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Ion acceleration by beating electrostatic waves: Domain of allowed acceleration

R. Spektor and E. Y. Choueiri
Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL), Princeton University, Princeton, New Jersey 08544, USA

~Received 15 September 2003; published 14 April 2004!

The conditions under which a magnetized ion can be accelerated through a nonlinear interaction with a pair
of beating electrostatic waves are explored. It has been shown@Benistiet al., Phys. Plasma 5, 3224~1998!# that
the electric field of the beating waves can, under some conditions, accelerate ions from arbitrarily low initial
velocity in stark contrast with the well-known nonlinear threshold criteria for ion acceleration by a single wave.
It is shown here that the previously found condition is necessary but not sufficient for acceleration to occur.
The sufficientand necessary conditions are identified in terms of the location of the critical points of the
motion on the Poincare´ section. A second-order perturbation analysis was carried out to approximate the
location of these critical points and define the domains of allowed and forbidden acceleration. It is shown that
for an ion to be significantly energized, the Hamiltonian must be outside the energy barrier defined by the
location of the elliptic and hyperbolic critical points. Despite the restriction on the Hamiltonian, an ion with
arbitrarily low initial velocity may benefit from this acceleration mechanism.

DOI: 10.1103/PhysRevE.69.046402 PACS number~s!: 52.65.Cc, 52.20.Dq, 05.45.Pq, 94.20.Rr
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I. INTRODUCTION

Ion heating by a spectrum of electrostatic waves pro
gating perpendicularly to the magnetic field was proposed
Ramet al. @1# in 1998 as an explanation for ionospheric io
heating observed by the Topaz 3 rocket. In the same y
Benisti et al. demonstrated that ions with an arbitrary lo
initial velocity can be accelerated through a nonlinear int
action with the waves whenever the spectrum contains a
of waves that obey a beating criterion: their frequencies m
differ by an integer number of the ion cyclotron frequen
@2,3#:

v22v15nvc . ~1!

Because of the lack of a threshold for the initial ion veloci
this acceleration mechanism promises to energize a la
portion of the ion distribution function. Therefore, it may b
promising to many applications where the efficiency of i
heating is of prime importance, such as plasma heatin
fusion devices and spacecraft plasma propulsion.

A preliminary numerical exploration@4# of this mecha-
nism revealed that there are many cases for which the b
ing criterion~1! doesnot lead to ion acceleration. This hinte
to the possibility that the criterion is necessary but not su
cient.

In this paper we define the necessaryand sufficient con-
ditions for the acceleration of a magnetized ion through n
linear interaction with a pair of propagating electrosta
waves. In particular, we analyze the Poincare´ section of the
ion’s motion @5# and show that the dynamics of the ion a
celeration is determined by the critical points of the moti
@6#. These critical points were not observed in previous st
ies @2,3# since these studies were limited to the analysis o
single trajectory~i.e., a single initial condition! in a given
Poincare´ section. The location of the critical points, whic
can only be seen when multiple ion trajectories are analyz
allows us to define the necessary and sufficient condition
acceleration.
1539-3755/2004/69~4!/046402~9!/$22.50 69 0464
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In Sec. II we review previous relevant work. In Sec. I
we overview the analytical formulation of the problem.
Sec. IV we describe the construction and interpretation of
graphic solutions. We solve the equation of the ion’s mot
numerically in Sec. V to show how critical points influenc
its dynamics. In the remaining sections we seek analyt
expressions for the location of the critical points of the m
tion, which amount to a definition of the domains of allowe
and forbidden acceleration.

