
It is shown here that the previously found condition is necessary but not sufficient for acceleration to occur.
The sufficientand necessary conditions are identified in terms of the location of the critical points of the
motion on the Poincarsection. A second-order perturbation analysis was carried out to approximate the
location of these critical points and define the domains of allowed and forbidden acceleration. It is shown that
for an ion to be significantly energized, the Hamiltonian must be outside the energy barrier defined by the
location of the elliptic and hyperbolic critical points. Despite the restriction on the Hamiltonian, an ion with
arbitrarily low initial velocity may benefit from this acceleration mechanism.
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I. INTRODUCTION In Sec. Il we review previous relevant work. In Sec. lll
we overview the analytical formulation of the problem. In
lon heating by a spectrum of electrostatic waves propaSec. IV we describe the construction and interpretation of the
gating perpendicularly to the magnetic field was proposed bgraphic solutions. We solve the equation of the ion’s motion
Ramet al. [1] in 1998 as an explanation for ionospheric ion numerically in Sec. V to show how critical points influence
heating observed by the Topaz 3 rocket. In the same yeats dynamics. In the remaining sections we seek analytical
Benisti et al. demonstrated that ions with an arbitrary low expressions for the location of the critical points of the mo-
initial velocity can be accelerated through a nonlinear intertion, which amount to a definition of the domains of allowed
action with the waves whenever the spectrum contains a paand forbidden acceleration.
of waves that obey a beating criterion: their frequencies must
differ by an integer number of the ion cyclotron frequency
[2,3]: Il. REVIEW OF PREVIOUS WORK

Stochastic heating of a magnetized ion by a single propa-
gating electrostati¢ES) wave has been extensively studied
[8-11]. Using first-order perturbation theory Karngy,10]
Yas able to derive analytical expressions approximating
overall nonlinear dynamics of an ion interacting with a single
ES wave. That work revealed the existence of a threshold for
ﬁhe initial ion energy below which the particle cannot gain
net energy from the ES wave. This threshold can be ex-
pressed in terms of the ion’s velocity as

wWr— w1=Nw. 1)

Because of the lack of a threshold for the initial ion velocity,
this acceleration mechanism promises to energize a larg
portion of the ion distribution function. Therefore, it may be
promising to many applications where the efficiency of ion
heating is of prime importance, such as plasma heating i
fusion devices and spacecraft plasma propulsion.

A preliminary numerical exploratiof4] of this mecha-
nism revealed that there are many cases for which the beat-
ing criterion(1) doesnotlead to ion acceleration. This hinted
to the possibility that the criterion is necessary but not suffi-
cient.

In this paper we define the necessand sufficient con-
ditions for the acceleration of a magnetized ion through non-
linear interaction with a pair of propagating electrostaticwherev,, m, andq are the velocity, mass, and charge of the
waves. In particular, we analyze the Poincaetion of the ion, andw, k, andE are the frequency, wave number, and
ion’s motion[5] and show that the dynamics of the ion ac- electric field amplitude of the wave. Skifft al. validated
celeration is determined by the critical points of the motionthese findings experimentalljl2]. The significance of the
[6]. These critical points were not observed in previous studthreshold can be seen from the example demonstrated in Fig.
ies[2,3] since these studies were limited to the analysis of d. It shows the typical velocity evolution of two test ions
single trajectory(i.e., a single initial conditionin a given  obtained through numerical simulation. Below the threshold,
Poincaresection. The location of the critical points, which indicated by the horizontal dashed line, we observe that the
can only be seen when multiple ion trajectories are analyzedpn motion is regular, and consequently we can predict its
allows us to define the necessary and sufficient condition fobehavior well by means of perturbation theory. More impor-
acceleration. tantly, as long as the ion’s initial velocity is in that region the

