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Canonical description of ideal magnetohydrodynamic flows and integrals of motion
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In the framework of the variational principle the canonical variables describing magnetohydrodynamic
(MHD) flows of general type(i.e., with spatially varying entropy and nonzero values of all topological
invariantg are introduced. It is shown that the velocity representation of the Clebsch type following from the
variational principle with constraints is equivalent to that resulting from the generalization of the Weber
transformation performed in the paper for the case of arbitrary MHD flows. Using such complete velocity
representation enables us not only to describe the general type flows in terms of single-valued functions, but
also to solve the intriguing problem of the “missing” MHD integrals of motion. The set of hitherto known
MHD local invariants and integrals of motion appears to be incomplete: for the vanishing magnetic field it does
not reduce to the set of the conventional hydrodynamic invariants. And if the analogs of the vorticity and
helicity were discussed earlier for the particular cases, the analog of Ertel invariant has been so far unknown.
It is shown that all “missing” invariants are expressed in terms of the decomposition of the velocity represen-
tation into the “hydrodynamic” and “magnetic” parts. In spite of the nonunique character of such representation
it is shown that there exists a natural restriction of the gauge transformations set allowing one to make the
invariants gauge independent. It is found that on the basis of the new invariants introduced a wide set of
high-order invariants can be constructed. The new invariants are relevant both for the deeper insight into the
problem of the topological structure of the MHD flows as a whole and for the examination of the stability
problems. The additional advantage of the proposed approach is that it enables one to deal with discontinuous
flows, including all types of possible breaks.
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[. INTRODUCTION statement becomes apparent when it is considered that for
the vanishing magnetic field this set has to be reduced to that
of the conventional hydrodynamic invariants. But this limit
transition does not reproduce Ertel, vorticity, and helicity in-

It is well known that description of the solid media flows
in terms of the canonicgHamiltonian variables is very use-
ful and effective, see, for instance, Ref$,2]. On the basis

of the Hamiltonian variables it is possible to deal with all variants_exiitingf:] for rt}he Pydfﬁdyﬂamic flow?. ;
nonlinear processes in unified terms which are independent Despite the fact that for the dissipation-free MHD flows

of the specific problem related to the media under investigal1€ré exist additional topological invariants, namely, mag-
etic helicity and cross helicity, introduced in the papers,

tion. For instance, all variants of the perturbation theory ar ' e i
b Y 15-17, the analogs of the vorticity and helicity invariants

expressed in terms of different order nonlinear verticeshave not been discussed with necessary completeness thus
which along with the linear dispersion relation contain thefar, see, for instance, the recent revighj The related quan-

specific information relating to the concrete system, Segii - e ;
. . - ities were mentioned for the specific cases of symmetric
Refs.[3,4]. In studying nonlinear stability problems the con-éll b y

g o) ows in the workg18-20, the vorticity and helicity invari-
ventional Hamiltonian approach based upon the correspondyes for the incompressible flows have been obtained re-

ing variational principle allows one to use the Hamiltoniancenﬂy in Refs.[8,9]. But an analog of the Ertel invariant
along with other integrals of motiogmomentum, number of - haye not been presented so (see the short communication
quasiparticles, topological invariants order to construct iy Ref. [21]). The problem of obtaining the analogs of the
the relevant Lyapunov functional, see Rgs-9. Therefore,  hydrodynamic invariants consists in the nonpotential charac-
it is important to address the problem of introducing theter of the Lorentz force. Therefore, the vorticity and helicity
canonical variables and corresponding variational principleof the total velocity fieldv are not conserved along with the
for the general type MHD flowé.e., rotational, nonbarotro- Ertel invariant constructiony @ Vs. Nevertheless, corre-
pic and including all types of breaks that are possible forsponding generalizations have to exist, which becomes evi-
MHD) and obtaining the complete set of the local invariantsdent from the simple consideration. Namely, let us consider
see definition and discussions in original pagd®-13 and  the well known set of invariants for dissipation-free MHD
in the recent revieyl]. As for the first item, the example of flows (energy, magnetic and cross heligit§$etting the mag-
the variational principle describing all possible breaks isnetic field zero we arrive at zero values of the magnetic and
given in the recent work14]. cross helicity invariants, but do not get Ertel invarigand
Here in the framework of some modification of the varia- hydrodynamic vorticity and helicity for the barotropic
tional principle of the latter work we examine the problem of flows). This fact indicates incompleteness of the MHD in-
the MHD invariants. Note that the set of invariants for MHD variants set. Evidently, there have to exist MHD analog of
discussed in the literature has been so far incomplete. Thihe Ertel invariant passing on to the hydrodynamic Ertel in-
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variant for the vanishing magnetic field. Below we derive the JA