II. REVIEW OF PREVIOUS WORK

Stochastic heating of a magnetized ion by a single pro
gating electrostatic~ES! wave has been extensively studie
@8–11#. Using first-order perturbation theory Karney@7,10#
was able to derive analytical expressions approximat
overall nonlinear dynamics of an ion interacting with a sing
ES wave. That work revealed the existence of a threshold
the initial ion energy below which the particle cannot ga
net energy from the ES wave. This threshold can be
pressed in terms of the ion’s velocity as

v th5
v

k
2AqE

km
, ~2!

wherev th , m, andq are the velocity, mass, and charge of t
ion, andv, k, andE are the frequency, wave number, an
electric field amplitude of the wave. Skiffet al. validated
these findings experimentally@12#. The significance of the
threshold can be seen from the example demonstrated in
1. It shows the typical velocity evolution of two test ion
obtained through numerical simulation. Below the thresho
indicated by the horizontal dashed line, we observe that
ion motion is regular, and consequently we can predict
behavior well by means of perturbation theory. More imp
tantly, as long as the ion’s initial velocity is in that region th
©2004 The American Physical Society02-1
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ion will not gain a net energy from the wave@7#. When the
initial velocity is above the threshold, the ion moves stoch
tically and eventually gains a net energy, as shown by
upper trajectory in Fig. 1. As shown by Karney@7#, in the
case of interaction with asingle wave the ion gains energ
only chaotically when its initial velocity exceeds the thres
old. Thus the threshold separates two regions of phase sp
a regular ~or coherent! motion region of low energies below
the threshold and astochasticone — above the threshold
Nonlinear ion acceleration by a single wave is therefore
ways a stochastic process.

In 1998 Benisti and co-workers described a fundam
tally different mechanism for nonlinear ion acceleration
ES waves@1–3#. The scheme requirespairs of ES waves that
obey a beating criterion described by Eq.~1!. Under such
conditions the single-wave theory threshold disappears
regular and stochasticregions of phase space become co
nected, allowing ions with arbitrarily small initial velocitie
to obtain high energies through coherent acceleration
lowed by stochastic energization.

Subsequently, we performed numerical investigation@4#
based on the same single trajectory method and found
some initial conditions didnot lead to ion acceleration eve
if condition ~1! was satisfied, as illustrated in Fig. 2. Th
implied that condition~1! may be necessary but not suffi
cient. We concluded that to find the necessaryand sufficient
conditions for ion acceleration we need to examine the co
plete Poincare´ section using multiple trajectories and find th
critical points of motion, as will be done in Secs. V and V

III. ANALYTICAL FORMULATION

We start by defining the coordinate axis as shown in F
3. Here we have a single ion of massm and chargeq in a
constant and homogeneous magnetic field, B0ẑ. This ion in-
teracts with a packet of electrostatic waves that propagat
the positivex direction. Since we take the waves to be pure
electrostatic the wave numberki is parallel to the electric
field Ei of each of these waves. The dynamics of the sin

FIG. 1. Time evolution of the velocity for a particle interactin
with a single wave. The threshold derived in Ref.@7# and given by
Eq. ~2! represents the boundary between the regular and stoch
domains, and is shown as a horizontal dashed line.
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ion in Fig. 3 is described by the following equation of m
tion @2,13#:

d2x

dt2
1vc

2x5
q

m (
i

Ei sin~kix2v i t1w i !, ~3!

wherevc5qB 0 /m is the ion cyclotron frequency andw i is
the phase angle of each wave. The corresponding Ha
tonian for the system is@2#

H̄5r2/21(
i

« i

k i
cos~k ir sinu2n it1w i !. ~4!

In writing Eq. ~4! we have used the fact that the system
periodic, and transformed the Hamiltonian into normaliz
action-angle coordinate system@14#, where k i5ki /k1 , n i

5v i /vc , t5vct, « i5(k1qEi)/(mvc
2), r25X21Ẋ2, and

X5k1x, Ẋ5dX/dt, so that X5r sinu, Ẋ5r cosu. The
action-angle coordinate system is a special case of polar
ordinates@5#. In our contextu corresponds to the cyclotro
phase angle measured clockwise from they axis, as indicated

tic

FIG. 2. Time evolution of the velocity for a particle interactin
with two beating waves. Two particle trajectories are shown, o
with an ion trapped below thev th,v/k2AqE/km threshold, and
another resulting in an accelerating ion. For both trajectories
initial velocities are the same~but the initial cyclotron angle is
different!.