) qE

v =1~ Vi (2
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FIG. 1. Time evolution of the velocity for a particle interacting iy two beating waves. Two particle trajectories are shown, one

with a single wave. The threshold derived in Réf] and given by with an ion trapped below they, < w/k— \qE/km threshold, and
Eq. (2) represents the boundary between the regular and SmCh"’15tél(l"'|other resulting in an accelerating ion. For both trajectories the

domains, and is shown as a horizontal dashed line. initial velocities are the samébut the initial cyclotron angle is

different.
ion will not gain a net energy from the way&]. When the
initial velocity is above the threshold, the ion moves stochasion in Fig. 3 is described by the following equation of mo-
tically and eventually gains a net energy, as shown by théon [2,13]:
upper trajectory in Fig. 1. As shown by Karngy], in the
case of interaction with gingle wave the ion gains energy d?x q
only chaotically when its initial velocity exceeds the thresh- — + wex= = > Eisin(kix—wit+ @), (©)
old. Thus the threshold separates two regions of phase space: '
aregular (or coherentmotion region of low energies below wherew,=qB,/m is the ion cyclotron frequency ang is

the threshold and atochasticone — above the threshold. . .
: . . . . the phase angle of each wave. The corresponding Hamil-
Nonlinear ion acceleration by a single wave is therefore al-

ways a stochastic process. tonian for the system ig]
In 1998 Benisti and co-workers described a fundamen- o s
tally different mechanism for nonlinear ion acceleration by H=p2/2+ Y, —cod kip Sin6— v+ @;). (4)
ES waveg1-3|. The scheme requirgmirs of ES waves that PoK
obey a beating criterion described by E@&). Under such . .
com)j/itions thegsingle-wave theory thrﬁsh?)ld disappears anff writing Eq. (4) we have used the_fact_ tha_t the system Is
regular and stochasticregions of phase space become Con_per.|0d|c, and transformed the Hamiltonian into normalized
nected, allowing ions with arbitrarily small initial velocities action-angle coordinate systefi4], where «;=k;/ky, v;
to obtain high energies through coherent acceleration fol= wj/wc, 7=wct, &i=(kqE)/ (M), p?=X2+X?,  and
lowed by stochastic energization. X=k;x, X=dX/d7r, so that X=psind, X=pcosd. The
Subsequently, we performed numerical investigafiéh  action-angle coordinate system is a special case of polar co-
based on the same single trajectory method and found thakdinates5]. In our contexté corresponds to the cyclotron
some initial conditions didhot lead to ion acceleration even phase angle measured clockwise fromylaxis, as indicated
if condition (1) was satisfied, as illustrated in Fig. 2. This
implied that condition(1) may be necessary but not suffi-

cient. We concluded that to find the necessamg sufficient y q, m
conditions for ion acceleration we need to examine the com- /
plete Poincarsection using multiple trajectories and find the
critical points of motion, as will be done in Secs. V and VI. \.9 kis E,
X

III. ANALYTICAL FORMULATION

3. Here we have a single ion of massand chargeg in a

constant and homogeneous magnetic fielgz.Brhis ion in-

teracts with a packet of electrostatic waves that propagate in FIG. 3. A single ion of chargel and massm in a constant
the positivex direction. Since we take the waves to be purelyhomogeneous magnetic field,Binteracts with a spectrum of elec-
electrostatic the wave numbéy is parallel to the electric trostatic waves whose wave-number and electric field direction is
field E; of each of these waves. The dynamics of the singleparallel to thex axis.

