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Low-inertia vortex formation and pattern selection are examined for axisymmetric Taylor-Couette flow with
spatially modulated cylinders. The forcing is arbitrary but remains periodic. The modulation amplitude is
assumed to be small, and a regular perturbation expansion is used to determine the flow field at small to
moderately large Taylor numbers(below the critical threshold). It is found that the presence of a weak
modulation leads unambiguously to the emergence of steady Taylor-vortex flow even at vanishingly small
Taylor number. This situation is closely reminiscent of the effect of end plates, and the consequent onset of
imperfect bifurcation. The vortex structure is found to have the same periodicity as the forcing when only one
of the cylinders is modulated, or when the modulations are commensurate. For incommensurate modulations,
the vortex pattern is quasiperiodic, with regions of almost purely azimuthal flow. When the counter-rotation
speed of the outer cylinder increases, the original vortices are gradually replaced by new ones that end up
spanning the entire gap width, and in turn break up into two vortices resulting in two rows of vortices
commensurate with each cylinder modulation. It is also shown that, for any modulation amplitude, the forcing
wave number that generates the most intense vortex flow for a given Taylor number varies monotonically with
Ta, but always reaches the critical value predicted by linear stability analysis for straight cylinders, regardless
of which cylinder is modulated.
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I. INTRODUCTION

While the Taylor-Couette flow(TCF) between straight
cylinders has been extensively investigated[1,2], little atten-
tion has been devoted to the flow between two spatially
modulated cylinders. The present theoretical study reports on
an extensive range of interesting phenomena and mecha-
nisms resulting from spatial modulation, which are closely
related to phenomena encountered in other systems, namely,
thermal convection[3]. Vortex formation and pattern selec-
tion at low to moderately large Taylor numbers is empha-
sized. The spatial modulation of the inner and/or outer cyl-
inder is closely analogous to the presence of end effects in
TCF; in both cases the forcing makes itself felt at precritical
values of the Taylor number Tac. It is well established that
vortices adjacent to the end plates form far below Tac [1,4].
When the precritical Taylor number is gradually increased,
additional vortices are formed on top of each other until the
vortices coming from the(symmetric) top and bottom plates
meet in the middle of the column, at the critical Taylor num-
ber predicted by linear analysis. The number of vortices de-
pends on the length of the cylinder. The presence of end
plates for finite cylinder length is equivalent to imposing a
strong modulation of wavelength equal to the length of the
cylinder. It is important to observe that cell formation is
spontaneous in the presence of end effects, and occurs at any
rotational speed[1].

Ikeda and Maxworthy[5] carried out visualization experi-
ments on spatially forced Taylor-vortex flow(TVF). Only the
inner cylinder was modulated. Many of the complex phe-

nomena observed in the unforced case were observed for the
forced flow. However, the natural frequency, corresponding
to the onset of TVF between straight cylinders, did not seem
to appear in their system, at least under the flow conditions
used in their experiment. It was found that the forcing fixes
the size of the vortices, but vortex flow is only observed once
Ta exceeds Tac. These findings seem to contradict the earlier
observations of Koschmieder[6], who considered the effect
of forcing caused by O-rings wrapped at regular intervals
around the inner cylinder. Vortex flow was discerned very
early. The first photograph showing signs of vertical activity
along the entire column was taken at Ta=0.03 Tac. Increas-
ing the angular velocity steadily intensified the vortex flow.
The sinks, the location of radial inward flow at the outer
cylinder, became prominent as steady perfectly horizontal
lines. The sources, the locations of radial outward flow at the
outer cylinder were not distinct. The distance from sink to
sink or the size of the forced vortex pair was equal to the
forcing wavelength. However, in contrast to the observations
in the narrow-gap limit, the sinks were not at a location
symmetric about the O-rings; rather the location of the
O-rings is 25% upward from the lower sink of each vortex
pair. The occurrence of the sources at the location of the
O-rings is of course expected, given the stronger centrifugal
effect at that level. More recently, Painter and Behringer[7]
also examined experimentally the effect of cylinder modula-
tion, and, unlike Ikeda and Maxworthy[5], they did observe
vortex flow at low Ta, but not as low as in Koschmieder’s[6]
experiment. Although it is well known that the Taylor num-
ber required for the instability to develop in unforced TCF is
smaller for larger gap width, the discrepancy between the
two experiments could not be attributed to the narrow-gap
apparatus used by Ikeda and Maxworthy[5]. The present
theoretical study clarifies the origin of the discrepancies
among earlier experiments, and reports on the conditions for
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emergence and structure of low Taylor-number secondary
flow as a result of cylinder modulation. A perturbation ap-
proach will be used to generate the flow for weakly corru-
gated cylinders. This approach has successfully been imple-
mented and validated for the nonlinear flow[8] and heat
transfer [9] in spatially modulated structures. It will be
shown that the presence of negligibly small modulation is
sufficient to induce a drastic departure from the(purely
azimuthal) TCF. In other words, the forcing destabilizes
the TCF.