FIG. 3. A single ion of chargeq and massm in a constant

homogeneous magnetic field B0ẑ interacts with a spectrum of elec
trostatic waves whose wave-number and electric field directio
parallel to thex axis.
2-2
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ION ACCELERATION BY BEATING ELECTROSTATIC . . . PHYSICAL REVIEW E 69, 046402 ~2004!
in Fig. 3, whiler is the normalized Larmor radius which, i
a constant magnetic field, represents the normalized velo
~perpendicular to the magnetic field! of the magnetized par
ticle undergoing cyclotron motion in thexy plane. Whenn i
are exactly an integer multiple of the ion cyclotron frequen
we speak of anon-resonancewave; otherwise it isoff-
resonance.

Benisti et al. @2# defined a criterion for particle accelera
tion by multiple ES waves. They showed that for regular a
stochastic regions to be connected it is necessary~but, as we
shall see, not sufficient! to have at least one pair of ES wav
such that

n22n15n, ~5!

wheren is an integer. They also report that acceleration
more vigorous forn<2, therefore for the sake of simplicity
we limit our analysis to the case of a single pair of beat
waves, such thatn51. In addition, Ref.@2# reports that the
maximum acceleration is achieved when all waves are of
same amplitude,« i5« j5«. We also setk i5k j5k1 to sim-
plify our analysis, and since the phase anglesw i do not play
a fundamental role in this acceleration process@2# we set all
w i50. With these simplifications the Hamiltonian~4! be-
comes

H̄5r2/21«@cos~r sinu2n it!1cos~r sinu2n jt!#.
~6!

This Hamiltonian represents two coupled oscillators: one
the gyrating ion and the other corresponds to the beating
waves. We, therefore, can interpret« as a coupling paramete
between the two oscillators.

The detailed derivation of the analytical solution for
particle interacting with a single wave can be found in R
@7#. However, a more generalized solution for multip
waves is obtained@13,15,16# through Deprit’s modified Lie
transformation in Refs.@2,3#. The resulting autonomou
Hamiltonian derived from Eq.~6! for a nonintegervalue ofn
to the second order in the perturbation,«, is

H5«$Jn i
~r!cos~n iu!1Jn j

~r!cos~n ju!%

1«2$S1
n i~r!1S1

n j~r!1S6
n i ,n j~r!cos@~n j2n i !u#%,

~7!

where

S1
n i~r!5

1

2r (
m52`

` mJm~r!Jm8 ~r!

n i2m
,

~8!

S6
n i ,n j~r!5

1

2r S (
m52`

` mJm~r!Jn j 2n i1m8 ~r!

n i2m

1 (
m52`

` mJm~r!Jn i2n j 1m8 ~r!

n j2m D .

Jm is the Bessel function of the first kind of orderm, andJ8
represents the derivative of the Bessel function with resp
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to its argument. Whenn i is an integer, the summations a
performed over allmÞn i to avoid singularities. WhennÞ
integer, the first-order terms in Eq.~7! disappear@2#, and the
equation becomes more tractable.

We now explore particle dynamics as a function of wa
amplitude and frequency, and in terms of the location
critical points on the phase diagrams. Solving Eq.~6! nu-
merically we will demonstrate that when critical points a
absent in the regular region of the phase diagram~as in the
single wave-particle interaction!, the particle will not gain
net energy.

IV. GRAPHICAL ANALYSIS

A convenient way of representing both numerical a
analytical solutions is to plot the resulting trajectories on
Poincare´ section@5#. To construct a Poincare´ section from
the numerical integration of Eq.~6! we plot the point inter-
sections of the ion trajectory in three dimensions (r,u,t)
with ther-u plane at specific time intervals. For integer va
ues ofn this reduces to plottingr vs u at t52p j , where
j 50,1,2, . . . is anonnegative integer. For noninteger valu
of n precaution must be taken for a proper accounting
intersection points. Since the magnetic field is constant,
normalized cyclotron radiusr is a direct measure of the pe
pendicular ion velocity. Therefore Poincare´ sections give di-
rect visual insight into the acceleration process.

In constructing the Poincare´ section from the analytica
solution we note that the Hamiltonian in Eq.~7! is autono-
mous, and therefore itself is an invariant of motion. Curv
of constantH in a Poincare´ section represent the comple
analytical solution of the problem to second order.