We start by defining the coordinate axis as shown in Fig. /Bo
Z
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in Fig. 3, whilep is the normalized Larmor radius which, in to its argument. Whemw, is an integer, the summations are
a constant magnetic field, represents the normalized velocitgerformed over alm+ v; to avoid singularities. Whem#
(perpendicular to the magnetic fi¢ldf the magnetized par- integer, the first-order terms in E€}) disappeaf2], and the
ticle undergoing cyclotron motion in they plane. Wheny;  equation becomes more tractable.

are exactly an integer multiple of the ion cyclotron frequency ~We now explore particle dynamics as a function of wave

we Speak of anon-resonancewave; otherwise it isoff- amplitude and frequency, and in terms of the location of
resonance critical points on the phase diagrams. Solving E8). nu-

Benisti et al. [2] defined a criterion for particle accelera- Merically we will demonstrate that when critical points are
tion by multiple ES waves. They showed that for regular andfPSent in the regular region of the phase diagtamin the
stochastic regions to be connected it is necesdary as we single wave-particle interactipnthe particle will not gain
shall see, not sufficiepto have at least one pair of ES waves net energy.

such that IV. GRAPHICAL ANALYSIS

vo—vi=n, 5 A convenient way of representing both numerical and

. . . analytical solutions is to plot the resulting trajectories on a
wheren is an integer. They also report that acceleration ispojncaresection[5]. To construct a Poincarsection from

more vigorous fon=2, therefore for the sake of simplicity, the numerical integration of Eq6) we plot the point inter-

we limit our analysis to the case of a single pair of beatingsections of the ion trajectory in three dimensions & 7)
waves, such that=1. In addition, Ref[2] reports that the \ith the p-6 plane at specific time intervals. For integer val-
maximum acceleration is achieved when all waves are of thges of 1 this reduces to plotting vs 6 at 7=2j, where
same amplitudes;=¢;=¢. We also sekj=x;=«; 10 SIM-  j—0 12 . isanonnegative integer. For noninteger values
plify our analysis, and since the phase angieslo not play  of , precaution must be taken for a proper accounting of
a fundamental role in this acceleration procgBswe set all  jntersection points. Since the magnetic field is constant, the
¢i=0. With these simplifications the Hamiltonig#) be-  normalized cyclotron radius is a direct measure of the per-

comes pendicular ion velocity. Therefore Poincasections give di-
— ) . rect visual insight into the acceleration process.
H=p%2+e[cogp sinf—v;7)+cogpsinf—v;7)]. In constructing the Poincarsection from the analytical

®  solution we note that the Hamiltonian in E() is autono-

This Hamiltonian represents two coupled oscillators: one idN0US, and therefore itself is an invariant of motion. Curves
the gyrating ion and the other corresponds to the beating E&f constantH in a Poincafesection represent the complete

waves. We, therefore, can interpeeas a coupling parameter 2nalytical solution of the problem to second order.
between the two oscillators. The visual interpretation of Poincargections is straight-

The detailed derivation of the analytical solution for a forward. Arandom point distribution corresponds to stochas-
particle interacting with a single wave can be found in Ref.lic motion while regular patterns, such as lines and ellipses,
[7]. However, a more generalized solution for multiple Will téll us that the ion dynamics is analyticar regulay.
waves is obtaine@13,15,14 through Deprit's modified Lie FOr example, if the wave amplitudeis zero, Eqs(3) and
transformation in Refs[2,3]. The resulting autonomous (6) reduce to a simple harmonic oscillator and for irrational

Hamiltonian derived from Eq(6) for a nonintegevalue of v values of v its Poincaresection shows a set of horizontal
to the second order in the perturbatian, is lines, indicating a constant velocifyvhich corresponds to a

free ion gyrating in a constant magnetic fiel@ach of these
H=¢{J, (p)cog»;0)+J, (p)cod v;0)} lines represents an invariant of motion for a given set of
' : initial conditions[5]. When the coupling parameteris not
+e2{S]'(p)+S](p)+ Sy "I(p)cod (v;—v)) 0]}, zero, we can treat the ion motion as a perturbation of these
invariants.