II. PROBLEM FORMULATION

In this section, the general equations and boundary con-
ditions for the Taylor-Couette flow with modulated cylinder
walls is derived in the narrow-gap limit. After mapping the
equations over the rectangular domain, a regular perturbation
expansion for the flow field is carried out for weak modula-
tion.

A. Governing equations in the narrow-gap limit

Consider the steady flow of an incompressible Newtonian
fluid between two concentric infinite cylinders, as shown in
Fig. 1. Both cylinders are assumed to be periodically modu-
lated along the axial directionZ. The inner and outer cylin-
ders are assumed to rotate at constant angular velocities,Vi
and Vo, respectively. The inner cylinder is taken to always
rotate counter clockwise, so thatVi .0. Thus,Vo may be
positive, zero, or negative.

The general conservation of mass and linear momentum
equations are, respectively,

= ·U = 0, s1d

] U

] t
+ U · = U = n¹2U −

1

r
= P, s2d

whereU=sUR,UQ ,UZdT is the velocity vector in the cylin-
drical coordinatessR,Q ,Zd with Z taken along the common
cylinder axis,P is the pressure,n the kinematic viscosity,r
the density,¹ the three-dimensional gradient operator, and
¹2 the Laplacian operator. The cylinders are assumed to be
weakly modulated along the axial direction. Thus, the radii
of the inner and outer cylinders,Ri andRo, can be given by

RisZd = R̄i + AiFisZd, s3d

RosZd = R̄o + AoFosZd, s4d

where R̄i and R̄o are the mean radii of the inner and outer
cylinders, respectively;Ai and Ao are the respective ampli-
tudes of the modulation;FisZd andFosZd represent the shape
functions of the modulation. The fluid is assumed to adhere
to the cylinders, so that

UR = UZ = 0 and UQ = ViRi at R= Ri , s5d

UR = UZ = 0 and UQ = VoRo at R= Ro. s6d

The first step in reducing Eqs.(1) and (2) to the narrow-
gap limit consists of introducing dimensionless coordinates,
x andz, in the radial and axial directions, respectively, timet,
pressurep, and velocity componentsu, v, w, as follows:

x =
2R− sR̄i + R̄od

2D̄
, z=

Z

D̄
, t =

n

D̄
,

p =
D̄2

rn
P, u =

D̄

n
UR, v =

1

RiVi
UQ, w =

D̄

n
, s7d

whereD̄=R̄o−R̄i is the mean gap width. Note that the ratio
of mean gap width and inner cylinder radius is small
(narrow-gap limit). After nondimensionlization, the conser-
vation equations of steady-state TCF are reduced to the fol-
lowing form in the narrow-gap limit,

ux + wz = 0, s8d

uux + wuz = Tav2 + uxx + uzz− px, s9d

uvx + wvz = vxx + vzz, s10d

uwx + wwz = wxx + wzz− pz, s11d

where a subscript denotes partial differentiation. The Taylor
number Ta isdefined in terms of the Reynolds number Re,
and the average gap-to-radius ratiod,

Ta = Re2d, Re =
R̄iViD̄

n
, d =

D̄

R̄i

. s12d

FIG. 1. Schematic of Taylor-vortex flow with weakly spatial
modulation.
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Here the dimensionless physical domain is defined by
sx,zdP f−1/2+«f iszd ,1 /2+«foszdg3 s−` , +`d, where« is a
measure of the dimensionless modulation amplitude. In this
work, the modulation amplitude is assumed to be small.
Without loss of generality, the shape functions of the modu-
lation of the inner and outer cylinders are taken asf iszd
=on=1

N f n
i sinsnazd and foszd=on=1

N f n
o sinsnbz+fd, respec-

tively, wherea andb are the wave numbers of the modula-
tions,f is a phase angle,f n

i and f n
o are constant coefficients,

andN is the number of modes. Thus, Ta,«, a, b, f, as well
as the outer-to-inner cylinder velocity ratio,v=Vo/Vi, are
the important parameters in the present problem.