MHD generalization for the Ertel invariant and show that the £¢=pDe+ADu+oDs-M (E —vXcurA+V A)
generalized vorticity and helicity invariants also exist for the

compressible barotropic MHD flows. The possibility of ob- _H- curA

taining these invariants is based upon the velocity decompo- A7

sition in the two parts, “hydrodynamic” and “magnetic.” The

latter vanishes with the magnetic field vanishing and can bélereD=4g+v-V is the substantialmateria) derivative and
presented in the form of the vector product of the magnetid is the vector potentigl7]. Including the terms with\ and
field and the canonically conjugate momentum and was firstd =curlA into L. allows us to obtain the dynamic equation
introduced in Ref[22]. In spite of the artificial character of for the vector potential in the gauge invariant fofsee
the velocity field decomposition at first sight, we show thatEq. (10) below] and to introduce relatiokl =curlA strictly
the decomposition naturally follows both from the least ac-into the variational principle.

tion principle in the canonical variables and from the partial ~ Supposing first that all variables introduagaicluding ve-
integration of the Euler equations of motiggeneralized locity) are independent, we obtain the following set of varia-
Weber transformation, see Ref@23,24). For the incom- tional equations:
pressible flows the latter was presented in RE89]. Note

3

that the “hydrodynamic” part of the velocity is of the Cleb- o 0 g +div(pv) =0, (4)
sch type but involves vector potentials instead of the scalar
ones, see discussion in Refd.,14,25,26. The use of the Sp0 De=w-0v%2, (5)
vector Clebsch potentials allows one to deal with the flows
possessing nontrivial topology, contrary to the restriction to S\O Du=0, (6)
the scalar potentials. If the latter are single valued then the
helicity vanishes identically. .

The outline of the paper is as follows. In Sec. Il we briefly Sumt) G+ divihgy) =0, ()
discuss the appropriate variational principle, introducing the
Clebsch type velocity representation by means of constraints 60 Ds=0, (8)
and defining the canonical variables. The velocity represen-
tation thus obtained yields Fhe_necessary decomposition. In 8s0 o +div(ov) = - pT, (9)
Sec. Il we develop generalization of the Weber transforma-
tion and show that it leads to the velocity representation,
which is equivalent to that following from the variational SM O GA =v X curlA - VA, (10)
principle under discussion. In Sec. IV we examine the MHD
integrals of motion, introducing “missing” MHD invariants, curlH
and discuss their transformation properties relating to the oAl gM = +curl[lv X M]. (11
gauge change. We show that there exist natural gauges under
which the additional basic invariants become unambiguous,
specifically that with a vanishing initial value of the mag- SHO H=curlA, (12)
netic part of the velocity representation. In Sec. V we make
some conclusions and formulate problems to be solved later. oA 0O divM =0, (13

wherew andT are the enthalpy density and tempera{@&].
[l. VARIATIONAL PRINCIPLE AND CANONICAL Note that in this section we assume the velocity field to be
VARIABLES independent of other variables. Therefore, variation with re-

Let us briefly describe the variational principle and sub-SpeCt tov results in the velocity representation

si_diary variables describin_g dissipa_ltion-free MHD. Starting NO pv=—pVo-AgVum-oVs—HXM. (14)
with the standard Lagrangian density
5 5 It is convenient to rewrite it in a shortened form that empha-
v H . - T . .
L=p—-pe(p,s) +—, (1)  sizesits structure. Bearing in mind that the velocity potential
2 8m ¢, the vector Lagrange markegs entropys, and the vector

d potential A can be treated as generalized coordinates, one
can see thap, A, o, and subsidiary field M are conjugated
momenta, respectively. LE29-31

where p, s, and e(p,s) are the fluid density, entropy, an
internal energy, respectivelyy denotes the magnetic field,
we have to include the constraint terms in the actibriThen

the action can be presented as 0=(QA), Q=(pm9), P=3A83Q)
A:fdtL’, L’:fdrﬁ’, L'=L+Lg, (2) P=(pNo), P=(P.-M). (15)

whereL. is the part of the Lagrangian density respective for Then the velocity representation takes the transparent
the constraints form