() As with most phase diagrams, critical points define the
dynamics of the motion. Since the system is not dissipative
we expect to find two types of critical points: elliptic and

1 i MIn(p) I (p) hyperbolic. As we shall show later, the location of the critical

where

SI‘(p)z > ERr— points is the key to determining which initial conditions lead
P m=—e Vi to acceleration or trapping. The task before us is to find these
] 7 ) critical points. Our research is guided by a comparison of the
SV i) = 1 MJn(p) Vj_Vi+m(p) Poincaresections of the analytical solution to those obtained
s (P)= 2p\ mSa vi—m through numerical integration of E¢6). It should be noted
that we should not expect to see any stochastic behavior on
* me(p)J,’,i,Vj+m(p) the Poincaresections obtained from the analytical solution.
+ .
m=-= vi—m V. TOPOLOGY OF THE POINCARE SECTION
Jnn is the Bessel function of the first kind of order andJ’ In Fig. 4 we show typical Poincarsections obtained by

represents the derivative of the Bessel function with respeaiumerical integration for; =24.3 andv,=25.3. The panels
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30 i FIG. 5. Poincareection for a particle interacting with two beat-
25" : LEE 0_.. ing off-resonance waves: € 10, v;=24.3, andv;=25.3). (a) Ana-
" lytical solution showing the existence of hyperbolic and elliptic
20 . points marked byd andE, respectively(b) Numerical solution also
showing the locations of the critical points.
e 15 T quickly shrinks to the vicinity of the elliptic critical point
10 N R B (designatecE in Fig. 4). Notice that the elliptic point is lo-
. cated alpg~ v/2 and = 7. Eventually, as the wave ampli-
5 tude is raised above values shown in Fig. 4, chaotic motion
' dominates the phase diagram.
0 We now gauge how well the second-order perturbation

analysis compares to the numerical solutions. Figure 5 indi-
9 cates a good degree of agreement between the two. Even
though the detailed structure of the regular motion lines is
FIG. 4. Poincaresections showing numerical solutions for a par- not captured with the analytical solution, the latter does pre-
ticle interacting with two beating off-resonance waves=24.3  dict the position of the lower ellipti¢E) as well as the hy-
andv;=25.3). The stochastic region occupies a greater fraction operbolic point(H) rather well. On the other hand, our ana-
the phase space as the wave amplitude is increased. lytical approach breaks down in the stochastic region, as
should be expected. Therefore the critical points shown by
in this figure illustrate the effect of increasing wave ampli- the analytical solution to be at>25 in Fig. 5a) (which can
tude. The phase diagram consists of two regions, stochastige said to describe a “homoclinic tangle” or “stochastic
and regular, just as for the single wave interaction. Howevernayer”) are in reality covered by the stochastic motion, as
unlike the single wave-ion interaction, the two regions areshown by the numerical solution. However, as described in
“connected.” By “connected” we mean that an ion with low Ref. [3], even in that region of phase space the overall ion
initial velocity can undergo first regular and then stochastionotion could be approximated by first-order orbits, for small
acceleration, reaching high energies. e.
For low perturbation strengttiow values ofe) the regu- In the case of a particle interacting with beating waves we
lar region extends to values pfapproximately predicted by are mainly concerned with the hyperbolic and elliptic critical
Eg. (2). However, ase is increased the regular region points designateti andE, respectively, in Fig. 5. It is clear
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014 T g1 po below the “threshold” can still be accelerated to high
H energies if the corresponding Hamiltonian is outside the
0.12 — range described by E¢9).
From the point of view of plasma acceleration one would
0.10 - ) like to limit the number of particles trapped in the forbidden
- Energy Barrier acceleration domainHg<H(pg,8,) <Hy). The rest of the
0.08 - ions gain much higher energies through first regufatheir
initial energy is low and then stochastic acceleration, as
0.06 shown in Figs. 4 and 5. However, even the trapped particles
E can escape into the stochastic domain as could happen
through elastic scattering in a collisional plasma. We have
0.04 = T T T T T studied this effect through particle simulations reported in
0 5 10 o 15 20 25 Ref.[17].
FIG. 6. Analytical Hamiltonian as a function pfat §= 7. The VI. CRITICAL POINTS
elliptic and the hyperbolic points corresponding to the ones shown
in Fig. 5 are the minimum and maximum &f (v;=24.3 andy; To define the domains of allowed and forbidden accelera-
=25.3). tion described by Eq9) we need to find the location of the

critical points andH. We now seek analytical expressions

by tracing trajectories in Figs. 4 and 5 that an ion whosdor both.