B. Domain mapping and numerical solution

Equations(8)–(11) are solved by first mapping the physi-
cal domain in thesx,zd plane onto a rectangular domain

sh ,jdP f−1/2,1/2g3 s−` , +`d, which is given by

j = z, s13d

h =
x

1 − «ff iszd − foszdg
−

«ff iszd + foszdg
2 − 2«ff iszd − foszdg

, s14d

where jP f−` , +`g and hP f−1/2,1/2g. The governing
equations in mapped domain become

uh + f1 − «sf i − fodgwj + «fhsf ij − fojd − 1
2sf ij + fojdgwh = 0,

s15d

f1 − «sf i − fodguuh + f1 − «sf i − fodg2wuj + «f1 − «sf i − fodgfhsf ij − fojd − sf ij + fojd
1
2gwuh

= Taf1 − «sf i − fodg2v2 + uhh + f1 − «sf i − fodg2ujj + h«f1 − «sf i − fodgsf ijj − fojjdh + 2«2sf ij − fojd2h − «
2f1 − «sf i − fodg

3sf ijj + fojjd − «2sf ij
2 − foj

2 djuh + 2«f1 − «sf i − fodgfhsf ij − fojd − sf ij + fojd
1
2guhj

+ «2fh2sf ij − fojd2 − hsf ij
2 − foj

2 d + sf ij + fojd21
4guhh − f1 − «sf i − fodg ph, s16d

f1 − «sf i − fodguvh + f1 − «sf i − fodg2wvj + «f1 − «sf i − fodgfhsf ij − fojd − sf ij + fojd
1
2gwvh

= vhh + f1 − «sf i − fodg2vjj + 2«f1 − «sf i − fodgfhsf ij − fojd − sf ij + fojd
1
2gvhj + h«f1 − «sf i − fodgsf ijj − fojjdh

+ 2«2sf ij − fojd2h − «
2f1 − «sf i − fodg sf ijj + fojjd − «2sf ij

2 − foj
2 djvh + «2fh2sf ij − fojd2 − hsf ij

2 − foj
2 d

+ sf ij + fojd21
4gvhh, s17d

f1 − «sf i − fodguwh + f1 − «sf i − fodg2wwj + «f1 − «sf i − fodgfhsf ij − fojd − 1
2sf ij + fojdgwwh

= whh + f1 − «sf i − fodg2wjj − f1 − 2«sf i − fod + «2sf i − fod2g pj + h«f1 − «sf i − fodg sf ijj − fojjdh + 2«2sf ij − fojd2h

− «
2f1 − «sf i − fodgsf ijj + fojjd − «2sf ij

2 − foj
2 djwh + 2«f1 − «sf i − fodgfhsf ij − fojd − 1

2sf ij + fojdgwhj

+ «2fh2sf ij − fojd2 − hsf ij
2 − foj

2 d + 1
4sf ij + fojd2gwhh − «f1 − «sf i − fodgfhsf ij − fojd − 1

2sf ij + fojdg ph. s18d

The mapping allows« to emerge as the perturbation pa-
rameter in the transformed equations, and a regular perturba-
tion expansion is sought for the velocity and pressure, which
can be written as

Xsh,jd = X0sh,jd + «o
n=1

N

fXn
i shdeinaj + Xn

oshdeisnbj+fdg

+ c.c. +Os«2d, s19d

whereX=su,v ,w,pd, and c.c. represents the complex con-
jugate part. The superscriptsi and o denote the effects
associated with the spatial modulation at the inner and

outer cylinder, respectively. To leading order in«, one
recovers the equations that correspond to the flow be-
tween two straight cylinders, namely,

u0sh,jd = wsh,jd = 0, s20ad

v0sh,jd =
v + 1

2
+ sv − 1dh, s20bd

p0sh,jd = Tas 7
12v2 + 5

6v + 7
12d . s20cd

To Os«d, the continuity and momentum conservation equa-
tions reduce to a set of 8N nonhomogeneous ODEs, with the
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forcing appearing as the nonhomogeneity. Then the set of
ODEs are solved subject to homogeneous boundary condi-
tions. The problem is of the two-boundary-value type. A
variable-step finite-difference scheme is used to obtain the
solution. The basic discretization used is the trapezoidal rule
over a nonuniform mesh. This mesh is chosen adaptively, to
make the local error approximately the same size every-
where. Higher-order discretizations are obtained by differed
corrections and global error estimates are produced to control
the computation. The resulting algebraic system is solved by
a special form of Gauss elimination that preserves sparse-
ness.