The visual interpretation of Poincare´ sections is straight-
forward. A random point distribution corresponds to stoch
tic motion while regular patterns, such as lines and ellips
will tell us that the ion dynamics is analytical~or regular!.
For example, if the wave amplitude« is zero, Eqs.~3! and
~6! reduce to a simple harmonic oscillator and for irration
values ofn its Poincare´ section shows a set of horizonta
lines, indicating a constant velocity~which corresponds to a
free ion gyrating in a constant magnetic field!. Each of these
lines represents an invariant of motion for a given set
initial conditions@5#. When the coupling parameter« is not
zero, we can treat the ion motion as a perturbation of th
invariants.

As with most phase diagrams, critical points define t
dynamics of the motion. Since the system is not dissipa
we expect to find two types of critical points: elliptic an
hyperbolic. As we shall show later, the location of the critic
points is the key to determining which initial conditions lea
to acceleration or trapping. The task before us is to find th
critical points. Our research is guided by a comparison of
Poincare´ sections of the analytical solution to those obtain
through numerical integration of Eq.~6!. It should be noted
that we should not expect to see any stochastic behavio
the Poincare´ sections obtained from the analytical solutio

V. TOPOLOGY OF THE POINCARE´ SECTION

In Fig. 4 we show typical Poincare´ sections obtained by
numerical integration forn1524.3 andn2525.3. The panels
2-3
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R. SPEKTOR AND E. Y. CHOUEIRI PHYSICAL REVIEW E69, 046402 ~2004!
in this figure illustrate the effect of increasing wave amp
tude. The phase diagram consists of two regions, stoch
and regular, just as for the single wave interaction. Howe
unlike the single wave-ion interaction, the two regions a
‘‘connected.’’ By ‘‘connected’’ we mean that an ion with low
initial velocity can undergo first regular and then stochas
acceleration, reaching high energies.

For low perturbation strength~low values of«) the regu-
lar region extends to values ofr approximately predicted by
Eq. ~2!. However, as« is increased the regular regio

FIG. 4. Poincare´ sections showing numerical solutions for a pa
ticle interacting with two beating off-resonance waves (n i524.3
andn j525.3). The stochastic region occupies a greater fraction
the phase space as the wave amplitude is increased.
04640
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quickly shrinks to the vicinity of the elliptic critical poin
~designatedE in Fig. 4!. Notice that the elliptic point is lo-
cated atrE;n/2 anduE5p. Eventually, as the wave ampli
tude is raised above values shown in Fig. 4, chaotic mo
dominates the phase diagram.

We now gauge how well the second-order perturbat
analysis compares to the numerical solutions. Figure 5 in
cates a good degree of agreement between the two. E
though the detailed structure of the regular motion lines
not captured with the analytical solution, the latter does p
dict the position of the lower elliptic~E! as well as the hy-
perbolic point~H! rather well. On the other hand, our an
lytical approach breaks down in the stochastic region,
should be expected. Therefore the critical points shown
the analytical solution to be atr.25 in Fig. 5~a! ~which can
be said to describe a ‘‘homoclinic tangle’’ or ‘‘stochast
layer’’! are in reality covered by the stochastic motion,
shown by the numerical solution. However, as described
Ref. @3#, even in that region of phase space the overall
motion could be approximated by first-order orbits, for sm
«.

In the case of a particle interacting with beating waves
are mainly concerned with the hyperbolic and elliptic critic
points designatedH andE, respectively, in Fig. 5. It is clea

f

FIG. 5. Poincare´ section for a particle interacting with two bea
ing off-resonance waves («510, n i524.3, andn j525.3). ~a! Ana-
lytical solution showing the existence of hyperbolic and ellip
points marked byH andE, respectively.~b! Numerical solution also
showing the locations of the critical points.
2-4
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ION ACCELERATION BY BEATING ELECTROSTATIC . . . PHYSICAL REVIEW E 69, 046402 ~2004!
by tracing trajectories in Figs. 4 and 5 that an ion who
Hamiltonian lies between the Hamiltonian values cor
sponding to pointsE andH does not gain net energy from th
waves i.e., does not reach the stochastic region where it
be vigorously accelerated. Instead the corresponding p
space trajectories circulate around the elliptic critical poinE
or cover the full range of cyclotron phase angles (0<u
<2p) while remaining belowH.