Hamiltonian lies between the Hamiltonian values corre- Since both points are the extrema of the Hamiltonian, that
sponding to point& andH does not gain net energy from the task can be achieved by setting the time derivative ahd
waves i.e., does not reach the stochastic region where it cah to zero simultaneously5,6]. Utilizing Hamilton's equa-

be vigorously accelerated. Instead the corresponding phad@ns of motion in conjunction with Eq$7) and(8) we get
space trajectories circulate around the elliptic critical p&nt 9

or cover the full range of cyclotron phase angles<(® P T, _ T

<27) while remaining belowH. P~ 90 elndy, (p)Sin(yi )+ vid,, (p)sin(v; 0);

It is relevant to note in this context that the Hamiltonian
of various trajectories increases monotonically from the
Hamiltonian value at poinE to its value at pointH, as
shown in Fig. 6. The figure shows the Hamiltonian deter-

+e2(vi—v) Sy "(p)sin (vj—v;) 0]=0, (10

. OH
b=~ ——=¢{J, (p)cogv;6)+J, (p)cog »;6)}

mined from Eqs(7) and(8) as a function op for #== and ap
illustrates that the location of thaliptic and thehyperbolic - Y -
points could be found by determining the local minimum and +e4S, '(p)+S, (p)+S5 " (p)

the maximum ofH.

Therefore, for given values of, ande, the inequality xcog (v —v;)0]}=0. 1D

When both wave frequencies are off-resonance
He<H(pg,00)<Hy with pp<v— Je (9 (vi,vj#integey, the equations above simplify because the
first-order terms drop out, and we are able to obtain the po-

defines theforbidden acceleration domajrwhereHg and sition of cr_ltlcal points 3nalyt|cally. .

Hy are the Hamiltonian values for the ellipti€) and the _Forv#integer, theS,'(p) term in E.q..(8) could be sim-
hyperbolic(H) points, and the subscript “0” refers to initial pllflec_i to an algebraic equation containing only a few Bessel
conditions. By “forbidden acceleration domain” we mean functions[13]:

here the domain of initial conditions for which an ion cannot

reach the stochastic region of phase space where it can be Si(p)= .77 J 1

vigorously energized. This shows that not all ions will be 1 (P) 8 SanﬂT[ V‘H(p) (”‘H)(p)
accelerated by the waves even when the beating crit¢tion ~3i(p)d (] (12)
is satisfied. All other ion trajectories then lie in taowed v~ 1PN = (=)L

acceleration domaimf phase space. The ions in the allowed S .

acceleration domain will be affected by the waves stronglyAS & result of this simplification we can reduce ®e"/(p)

The restriction orpg in Eq. (9) is needed because ions with term down to

po=v— /e will not be trapped in the energy barrier between

the elliptic and the hyperbolic pointg.e., in the forbidden vivie v P an P

acceleration domajnas shown in Fig. 6. Se " (p) Vi Sl(p)+vj Sy'(p). (13
The “trapping” criterion in Eq.(9) given in terms of the

Hamiltonian should be contrasted with the threshold criterionT he details of this derivation are given in the Appendix. We

for interaction with a single wave given by E@). Itis clear ~ can therefore express Hamiltoniéf) in terms of the simpli-

that, unlike the single-wave case, an ion with initial velocity fied S;i(p) function only:
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H=g?

.