III. RESULTS AND DISCUSSION

Consider first the situation when only the inner cylinder is
rotated, which is illustrated in Fig. 2 for three different con-
figurations, when only the inner cylinder is modulatedsb
=0d, and when the modulations are commensuratesb=3d,
and incommensuratesb=2.13d. The corresponding signa-
tures forusx=0,zd are depicted from Fig. 3. Here«=0.05,
a=2, and Ta=500. Both modulations at the inner and outer
cylinders are sinusoidal. Note that dark(light) areas indicate
vortices in the clockwise(counter-clockwise) direction. The
mean range in the radial direction isf−1/2, +1/2g. When
only the inner cylinder is modulatedsb=0d, there is a pair of
vortices that span the entire gap width, extending over a
modulation wavelength. The flow is spatially periodic inz of
the linear type as Fig. 3(a) indicates. Similarly to unforced
TVF, it is found that the larger the gap width, the stronger is
the secondary flow. Hence, it is expected that the maximum
gap width along the axial direction initiates the production of
the vortices. It is for this reason that the vortex flow pre-
serves the same spatial periodicity when the outer cylinder is
also modulated, as long as the modulations are commensu-
rate [see Fig. 2(b)]. Analysis of the corresponding signature
shows that the two basic wave numbers are clearly dominant,
but higher harmonics are also evident. Spatial periodicity is
lost when the two modulations are incommensurate, as illus-
trated by theb=2.13 flow. In this case, the flow pattern is

quasiperiodic, with vortex wave group appearing, with a
wave number equal to the average of the cylinder wave num-
bers. Two successive groups are separated by zones of a
rapid decay of the strength of vortices, leading to an almost
purely azimuthal flow in these zones. The situation is remi-
niscent of the predictions of Eagles and Eames[10] for
slowly varying cylinders(see their Figs. 2 and 3). It is gen-
erally observed that for a modulated and rotating inner cyl-
inder, the number of vortices does not depend on the modu-
lation of the outer cylinder.

Clearly, the effect of the forcing can be examined by vary-
ing the amplitude and wavelength of the modulation. For
sinusoidal forcing as in Fig. 2, only the intensity and not the
pattern of the flow is affected by« and Ta. For a straight
outer cylinder, the wavelength of the vortex flow is found to
be always equal to the wavelength of the inner cylinder, as
was also observed in experiments involving sinusoidal forc-
ing [5,10]. This is in analogy with the flow inside a gap with
spatially ramped end condition. It was shown, both theoreti-

FIG. 2. Cross-sectional view of vortex flow fora=2, v=0, and
b=sad 0,sbd 3,scd 2.13.

FIG. 3. Radial velocity profileu along the axial directionsx
=0d for a=2.0, b=sad 0,sbd 3,scd 2.13.
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cally [11] and experimentally[12], that the ramped flow re-
duces the accessible wavelength compared with the un-
ramped case in which the wavelength depends on the length
of the section. However, unlike the ramped sections, which
result in a constraint leading to wavelength at or near the
natural wavelength, only the forced wavelength is predicted
by the present calculations, at least regarding the secondary
vortices. Ikeda and Maxworthy[5] were not able to obtain
the natural wavelength in their system, and rightly attributed
this inability to relatively large modulation amplitude of the
forcing (10 % of the gap width). Indeed, the present small-
amplitude formulation clearly demonstrates that the only so-
lution admitted by the flow equations must be commensurate
with the sinusoidal forcing wavelength.