046303-2



CANONICAL DESCRIPTION OF IDEAL.. PHYSICAL REVIEW E 69, 046303(2004

P
v=vo(P,VQ), Vvog=Vh+Vy, Vya=-—VQ, A=fdtfdr(P&tQ—H) (20
P
H XM with respect to\. Note that it is possible to put=0. Under
Vg =-— , (16)  this assumption the divergence-free condition for the fi¢ld
p vanishes. But from Eq11) it follows that diw is a con-

Here subindexek andM correspond to the “hydrodynamic” Served quantity,divM =0. Therefore, supposing that
and “magnetic” parts of the velocity field. The suffix zero on divVM =0 holds for some initial moment we arrive at the
v underlines the fact that, is supposed to be the dependemconclusmn tha_t this is valid fc_>r the arbitrary moment.
variable, it is expressed in terms of the canonical variabledl€vertheless, it proves convenient to deal witk0 that

by means of the representation found. The hydrodynamiH‘akes it possible to use different gauge conditions for the
part v, corresponds to the generalized Clebsch representy€ctor potential. o _

tion, see Refs[14,25,26, and the magnetic past, coin- Tr_le abovg variational principle results in the set of dy-
cides with the traditional term if we replace the divergence-Na@mic equations. From the latter follow the conventional
free field M by curlS. This term was first introduced by MHD equations(4), (9), and(17) and the equation for the
Zakharov and Kuznetsov, see R§22]. But they used the Magnetic field, which follows from Eq10) after taking curl
incomplete form for the hydrodynamic part of the velocity,
restricting it to the scalar Clebsch variables. This reduced dH = curlv X H]. (21)

form [32] evidently corresponds to the flows with zero-  op the contrary, if at some initial momettt, we have

valued generalized helicityor, for H—0, it results in the - ) o '
hydrodynamic helicity vanishingf the scalar Clebsch vari- the conventional MHD fields, s, v, andH, then we can find

ables are single valued. In addition, the above velocity repth® initial subsidiary fieldsp, u, A, o, A, M, and A, satis-
resentation involves the entropy tero¥S/p. The latter is  1¥iNg EAs.(12«(14). This can be done to within the gauge
essential for the discontinuous flows with any types of thefansformationgthe latter do not change both the velocity
dynamically allowable breaks, including shocks, see Refsad the magnetic fiejddue to the fact that the subsidiary
[14,21,25,26 Note that Lagrange markes are continuous f|e[ds play a rok.el of general!zgd potentials. Then, if _the
crossing the break surface, contrary to the entropy. Theréquueness_condmons are satisfied bqth.for the con_venuonal
fore, the entropy term can be omitted for the continuoudiHD €quations and for the set of variational equations, we
flows when the entropy can be considered as a continuol&® led to conclude_ that corresponding solutions coincide for
function depending on the Lagrange markers. all moments. In this sense we can state that these sets of

From the velocity representatigh6) and the equations of €duations are equivalent, see Ref. o
motion (4) — (11) it strictly follows that the velocity fields The complete representation of the velocity field in the

=v, satisfies Euler equation with the magnetic force takerfOr™M Of the generalized Clebsch representalip8) allows,

into account. Namely, providing differentiation we have  first, to deal with the MHD flows of general type, including
all types of breaks, see Rédfl4]; second, for the zero mag-

curlH X H netic field it results in the correct limit transition to the con-
47 (17 ventional hydrodynamics, see Ref&5,24; third, it allows
obtaining the integrals and invariants of motion for the MHD
wherep is the fluid pressure. flows additional to the known ones: for instance, the gener-
Canonical variablesThe variational principle can be eas- alized Ertel invariant, generalized vorticity and generalized
ily reformulated in the Hamiltonian form. Excluding the helicity, see below. The two last integrals were deduced for
magnetic and velocity fields by means of EqE2) and(16)  the particular case of incompressible flows in Rg#s9], see

pDvo=—-Vp+

we arrive at the following Hamiltonian density: also Refs[18—2Q where the vorticity and helicity analogs
H=H(P,V Q) were obtained for the MHD flows with the specific spatial
' symmetry. Moreover, it is possible to show that representa-
=PaQ-L' tion (16) is equivalent to that following from the Weber
2 (curlA)? transformation, see Reff23,24 and the recent revie\].