As we will show later in this section our analysis breaks
down for small values of». Consequently we take;>1,
and remembering that=1 with p/v;=p/(v;+1)~p/v;(1

- 1/vi2+ -+ -) we can approximatg/ v~ p/v; . Dropping the
subscripts inS;'(p) we have

(1+ gcos{vi— Vj]ﬁ) S]'(p)

1+ gcos[yi—yj]e)sii(p)]. (14)

J

H=¢? X[S"(p)+S"(p)]. (15

1+£C0$Vi_1/j)0
Vi

Finally, we substitute Eq(12) for each of theSI‘(p) func-
tions. Expressing everything in terms gf we get

82’77'

p
- 8 sinvwr 1+ ;COSB)[_Jv—l(p)‘]—(v—l)(p)

+Jv(P)‘J7u(P)+Jv+1(P)J—(y+1)(P)
—Ju+2(p)I-+2)(P) ], (16)

where we have replaceg with v.
We are now ready to find the position of poirisandH.
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FIG. 7. Solution to Eq(18) as a function ofv. The elliptic and
hyperbolic pointsg andH, could not always be found for small
For »>9 both points could be found for any values of That
region is marked as “continuous” on the figure.

As we discussed above, we are only considering the cases
with v# integer. Unfortunately, due to the asymptotic behav-
ior of the Bessel function near the “turning poinit18], de-
fined asp,,=+v(v+1), the solution approaches different
limits asv gets close to an integer from different sides. This
peculiar behavior is demonstrated for the case 6f55 in
Fig. 8. Therefore, no simple analytical expression could be

From Eq.(10) as well as from Figs. 4 and 5 we see that these?Ptained for the position of the hyperbolic point. Instead,

points lie atd=7r. This reduces Eq$10) and(11) to

J p _
ap(l—;>L(p)—0,

where
L(p,V): _JV*l(p)‘]*(V*l)(p)+JV(p)J*V(p)
+J3,11(p)I (b 1)(P) = I 2(p) I (1 2)(p)-
(17

From Eq.(17) we can expresg as a function ofL(p) and

L'(p), where the prime denotes the derivative with respect

to p, and arrange the resulting expression as

p_. 1Lpy 19
v VL' (p,v)
or
p 1 L(pw)
w)=1--—-—""" =, 9
Flpm=1-0-5 5 (19

The first and second roots of E¢L9), pg and py, for a
given value ofy, correspond to the locations of tledliptic
andhyperbolicpoints respectively.

The solution to Eq(18) for a range ofv is shown in Fig.
7, while theF(p,v) of Eq. (19) is plotted as a function of
plv for ve[55.001,55.999in Fig. 8. It is now important to
discuss the behavior of these solutions.

Fig. 7 shows a range of solutions for the location of this
point. On the other hand, the elliptic point is very well de-
fined. It is seen that for sufficiently large values ofthe
location of the elliptic point, according to our second-order
perturbation analysis is at

14
pe=5. Oe=m. (20)
Although no simple expression could be found for the loca-

tion of the hyperbolic point, we see from Fig. 7 that its

02
v =55999
0.1 55.99
/ 55.9
_ E
N / 55.5
a 00 & £
5 /
55.2
01 55.01
55.001
02 T T T T T T
04 05 06 07 038 09 1.0 1.1
p/v

FIG. 8. Plot of the functior(p,v), given by Eq.(19), showing
how the second rodtorresponding to the hyperbolic poimhoves
away fromp/v=1 asv changes from 55.001 to 55.999. The first
root on the left, markeds, represents the elliptic point and the
subsequent roots represent the hyperbolic points for the various
values ofp/v.
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location asymptote&t large values of’) to a value ofp/v 18
~0.8-1.0; therefore we may approximate

16

pH’:O.gv, GH:W. (21) 14
It is also important to mention that because of the asymptotic
behavior of Bessel functions, the elliptic and hyperbolic
points could not always be found for small valuesrvofFor 10
these cases while the expression for the Hamiltoiamg.
(16)], is still valid, our analysis of the allowed and forbidden
acceleration domains does not apply. The rangev dbr
which we could always find both critical points is designated
as “continuous” in Fig. 7.