The discrepancy between the results of Koschmieder[6]
and those of Ikeda and Maxworthy[5] can now be under-
stood in the light of the present calculations. Recall that the
latter authors did not observe secondary flow at small Taylor
number. Inspection of the conservation equations in the
narrow-gap limit clearly indicates that secondary flow is
bound to emerge at a nonvanishing Taylor number when
modulation is present. The modulation forces the azimuthal
velocity to depend on the axial coordinatez. Subsequently,
the centrifugal term in the radial momentum equation en-
sures the dependence of the pressure on axial position, which
in turn results in a nonvanishing axial(and radial) flow.
Thus, unless curvature effects vanish completely, one should
expect secondary flow to emerge at any Taylor number, as
depicted from Fig. 2. In other words, and similarly to the
situation when end plates are fixed to a stationary outer cyl-
inder, the wall modulation exercises a constraint on the flow
developed by rotation of the inner cylinder. In particular,
near the peaks of the wall modulation, a negative centrifug-
ing force drives the fluid radially outwards. Consequently, a
circulation is necessary in the meridional plane, and the flow
cannot be purely circumferential, as it is for a flow between
infinite straight cylinders. From a nonlinear point of view,
the spontaneous onset of vortex flow at any precritical Taylor
number, is equivalent to the onset of an imperfect bifurca-
tion, reflecting a smooth transition, instead of the supercriti-
cal (pitchfork) bifurcation predicted for a flow between
straight cylinders[4]. In the experiment of Ikeda and Max-
worthy [5], the annular gap was filled with tap water and the
flow was visualized by the addition of 2% by volume Kal-
liroscope solution, which consisted of guanine flakes that
were used to visualize the flow since the flakes spend more
time aligned with the shear of the flow than they spend ro-
tating. Moreover, these reflective flakes are almost neutrally
buoyant. In laminar flow, the flakes in the gap width align
with the shear such that the spatial modulations on the inner
cylinder could barely be seen through the field of particles. It
is thus possible that the tendency for the forcing to generate
a secondary flow before the Taylor instability threshold was
simply missed in the experiment. In other words, the second-
ary flow may very well exist in the precritical range, but it
was too weak to be observed. Current calculations show that
the level of radial and axial flow may remain orders of mag-
nitude weaker than circumferential flow for Ta smaller than
Tac. The flow regimes were identified in the experiment us-
ing only flow visualization and not(velocity) measurements.

Ikeda and Maxworthy[5] reported a scatter in their data,
which they attributed to the difficulty in visualizing the vor-
tices when there is only slight vertical motion.

A similar flow pattern is also predicted(not shown) when
only the outer cylinder is modulated. In this case, and simi-
larly to Fig. 2, the outflow of the vortex pair always occurs at
the peak of the sine wave modulation, i.e., at the minimum
gap width. This is of course expected because the centrifugal
force on a particle is larger at the peaks than at the troughs of
the modulation of the cylinder. Here too, the external forcing
dominates the size of the vortices, and only the forced wave-
length appears in the system. Whether there exists a level of
forcing at which the forcing wavelength would cease to
dominate the flow is an important issue, which could not be
addressed in the previous experiments. The current calcula-
tions show that varying the amplitude and wavelength of the
forcing leads to a flow response that is always commensurate
with the forcing, and only one vortex pair is present in a
spatial period, as in Fig. 2.

When the outer cylinder is counter rotated, an additional
vortex pair appears, the strength of which depends on the
counter-rotation speedv. The situation is illustrated in Fig. 4
for Ta=500,«=0.05, witha=b=2. As v departs from zero,
the vortices[in Fig. 2(b)], which initially span the whole of
the gap width, begin to shrink in width, but remain entirely
commensurate with the inner cylinder modulation[Fig. 4(a)],
with the vortex center shifting toward the inner cylinder. Si-
multaneously, secondary vortices form, originating at the
outer cylinder, which grow at the expense of the original
vortices, asv increases. The original sinks and sources at the
inner cylinder do not change their locations, even when the
outer cylinder speed is further increased. At the outer cylin-
der, a new sink(source) forms where the source(sink) was
originally, such that a saddle point forms between the two
cylinders as shown in Fig. 4(a) for v=−0.8. The newly
formed vortex pairs strengthen and increase in size, at the
expense of the original vortex pairs, as the outer cylinder
speed increases further. In other words, the original forced
pairs were unstable and began to transform into two pairs of
vortices. Initially, the newly formed pairs were weak and
narrow, but they intensify steadily with increased counter-

FIG. 4. Vortex breakup fora=b=2, and v=sad−0.8,sbd
−12,scd−20.
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rotating speed. It is important to observe that both the pri-
mary and secondary vortices intensify withv. However, the
primary vortices begin to lose strength as is further in-
creased, while they continue to shrink in size. At approxi-
mately v=−5, the primary vortices disappear entirely, and
one recovers the situation forv=0 as the vortices span the
entire gap width, except that the circulation is now in the
opposite direction.