=py +pe(p,9) + -M-VA. (19
Ill. GENERALIZED WEBER TRANSFORMATION
Equations of motiori4) — (11) can now be expressed in the

canonical form Suppose that the fluid particles are labelled by Lagrange

markers a=(a;,a,,a;3). The label of the particle passing
&Q=SHISP, &P=-58HISQ, Q=(p,mS;A), through pointr =(x;,X,,X3) at timet is then

P=(p\0=M); (19) a=af(r,t), Dazj—?ﬂv-V)a:O. (22

Eq. (12) serves as a definition of the magnetic field, and the
divergence-free condition for the subsidiary fidll, Eq.  The particle paths and velocities are given by the inverse
(13), follows from the variation of the action function

046303-3



A. V. KATS PHYSICAL REVIEW E 69, 046303(2004

r=r(at), v=Dr@at= ar/dt|,const (23 De=w-v?2. (33
Let the initial position of the particle labeleis X, i.e., Then
r(a,0)=X(a). (24) P ss [o iso
A natural choice of the labels would b&a)=a; however, it Ta_ai o £D<;> - D(E;)

is convenient to retain the extra freedom represented by the
“rearrangement functionX(a).
We seek to transform the equation of motidy) to an i(vzlz -w)=- D<@>, (34)
integrable form, by generalizing the argument of Wel23] d g g
(see, for example, Reff33], [1], and[8]. It is convenient to

represent Eq(l7) as where we have taken into account tHas=0 along with
_ D(ds/ da;)=0. Therefore, we can present the Euler equation
Dv=-Vw+TVs+j Xh, (25 (29 in the integrable form
whereh=H/p and the vectoy is defined according to 9% P IS o %
D|vy— |=-D|—|-D{—= | +D{[m X H],— |.
. curH 26 aa aa da p Ja
1= (35)

being proportional to the current density. Multiplying Eg. Integration leads to the relation
(25) by ax./da; we have

(9Xk_ Jde Jso (9Xk

ONe _IWOX LIS N oo O e tHXmIT b (30

- Uk
da, I% 08 9% da; Kga’ da,  da dap

(27) Here b=b(a) does not depend on time explicitygb=0,
presenting the vector constant of integration. Multiplying
this relation byda;/dx; allows reverting from Lagrangian
(a,t), to the Eulerian(r,t) variables

The left-hand sidéLHS) can be represented as

I X I X J
(Do ——*= D(vk—k> - ——(?2), (28)
98 g/ JIg

g
where we have taken into account that operafr v=-Ve+bVa- ; Vs-hXxM. (37)
= 9/ 3| s=const @and thereforeDx,=v, and D commutes with

derivative 9/ 9a;. Equation(27) now takes the form This representation obviously coincides with the above
discussed Clebsch representation if one identifiesvith

IX\_ 9  , as . d Xy —N/p and a with w. Moreover, this proves equivalence of
D Uka_a - &_a(v 12 =w) +T(9_a1_ +[] % h]kﬁ_a' description of the general-type magnetohydrodynamic flows
in terms of canonical variables introduced and the conven-
(29 fional description in Lagrange or Euler variables. The equa-
It is convenient to transform the last term by means of thdions of motion for the generalized coordinates and momenta

dynamic equation for the subsidiary fied=M /p [compare follow now from definitions of the subsidiary variables
Eq. (11)] m=M/p, o, ¢, andb.
Emphasize that the vector fieM =pm introduced by Eqg.
Dm=(m-V)v+ijlp. (300 (30 satisfies the integral relation

Then we can transform the last term in the right-hand side _
(RHS of Eq. (29) to the form of the substantial derivative, &tf M -dX :f jdx, (39)
see the Appendix, > *

) 9% 9% whereZ is some oriented area moving with the fluid. This
[jX h]kr:D [m X H]kT . (31)  fact was first indicated in Ref[8] for the incompressible
& & flows. Now we see that it holds true for the general case. The
Analogously, the first two terms in the RHS of HE@9) proof of this statement is given in Appendix. Expressing
can be presented as substantial derivatives by means of iM =curlS and making use of the Stokes theorem we con-
troducing subsidiary functiong and o, which satisfy equa- clude that time derivative of the vect&circulation over

tions [compare Eqs(9) and(5)] the closed frozen-in contoui is proportional to the cur-
rent [recall, j =(4m)~*curlH and differs from the current
D(‘_’) -7 (32) density by the constant multiplieintersecting the surface

p ’ defined by this contour
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IV. INTEGRALS OF MOTION

atf S-dI:Jj-dE:(4w)‘1f H-dl (39 ) .