Another limitation is placed on our analysis by its inde-
pendence orx in locating the critical points, as seen from
Eq. (17). Extensive £¢~5—100, v~10—50) numerical ex-
ploration of the weak dependence of the critical point loca-
tions one suggests the following corrections to expressions
(20) and(21), which are reminiscent of the dependence in
the single wave interactiofv] [Eg. (2)],

_(=e)

PE 2 Og =, (229 10:

a  12F

pu=v—e, Oy=m. (22b)

The physical interpretation and significance of these two
points could be understood as follows. Looking back at Fig.
3 we see that both points correspond to the particles moving
180° out of phase with the electric field of the wave. We can 25
note from Fig. 6 that at the hyperbolic point the ion velocity :
IS vy=—wl/k+uvy (v is the trapping velocity defined by 20—
the second term of Eq2) [7]) and the Hamiltonian is at the ;
maximum, while at the elliptic point the ion velocity is
=(—wlk+tuv)/2, and the Hamiltonian is at the minimum.
The difference in the Hamiltonian of the two points then

0
a-2)

a 15

10 H

forms an “energy barrier,” which an ion must overcome to 5

be accelerated by the wave. — "
Another way to understand the importance of the elliptic 0 T T —T— T T

point is to realize that at this point the energy exchange be- 0 1 2 3 4 5 6

tween the ion and the waves is minimum and the situation is  b) 0

equivalent to stable equilibrium for a pendulum. Any small

perturbation from that equilibrium will only cause small os- _ : X
cillations about it. This implies that in the immediate neigh- "9 On-resonance waves showing a more complicated picture than
that of the off-resonance case shown in Fig. &=(0, v;=24, v;

E%r:t?yogooguch)]l?:\i tir(;?} :2?0 ?Rgrgz)gﬁ:;?ct rt()aet‘:jiﬁlr:,eiaes SSeL:efE in 25). (a-1) and(a-2 analytical solutions(b) Numerical solution.
Fig. 5. On the other hand, the hyperbolic point corresponds
to the unstable equilibrium of the pendulum and any smalWith respect to the off-resonance case is that now we have
perturbation from it will cause significant changes in the iontwo hyperbolic points which do not lie &= . Neverthe-
motion, i.e. escape into the stochastic region and subsequelss, we could still find their positions by solving Eq$0)
vigorous heating. and(11) numerically.

The location of the elliptic point is easier to obtain since

the first-order terms in Eqg410) and (11) drop out for

=1, as in the off-resonance case. Also, Fig. 9 shows that the
When we choose; and v; to be both on-resonance, the analytical solution exhibits much more complicated chains of

overall behavior becomes much more complicated and nthe critical points at large values pf While in reality these

simple analytical expression, as in the previous section, capoints are “inside” the stochastic region, this graphical pic-

be found. Figure 9 shows a typical example, the case witliure illustrates why the analytical treatment of the on-

=10, »;=24, andv;=25. One of the major differences resonance case is more challenging. However, we note that

FIG. 9. Poincareection for a particle interacting with two beat-

VII. BEATING WAVES (ON-RESONANCE)
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the locations of both the elliptic and the hyperbolic pointsThis last effect was a subject of numerical investigation in
even in this case are very close to those determined by EqRef. [17]. In that work we found that collisional scattering
(22). Indeed, by studying numerically the solutions to E8).  can enhance ion energization by providing an escape mecha-
for both on-resonance and off-resonance cases we concludém for the ions trapped in the forbidden acceleration do-
that the locations of elliptic and hyperbolic points for both main of phase space.

cases could be well predicted by E@22).
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The beating criterion ¢1— w,=nw.) proposed by Be-
nisti et al. [2,3] can allow a magnetized ion to be energized
by a pair of beating electrostatic waves. The importance of
this mechanism stems from its ability to accelerate ions with
arbitrarily low initial velocity. It has become clear, however  Using Eq.(1) and substituting fod,(p) andJ,(p) with
(see Fig. 2, that this criterion is not sufficient for accelera- the identitieq18]
tion.