It is interesting to also note that the number of vortex
pairs is the same as whenv=0. Asv increases further, there
is a relative strengthening(weakening) of vortex flow activ-
ity near the outer(inner) cylinder. Although the vortices still
span the gap width, there is a break in the symmetry with
respect tox=0, with the vortex center shifting toward the
outer cylinder. The situation is illustrated in Fig. 4(b) for v
=−12. New vortex pairs begin to appear near the inner cyl-
inder, which gain in strength withv, leading to the pattern
shown in Fig. 4(c) for v=−20. This pattern seems to persist
for higher v. The sequence involving the breakup of the
original vortex pairs and the emergence of the subpairs at the
outer cylinder is a continuous process in which no critical
counter-rotation speed exists.

The influence ofv on the flow when the modulations of
the inner and outer cylinders are different is typically illus-
trated in Fig. 5, fora=2 andb=3. The starting point is the
casev=0 [shown in Fig. 4(b)], where the vortex pattern is
commensurate with the inner cylinder modulation. Similar to
the case in Fig. 4, the original vortices are replaced by new
vortices as increases, as depicted from Fig. 5(a) for v=−2.
The vortex pattern is now commensurate with the outer cyl-
inder modulation. Asv increases further, the vortices break
up as in Fig. 4. However, two new observations can be made
relative to before, which are reflected in Fig. 5(a) for v
=−5. First, not all vortices break up simultaneously, since
some are stronger than others[as is evident from Fig. 5(a)].
The weaker vortices tend to break up first. Second, before
breakup, the vortex tends to stretch typically between a val-
ley at the outer cylinder and a valley at the inner cylinder.
Thus, only one of two new resulting vortex pair remains at
the samez level; the other vortex is drawn into the valleys of
the inner cylinder. As increases further, the new vortices

align themselves periodically in a manner that is commensu-
rate with the inner and outer cylinders, as shown in Fig. 5(c)
for v=−20. A similar sequence is predicted when the modu-
lations are incommensurate; for example, whena=2, b
=2.13, as shown in Fig. 6 forv=−1,−5, and −10, respec-
tively. Although in this case the breakup sequence is some-
what disorderly, the end pattern is very similar to that shown
in Fig. 5(c) for v=−20. In particular, the flow appears to be
helicoidal at small(see Fig. 6(a), for instance). However, as
the counter-rotation speed increases, the flow breaks up into
two series of vortices that span each cylinder.

Additional calculations were carried out to assess the in-
fluence of the spatial forcing as Ta approaches Tac. Linear
stability analysis indicates that, for narrow-gap flow when
the outer cylinder is at rest, Taylor vortices set in at a critical
Taylor number, Tac=1690 and a wave number equal to 3.13
[4]. Figure 7 displays the behavior of the modulation wave
numberam of the inner orbm of the outer cylinder, which
corresponds to the maximum vortex flow intensity, as func-
tion of Ta, for different modes of external forcing. The re-

FIG. 5. Vortex breakup fora=2, b=3, and v=sad−2,sbd
−5,scd−20.

FIG. 6. Vortex breakup fora=2, b=2.13, andv=sad−1,sbd
−5,scd−10.

FIG. 7. Influence of inertia on pattern selectionsv=0d. The
figure shows the dependence onTa of the forcing wave number,am

or bm, which gives the strongest vortex flow for different cylinder
modulations.
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sults are found to be entirely independent of the modulation
amplitude«. This is an important observation as the results
apply also to the limit of vanishingly small«, emulating the
flow between two straight cylinders. At a given Ta value, the
wave number was varied until a valuea=am (or b=bm when
only the outer cylinder is modulated) is found that corre-
sponds to the maximum intensity in vertical flow. Different
forcing levels were examined, corresponding to the modula-
tion of the inner cylinder alonesb=0d, the outer cylinder
alone sa=0d, the in-phasesf=0d, and out-of-phasesf=pd
modulations of the cylinders. It is found, that in all four
cases,am or bm converges to the critical wave number 3.13
when Ta approaches 1690. This important result shows
clearly the preference of the flow to approach the critical
Taylor-vortex limit regardless of the type of forcing. Other
forcing conditions were also considered, which lead to the
same conclusion. One can confidently extrapolate this obser-
vation to any type of spatial modulation(in form, amplitude,
and wavelength), particularly small modulations(roughness)
that are always bound to emerge in practice on any cylinder
surface. It is important to note that Fig. 6 does not indicate
that the flow pattern corresponds to the natural TVF as Ta
approaches Tac regardless of the forcing. The pattern is al-
ways dictated by the forcing.