It is relevant to note in this context that the Hamiltoni
of various trajectories increases monotonically from
Hamiltonian value at pointE to its value at pointH, as
shown in Fig. 6. The figure shows the Hamiltonian det
mined from Eqs.~7! and~8! as a function ofr for u5p and
illustrates that the location of theelliptic and thehyperbolic
points could be found by determining the local minimum a
the maximum ofH.

Therefore, for given values ofn i and«, the inequality

HE,H~r0 ,u0!,HH with r0,n2A« ~9!

defines theforbidden acceleration domain, where HE and
HH are the Hamiltonian values for the elliptic~E! and the
hyperbolic~H! points, and the subscript ‘‘0’’ refers to initia
conditions. By ‘‘forbidden acceleration domain’’ we mea
here the domain of initial conditions for which an ion cann
reach the stochastic region of phase space where it ca
vigorously energized. This shows that not all ions will
accelerated by the waves even when the beating criterion~1!
is satisfied. All other ion trajectories then lie in theallowed
acceleration domainof phase space. The ions in the allow
acceleration domain will be affected by the waves stron
The restriction onr0 in Eq. ~9! is needed because ions wi
r0*n2A« will not be trapped in the energy barrier betwe
the elliptic and the hyperbolic points~i.e., in the forbidden
acceleration domain!, as shown in Fig. 6.

The ‘‘trapping’’ criterion in Eq.~9! given in terms of the
Hamiltonian should be contrasted with the threshold criter
for interaction with a single wave given by Eq.~2!. It is clear
that, unlike the single-wave case, an ion with initial veloc

FIG. 6. Analytical Hamiltonian as a function ofr at u5p. The
elliptic and the hyperbolic points corresponding to the ones sho
in Fig. 5 are the minimum and maximum ofH (n i524.3 andn j

525.3).
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ro below the ‘‘threshold’’ can still be accelerated to hig
energies if the corresponding Hamiltonian is outside
range described by Eq.~9!.

From the point of view of plasma acceleration one wou
like to limit the number of particles trapped in the forbidde
acceleration domain (HE,H(r0 ,u0),HH). The rest of the
ions gain much higher energies through first regular~if their
initial energy is low! and then stochastic acceleration,
shown in Figs. 4 and 5. However, even the trapped partic
can escape into the stochastic domain as could hap
through elastic scattering in a collisional plasma. We ha
studied this effect through particle simulations reported
Ref. @17#.

VI. CRITICAL POINTS

To define the domains of allowed and forbidden accele
tion described by Eq.~9! we need to find the location of th
critical pointsE andH. We now seek analytical expression
for both.

Since both points are the extrema of the Hamiltonian, t
task can be achieved by setting the time derivative ofr and
u to zero simultaneously@5,6#. Utilizing Hamilton’s equa-
tions of motion in conjunction with Eqs.~7! and ~8! we get

ṙ5
]H

]u
5«$n iJn i

~r!sin~n iu!1n j Jn j
~r!sin~n ju!%

1«2~n i2n j !S6
n i ,n j~r!sin@~n j2n i !u#50, ~10!

u̇52
]H

]r
5«$Jn i

8 ~r!cos~n ju!1Jn j
8 ~r!cos~n ju!%

1«2$S1
8n i~r!1S1

8n j~r!1S6
8n i ,n j~r!

3cos@~n i2n j !u#%50. ~11!

When both wave frequencies are off-resonan
(n i ,n jÞ integer!, the equations above simplify because t
first-order terms drop out, and we are able to obtain the
sition of critical points analytically.

For nÞ integer, theS1
n i(r) term in Eq.~8! could be sim-

plified to an algebraic equation containing only a few Bes
functions@13#:

S1
n i~r!5

p

8 sinn ip
@Jn i11~r!J2(n i11)~r!

2Jn i21~r!J2(n i21)~r!#. ~12!

As a result of this simplification we can reduce theS6
n i ,n j(r)

term down to

S6
n i ,n j~r!5

r

n i
S1

n i~r!1
r

n j
S1

n j~r!. ~13!