In order to better define the criteria for acceleration we
investigated multiple ion trajectorigsnultiple initial condi-
tions) on the same Poincarsection. This analysis led to the
identification of critical points on the phase diagram. A vig- In-1(p) =Im+1(p)=In(p), (A1)
orous ion acceleration now can be explained in terms of the N
location of these points in the region of regular motion. AWE €an rewriteS¢'"i(p) as
second-order perturbation analysis of the equation of motion 1
allowed us to derive the criterion defining the allowed and sgi Yi(p)= <
forbidden acceleration domains in terms of the location of 8
these points.

According to this analysis, for a pair of beating,( v,
=1) electrostatic waves interacting nonlinearly with a mag-
netized ion, significant ion acceleration can occur as long as
the Hamiltonian of the systewoes notsatisfy the following
“trapping” criterion

Holmes.

APPENDIX: Sgi ""i(p) TERM SIMPLIFICATION

2m
Im-1(p) +Im+1(p) = TJm(P)v

2 JIm+2(p)Ims1(p) +2 In(P)Im+1(p)

r—m r—m

Im-1(p)Ims+ In(p)Im-
S 1(p) 2(p)_2 (P)Im-1(p)

r—m r—m

+z JIm-1(p)Im—2(p) +E Im+1(p)Im—2(p)

ry—m ry—m

Im(P)Im- Im(P)Im+
- (p) 1(p)_2 (P)Im+a(p) |

HL(v—/s)/2im]<H(po; 6o) v—m y—m
<H(v—e;m) with po<v—+e (A2)
(23)  Now we use the identitj20]
(which strictly applies when>1). If the ion’s initial con- o Inip(P)Imlp)
ditions do not satisfy the above trapping criteria, the ion can e —m sinappr(PI-up),

be accelerated from arbitrarily low initial velocity through
the region of regular motion to the stochastic region wheravhich is valid forp>0 to simplify Eq.(A2) to
substantial energization can occur.

Regular ion acceleration is a much slower process than SUi(p) = ———
stochastic energizatidmt]. However, as the wave amplitude 6 8 sinmv
is increased, the region of stochastic motion can extend —23.(p)J (]
down to low initial velocities. It is important to note that the WP --iP)ls
trapping criterion is in terms of th@nitial) Hamiltonianand  which, with the help of identitie$A1), may be easily shown
not just the (initial) velocity (pg). The necessarywave- to equal to
beating condition stated in Eq1) along with the avoidance
of the trapping criterion stated in E@®3) represent twamec- Sl i(p) = p_
essary and sufficierdonditions for the beating-wave ion ac- s PV sinmy
celeration mechanism to occur.

While the above study offers insight into the fundamental —J,-1(P)I-(v-1)(p)]
problem of a single ion interacting with two beating waves, o
the relevance of the mechanism to practical problems involv- + .
ing a plasma rests on resolving a number of issi®sthe (v+1) sinm(v+1)
effects of oblique wave propagation, as recently studied in
Ref. [19]; (2) the effects of wave dispersion; ar@d) the
extension to collection of particles and the role of collisions.Chiaet al. [13] showed thaSIi(p) can be simplified as

[23,+2(p)d-(+1)(P)

[Jv+1(p)‘]—(v+ 1)(P)

[J.(p)J_.(p)

_‘Jv+2(p)‘]f(v+2)(p)]'
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Sy(p)= 8 sinmy;

_‘]Vi—l(p)‘]—(vi—l)(p)]'

[in+1(P)Jf(Vi+1)(P)

It is then clear that

PHYSICAL REVIEW E 69, 046402 (2004

¢ "(p)=ZS](p) + 25} p). (A3)

]

Finally, we caution that relatiofA3) holds only for the spe-
cial case ofy;#integer andv;=v;+ 1.
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