The question regarding the different values ofam (or bm)
for a given Ta can be explained on the basis of the balance
theorem, which is generally used to understand the value of
the wavelength under critical as well as supercritical condi-
tions [1]. The theorem rests on the assumption that the aver-
ages in the velocity and pressure disturbances are zero. The
discussion is further simplified if it is observed that the dis-
turbance from azimuthal flow is small for small modulation
amplitude. In this case, and under steady-state conditions, the
balance theorem is achieved by contracting the momentum
conservation equation with the velocity vector, and integrat-
ing over the gap. This leads to the balance between the av-
erage rate of centrifugal kinetic energy, and the average rate
of viscous dissipation. The rate of dissipation is shown to be
proportional toa2. Thus, wide, short cells dissipate more
energy than narrow, tall cells. Since, for a given Ta, centrifu-
gal energy is stronger when the inner cylinder is not modu-
lated, the wave number is expected to be higher. This ex-
plains the height of curvesb=0d relative to curvesa=0d and
the other curves in Fig. 7. This also means that all four
curves cannot be parallel, and therefore should intersect. The
solution of the Naiver-Stokes equations shows, unambigu-
ously, that all four curves intersect precisely at the same
point (1690, 3.13), corresponding to the critical threshold
predicted by linear analysis. It is, however, important to
mention that the results in Fig. 7 can be misleading as they
may indicate that the perturbation theory is uniformly valid
to include the critical point. At the critical point, the problem
becomes degenerate and the regular perturbation expansion,
Eq. (19), breaks down(see, for instance, Murdock[13]). The
degeneracy of the problem can be readily recognized by ex-
amining the amplitude equation for the problem, as the forc-
ing takes the form of an inhomogeneous perturbation term
[see Eq.(2) in Painter and Behringer[7]].

In analogy with thermal convection[5,14], a singularity
of OsTa−Tacd−1 in flow amplitude is expected to emerge at

the critical point. This can be seen more clearly from Fig. 8
where the magnitude of the maximum radial velocityUmax is
examined as Ta approaches Tac for various values ofa and
b, whereac=3.13 represents the critical wave number for
unmodulated flow. The curves in the figure illustrate three
important classes of modulations. The solid curve corre-
sponds to a modulation with both wave numbers equal to the
critical value, that is,a=b=ac, which reflects the highest
magnitude in maximum velocity. This is expected because of
the resonant wavelength excitation. Within the present regu-
lar perturbation approach, the modulation amplitudes are
magnified according to the eigenvalues(growth rates) of the
corresponding Fourier modes. Thus, the amplification of the
mode corresponding to the critical wave numberac diverges
near Ta=Tac. The dashed curve witha=b=0.6ac, corre-
sponds to a modulation with both wave numbers different
from the critical value, whereas the dash-dotted curve corre-
sponds toa=ac, b=0.7ac. It can be seen that the magnitude
of the maximum radial velocity is strongly dependent upon
the modulation wave numbersa and b. As the figure indi-
cates, the maximum radial velocity increases in magnitudes
as Ta increases and becomes singular when Ta=Tac as long
as the Fourier representation of the modulation contains a
nonzero component with critical wave numberac. Similar
results were also obtained in thermal(Rayleigh-Bénard) con-
vection problem with spatial periodic boundary conditions
[3]. More importantly, the results show that the present ap-
proach remains valid when Ta is larger than Tac as long as
the modulation wave numbers are different from the critical
value.

Finally, the results reported so far are based on sinusoidal
forcing, suggesting the existence of a strong correlation be-
tween the forcing and the ensuing vortex pattern. More im-
portantly, the pattern does not change when Ta increases; it
simply intensifies with Ta. Koschmieder[6] observed that
this is not the case in the presence of O-rings. Note that the
outer cylinder was kept at rest. Figure 9 depicts the response
for the same forcing parameters as in the experiment,
namely, the forcing amplitude«=0.17 and the wavelength