The details of this derivation are given in the Appendix. W
can therefore express Hamiltonian~7! in terms of the simpli-
fied S1

n i(r) function only:

n

2-5
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R. SPEKTOR AND E. Y. CHOUEIRI PHYSICAL REVIEW E69, 046402 ~2004!
H5«2H S 11
r

n i
cos@n i2n j #u DS1

n i~r!

1S 11
r

n j
cos@n i2n j #u DS1

n j~r!J . ~14!

As we will show later in this section our analysis brea
down for small values ofn. Consequently we taken i@1,
and remembering thatn51 with r/n j5r/(n i11);r/n i(1
21/n i

21•••) we can approximater/n i;r/n j . Dropping the
subscripts inS1

n i(r) we have

H5«2F11
r

n i
cos~n i2n j !uG3@Sn i~r!1Sn j~r!#. ~15!

Finally, we substitute Eq.~12! for each of theS1
n i(r) func-

tions. Expressing everything in terms ofn i we get

H5
«2p

8 sinnp S 11
r

n
cosu D @2Jn21~r!J2(n21)~r!

1Jn~r!J2n~r!1Jn11~r!J2(n11)~r!

2Jn12~r!J2(n12)~r!#, ~16!

where we have replacedn i with n.
We are now ready to find the position of pointsE andH.

From Eq.~10! as well as from Figs. 4 and 5 we see that the
points lie atu5p. This reduces Eqs.~10! and ~11! to

]

]r S 12
r

n DL~r!50,

where

L~r,n!52Jn21~r!J2(n21)~r!1Jn~r!J2n~r!

1Jn11~r!J2(n11)~r!2Jn12~r!J2(n12)~r!.

~17!

From Eq.~17! we can expressr as a function ofL(r) and
L8(r), where the prime denotes the derivative with resp
to r, and arrange the resulting expression as

r

n
512

1

n

L~r,n!

L8~r,n!
~18!

or

F~r,n![12
r

n
2

1

n

L~r,n!

L8~r,n!
50. ~19!

The first and second roots of Eq.~19!, rE and rH , for a
given value ofn, correspond to the locations of theelliptic
andhyperbolicpoints respectively.

The solution to Eq.~18! for a range ofn is shown in Fig.
7, while theF(r,n) of Eq. ~19! is plotted as a function o
r/n for nP@55.001,55.999# in Fig. 8. It is now important to
discuss the behavior of these solutions.
04640
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As we discussed above, we are only considering the ca
with nÞ integer. Unfortunately, due to the asymptotic beha
ior of the Bessel function near the ‘‘turning point’’@18#, de-
fined asr tp5An(n11), the solution approaches differen
limits asn gets close to an integer from different sides. Th
peculiar behavior is demonstrated for the case ofn;55 in
Fig. 8. Therefore, no simple analytical expression could
obtained for the position of the hyperbolic point. Instea
Fig. 7 shows a range of solutions for the location of th
point. On the other hand, the elliptic point is very well d
fined. It is seen that for sufficiently large values ofn the
location of the elliptic point, according to our second-ord
perturbation analysis is at

rE.
n

2
, uE5p. ~20!

Although no simple expression could be found for the loc
tion of the hyperbolic point, we see from Fig. 7 that i

FIG. 7. Solution to Eq.~18! as a function ofn. The elliptic and
hyperbolic points,E andH, could not always be found for smalln.
For n.9 both points could be found for any values ofn. That
region is marked as ‘‘continuous’’ on the figure.

FIG. 8. Plot of the functionF(r,n), given by Eq.~19!, showing
how the second root~corresponding to the hyperbolic point! moves
away fromr/n51 asn changes from 55.001 to 55.999. The fir
root on the left, markedE, represents the elliptic point and th
subsequent roots represent the hyperbolic points for the var
values ofr/n.
2-6
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location asymptotes~at large values ofn) to a value ofr/n
;0.8–1.0; therefore we may approximate

rH.0.9n, uH5p. ~21!