FIG. 8. Magnitude of the maximum radial velocityUmax as Ta
approaching Tac for different modulation configurations.
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l f =2p /a=4.09 being about two times the critical wave-
length 2p /ac for the onset of natural TVF. Koschmieder[6]
reported that vortices were visible for Ta as low as 0.03 Tac.
At this Taylor number, Fig. 9 shows the emergence of vortex
pairs centered symmetrically about the O-rings. Unlike sinu-
soidal forcing[see Fig. 2(a)], the vortices do not occupy the
whole modulation wavelength, although the number of vor-
tex pairs is equal to the number of O-rings(per unit axial
length), similarly to the experiment. While the vortex pairs
were not centered about the O-rings in their experiment,
which is probably due to end effects, the governing equations
clearly do not allow a break in axial symmetric under sym-
metric forcing. Similarly to the experiment, and paraphrasing
Koschmieder[6], Fig. 9 and additional calculations show
that increasing the Taylor number further causes a new sink
to appear gradually in between the two original sinks[see
Fig. 9(b)], which mark the formation of new forced vortex
pair. The location of the original sinks does not change as Ta
increases. The appearance of the new sinks signals the for-
mation of a new vortex pair within each original vortex pair.
Koschmieder[6] observed rightly “the original forced pairs
were unstable and began to transform into two pairs of vor-
tices.” The present calculations also show that “initially, the
newly formed subpairs were weak and narrow, but they in-
tensified steadily with increased Taylor number.” The pre-
dicted wavelength(per unit gap width) of the subpairs in Fig.
9 is 1.60 while the larger pairs have a wavelength equal to
2.49. Koschmieder[6] (see his Fig. 1 and corresponding
text) reported the wavelengths of the subpairs and larger
pairs to be 1.61 and 2.46, respectively. It is interesting to

observe that the emergence of the vortex subpairs does not
always occur. In fact, similarly to Koschmieder’s experiment
[6], it is found that a critical forcing wavelength(spacing
between two successive O-rings) is needed for the original
vortices to destabilize.

Counter rotation leads to complex patterns that depend on
Ta. The discussion is limited here to the case Ta/Tac=0.48.
As v increases from zero, the vortex subpair weakens and
disappears completely, reverting the situation back to that in
Fig. 9(a). The original vortices in turn weaken asv increases
further. Simultaneously, a new vortex pair(opposite in sense)
is initiated at the outer cylinder, which gains strength with
counter-rotation speed, as illustrated in Fig. 9(c). The process
of vortex disappearance and birth continues asv increases
further.

IV. CONCLUSION

The onset of low-inertia vortex flow in weakly modulated
TCF is addressed in this study. The work is of fundamental
importance as it is related to pattern formation in other sys-
tems. A symmetry-breaking transition occurs, which is due to
the spatial forcing that couples directly to the new mode,
driving this mode with increasing strength and approaching
the onset point. Both cylinders can be arbitrarily modulated,
and the influences of both commensurate and incommensu-
rate modulations, as well the effect of counter rotation are
explored. Various vortex flow patterns are found when the
purely azimuthal flow is perturbed. In this case, the pattern is
always dictated by the forcing, when only one cylinder is

FIG. 9. Vortex formation for nonsinusoidal(O-ring) modulation of the inner cylindersb=0d, for the cases(a) Ta/Tac=0.03,v=0, (b)
Ta/Tac=0.48,v=0, (c) Ta/Tac=0.48,v=−1.35.
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modulated. A quasiperiodic vortex pattern is predicted when
the modulations are incommensurate. When the outer cylin-
der is counter rotatedsv,0d, the original vortices break up,
leading to rows of vortices commensurate with each cylinder.
Unlike the pattern after breakup, the breakup process itself
depends strongly on the type of forcing. It is also verified
that the wave number of the forcing that gives the most in-
tense vortex flow approachesac as Ta approaches Tac (from
below and above). This result may also be understood within
the amplitude equation formalism of Newell and Whitehead
[15]. Direct comparison with the measurements of Ko-
schmieder[6] for O-ring forcing led to good agreement.

In conclusion, the proposed formulation and reported re-
sults illustrate how the onset, breakup, and formation of vor-
tex patterns can be predicted and controlled to any degree of
accuracy and refinement. Unlike TVF, where vortex forma-

tion is spontaneous, the vortex pattern for modulated TCF is
completely predictable once a forcing modulation is im-
posed. The study helps elucidate the origin of the discrepan-
cies among earlier experiments on low-inertia vortex forma-
tion, and constitutes a reliable guide for future experiments.
All vortex patterns reported are stable, as they are the only
solution to the flow equations. These patterns are therefore
expected to always exist in reality. However, calculations
show that their observability depends strongly on their inten-
sity.
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