It is also important to mention that because of the asympt
behavior of Bessel functions, the elliptic and hyperbo
points could not always be found for small values ofn. For
these cases while the expression for the Hamiltonian@Eq.
~16!#, is still valid, our analysis of the allowed and forbidde
acceleration domains does not apply. The range ofn for
which we could always find both critical points is designat
as ‘‘continuous’’ in Fig. 7.

Another limitation is placed on our analysis by its ind
pendence on« in locating the critical points, as seen fro
Eq. ~17!. Extensive («'52100, n'10250) numerical ex-
ploration of the weak dependence of the critical point lo
tions on« suggests the following corrections to expressio
~20! and~21!, which are reminiscent of the« dependence in
the single wave interaction@7# @Eq. ~2!#,

rE.
~n2A«!

2
, uE5p, ~22a!

rH.n2A«, uH5p. ~22b!

The physical interpretation and significance of these t
points could be understood as follows. Looking back at F
3 we see that both points correspond to the particles mo
180° out of phase with the electric field of the wave. We c
note from Fig. 6 that at the hyperbolic point the ion veloc
is vH52v/k1v tr (v tr is the trapping velocity defined b
the second term of Eq.~2! @7#! and the Hamiltonian is at the
maximum, while at the elliptic point the ion velocity isvE
5(2v/k1v tr)/2, and the Hamiltonian is at the minimum
The difference in the Hamiltonian of the two points th
forms an ‘‘energy barrier,’’ which an ion must overcome
be accelerated by the wave.

Another way to understand the importance of the ellip
point is to realize that at this point the energy exchange
tween the ion and the waves is minimum and the situatio
equivalent to stable equilibrium for a pendulum. Any sm
perturbation from that equilibrium will only cause small o
cillations about it. This implies that in the immediate neig
borhood of pointE the ion energy cannot be altered suf
ciently to push the ion into the stochastic region, as see
Fig. 5. On the other hand, the hyperbolic point correspo
to the unstable equilibrium of the pendulum and any sm
perturbation from it will cause significant changes in the i
motion, i.e. escape into the stochastic region and subseq
vigorous heating.

VII. BEATING WAVES „ON-RESONANCE…

When we choosen i andn j to be both on-resonance, th
overall behavior becomes much more complicated and
simple analytical expression, as in the previous section,
be found. Figure 9 shows a typical example, the case w
«510, n i524, andn j525. One of the major difference
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with respect to the off-resonance case is that now we h
two hyperbolic points which do not lie atu5p. Neverthe-
less, we could still find their positions by solving Eqs.~10!
and ~11! numerically.

The location of the elliptic point is easier to obtain sin
the first-order terms in Eqs.~10! and ~11! drop out for u
5p, as in the off-resonance case. Also, Fig. 9 shows that
analytical solution exhibits much more complicated chains
the critical points at large values ofr. While in reality these
points are ‘‘inside’’ the stochastic region, this graphical p
ture illustrates why the analytical treatment of the o
resonance case is more challenging. However, we note

FIG. 9. Poincare´ section for a particle interacting with two bea
ing on-resonance waves showing a more complicated picture
that of the off-resonance case shown in Fig. 5. («510, n i524, n j

525). ~a-1! and ~a-2! analytical solutions.~b! Numerical solution.
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R. SPEKTOR AND E. Y. CHOUEIRI PHYSICAL REVIEW E69, 046402 ~2004!
the locations of both the elliptic and the hyperbolic poin
even in this case are very close to those determined by
~22!. Indeed, by studying numerically the solutions to Eq.~6!
for both on-resonance and off-resonance cases we conc
that the locations of elliptic and hyperbolic points for bo
cases could be well predicted by Eqs.~22!.

VIII. SUMMARY AND CONCLUDING REMARKS

The beating criterion (v12v25nvc) proposed by Be-
nisti et al. @2,3# can allow a magnetized ion to be energiz
by a pair of beating electrostatic waves. The importance
this mechanism stems from its ability to accelerate ions w
arbitrarily low initial velocity. It has become clear, howev
~see Fig. 2!, that this criterion is not sufficient for accelera
tion.

In order to better define the criteria for acceleration
investigated multiple ion trajectories~multiple initial condi-
tions! on the same Poincare´ section. This analysis led to th
identification of critical points on the phase diagram. A vi
orous ion acceleration now can be explained in terms of
location of these points in the region of regular motion.
second-order perturbation analysis of the equation of mo
allowed us to derive the criterion defining the allowed a
forbidden acceleration domains in terms of the location
these points.

According to this analysis, for a pair of beating (n12n2
51) electrostatic waves interacting nonlinearly with a ma
netized ion, significant ion acceleration can occur as long
the Hamiltonian of the systemdoes notsatisfy the following
‘‘trapping’’ criterion

H@~n2A«!/2;p#,H~r0 ;u0!

,H~n2A«;p! with r0,n2A«

~23!

~which strictly applies whenn@1). If the ion’s initial con-
ditions do not satisfy the above trapping criteria, the ion c
be accelerated from arbitrarily low initial velocity throug
the region of regular motion to the stochastic region wh
substantial energization can occur.

Regular ion acceleration is a much slower process t
stochastic energization@4#. However, as the wave amplitud
is increased, the region of stochastic motion can ext
down to low initial velocities. It is important to note that th
trapping criterion is in terms of the~initial! Hamiltonianand
not just the ~initial! velocity (r0). The necessary~wave-
beating! condition stated in Eq.~1! along with the avoidance
of the trapping criterion stated in Eq.~23! represent twonec-
essary and sufficientconditions for the beating-wave ion ac
celeration mechanism to occur.

While the above study offers insight into the fundamen
problem of a single ion interacting with two beating wave
the relevance of the mechanism to practical problems inv
ing a plasma rests on resolving a number of issues:~1! the
effects of oblique wave propagation, as recently studied
Ref. @19#; ~2! the effects of wave dispersion; and~3! the
extension to collection of particles and the role of collision
04640
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This last effect was a subject of numerical investigation
Ref. @17#. In that work we found that collisional scatterin
can enhance ion energization by providing an escape me
nism for the ions trapped in the forbidden acceleration
main of phase space.
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APPENDIX: S6
n i ,n j

„r… TERM SIMPLIFICATION

Using Eq.~1! and substituting forJm(r) andJm8 (r) with
the identities@18#

Jm21~r!1Jm11~r!5
2m

r
Jm~r!,

Jm21~r!2Jm11~r!5Jm8 ~r!, ~A1!

we can rewriteS6
n i ,n j(r) as

S6
n i ,n j~r!5

1

8 H( Jm12~r!Jm11~r!

n2m
1(

Jm~r!Jm11~r!

n2m

2(
Jm21~r!Jm12~r!

n2m
2(

Jm~r!Jm21~r!

n2m

1(
Jm21~r!Jm22~r!

n2m
1(

Jm11~r!Jm22~r!

n2m

2(
Jm~r!Jm21~r!

n2m
2(

Jm~r!Jm11~r!

n2m J .

~A2!

Now we use the identity@20#

(
m52`

`
Jm1p~r!Jm~r!

n2m
5

p

sinpn
Jp1n~r!J2n~r!,

which is valid forp.0 to simplify Eq.~A2! to

S6
n i ,n j~r!5

p

8 sinpn
@2Jn12~r!J2(n11)~r!

22Jn~r!J2(n21)~r!#,

which, with the help of identities~A1!, may be easily shown
to equal to

S6
n i ,n j~r!5

r

n

p

sinpn
@Jn11~r!J2(n11)~r!

2Jn21~r!J2(n21)~r!#

1
r

~n11!

p

sinp~n11!
@Jn~r!J2n~r!

2Jn12~r!J2(n12)~r!#.

Chia et al. @13# showed thatS1
n i(r) can be simplified as
2-8
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S1
n i~r!5

p

8 sinpn i
@Jn i11~r!J2(n i11)~r!

2Jn i21~r!J2(n i21)~r!#.

It is then clear that
ys

04640
S6
n i ,n j~r!5

r

n i
S1

n i~r!1
r

n j
S1

n j~r!. ~A3!

Finally, we caution that relation~A3! holds only for the spe-
cial case ofn iÞ integer andn j5n i11.
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