s s s The conservation laws, as is well known, follow from the
oo . ) L specific symmetries of the action. Existence of the relabel-

that highlights the physical meaning of the subsidiary f8ld jing transformations grougirst discussed by Salmon in Ref.

usually introduced for the canonical description of MHD [34]) of the Lagrange markerg leads to the integrals of

flows. Underline that this identity strictly follows from the otion that are additional to the energy, the fluid momentum

dynamic equation for the subsidiary fiefland is insensitive 5,4 mass conservation. These additional integrals are ex-

to the compressibility. _ ~ pressed in terms of the Lagrange description of the motion,
The vector constant ‘?f, integratidnmay be expressed in o in terms of the Lagrange markers, etc. Therefore, as a
terms of the initial conditions rule, they are gauge dependent. The frozen-in character of
the magnetic field results in the specific topological integrals

b, :Vk(a — 4+ ——+Cy——, of motion, namely, magnetic helicity and cross helicity, first
i 0 I discussed in Ref§15-17, see also revieyl]. Correspond-
ing densities are, respectively,

X J Js
ak+ <P0+

o _
vo=¢(a0), co= (;) V(@) = V(@) + [ho X Mo]y, hu=A-H (46)
t=0
and
V(@) =vi(a,0), hc=v-H. (47)
ho = ho(@) = h[x(a,0),0] = h[X(a),0], ~To clarify the_following _discussion relat_ing to the addi—
tional local invariants and integrals of motion, let us briefly
B B B recall the known ones. As it strictly follows from the dy-
Mo =Mo(@ =M[x(a0),0]=M[X(@),0]. ~ (40)  pamic equations, the local conservation law for the magnetic
X(a):a’ r(a,o):a, a(r,o):r, (41) &thM+diqu=0, qM:VhM_H (A 'V_A). (48)
from Eq. (40) it follows On the contrary, in the general case the cross-helicity is gov-
erned by equation
Vi 9 ¢o Js . .
b =V(a) + Ja + Coﬁ_ai- (42) ahclat == divvhe + (W - v%2)H] + Tdiv(sH)
Adobting zero initial conditions and is not conserved. But for barotropic and isentropic flows
pting the pressur@=p(p) andhc is conserved,
Mo=0, ¢0=0, =0, 43 dhe+divae=0, de=vhe+(x-v¥2H, (49
we obtain where y=[dp/p.
b:\7(a) ~¥(a,0) =Vy(a) = v(a,0), (44) For the general case one more conserved quantity first

discovered by Gordin and Petviashvili, see RED5], is

where~ indicates that we are dealing with the velocity field known. Corresponding density is

in the Lagrange description, i.&i(a,t) denotes the velocity ho=H. Vs (50)
of the fluid particle with labela at time t. Evidently, P

V(a,t)=v(r,t), wherea andr are linked by relation§22) and  and

(23) for the specific choice given by Eqgll) and(43). Then

the velocity representation takes the particular form dhp+divgp=0, gp=Vhp. (51
o The integral conservation laws are related to the local
v=vp—[h XM], v,=-Voe+74Va-—Vs, conserved quantities. For instance, integratiggover arbi-
p

trary substantial volum¥ we obtain conserved quantifp,

Vo(r)=v(r,0), a(r,0)=r. (45) IP=J~drhp, & Ip=0. (52
v

It differs from that presented in Ref4] by involving the

entropy term. Note that existence of this term allows one tNote thathp/p gives us an example of the so-called local
describe the general-type MHD flowgnd hydrodynamic | agrange invariantgin other words, Casimijs see Refs.

flows under conditiorH =0) with arbitrary possible discon- [10-13 and [1,2]. By definition they obey the following
tinuities, including shocks, slides and rotational breaks segquations:

Refs.[14,25,26. One can omit this term for continuous baro-
tropic and isentropic flows. da+v-Va=0, gl +(v-V) =0, (53)
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I+ (v-V)I-J-V)v=0, (54) A+ V(v-A)-v XcurlA=0,

i.e., A becomes an invariant of the type. Under this gauge
ab+(v- V)L +(L - V)v+L X curlv condition the quantityn,/p presents the scalar Lagrange in-
=0 or, equivalentlygL + V(v-L)-v X curlL =0. variantD(hy/p)=0.
(55) As for the local conservation law for the cross helicity
(49), it obviously leads to the integral conserved quarifity
Here o and| denote the scalar and vector Lagrange invari-for the barotropic flows but with the following restriction:
ants,J is the frozen-in field, and. denotesStype invariant integration has to be performed over the specific substantial
by terminology of Ref[12], related to a frozen-in surface. volume, namely such that conditidty| =0 (this condition

To these invariants it is necessary to add the depsf86].  is invariant of the motionpholds,

Evidently, the quantityhp/p is the a-type invariant. The

Lagrange markerg and quantities\/p supply examples of 0 Te=0, Tc= f drhe, Hyl7 =0.
the vector Lagrange invariants, the magnetic fidldlivided v ’

by p, h=H/p is invariant of theJ-type, gradient of any sca-

lar Lagrange invariant is th&type invariant, Existence of the recursive procedure allowing one to con-

struct new invariants on the basis of the starting set of in-
L'=Va. (56)  variants, see Ref§1,2], underlines the role of the local in-
) ) ) . variants among other conserved quantities. Although in
There also exist other reIa’Flons between different type iNtarms of the Lagrangian variablgsuch as the markerg)
variants, see Refq1,2], allowing one to generate new in- qre exists a wide set of invariants, see, for instance, Ref.
variants. For instance, the scalar product of h@nd L 17 the most interesting invariants are such that can be ex-
invariants results in some scalar Lagrange invariant, Symbressed in Euleriatphysica) variables and thus are gauge
bolically invariant.
o« =J-L). (57) _Emphasiz_e thz_:\t in the conventional hydrodynamics there
exists Ertel invariantyg,
The abovementioned invariart./p can be obtained by
means of this relation if we put=h andL =Vs. Other ex- ag=help, he=w- Vs, (62
amples are represented by relations generating.)- type wherew=curl is vorticity,
invariants by means of twh- (J-) type invariants,

dthg + divge = 0, =hgv, Deag=0. 63
3 =[L X L'Yp, (59) tNe Qe Qe =Ng E (63)
The corresponding integral of motion reads

L' =p[IxJT]. (59
Note that integrating of the density, over an arbitrary

substantial volume does not lead to the conserved integral.
is easy to check up that

0Ze=0, IEEﬁdrhE. (64)
\%

It
Note thatDZg=0 holds true for an arbitrary substantial vol-
umeV.

7T :f drh (60) The Ertel invariant density has the structure of Egjl)
MTRETM with L = Vs, J=w/p (recall thatew is a frozen-in field for the
o barotropic hydrodynamic flowsIn the hydrodynamic case
satisfies there also exists the helicity invariant
ﬂtIM:f~d2(A-v—A)Hn, Hy=H-n,  (61) =0V, (65)
N which has a topological meaning, defining knottedness of the
where integration in the RHS is performed over the boundarflow. It satisfies equation
dV of the volumeV, n is the outward normal, and, denotes ahy +divgy=0, gu=hyv+(x-v¥2)e, (66)

an infinitesimal area of the surfa@¥. It is obvious thatzy, i , .

will be an integral of motion ifH, equals zero. This fact a_md evidently results in the corresponding integral conserva-

allows us to conclude tha, becomes an integral of motion tion law

if we choose the substantial volume in such a way that on the

boundary of the initial volumeVJ-, holds equalityH,|, #Iy=0, foreyy =0, IZy= ﬁdth- (67)

=0. The latter condition is invariant of the motion: if equality v

H,=0 is fulfilled for the initial moment, then it holds true in For the MHD case the vectaw/p is not the frozen-in

the future. field due to the fact that magnetic force is nonpotential. It
Another way to makeZ,, invariant consists in fixing the seems evident that for the MHD case there have to exist the

gauge of the vector potentidl so thatA-v=A. Then the integrals of motion generalizing the conventional helicity

dynamic equation foA, Eq. (10), takes the form and Ertel invariant along with vorticity integral. These in-

046303-6



CANONICAL DESCRIPTION OF IDEAL.. PHYSICAL REVIEW E 69, 046303(2004

variants are to pass into the conventional ones for the van- B. Generalized Kelvin's theorem

ishing magnetic field. The generalization for the vorticity and ¢ frozen-in character of the generalized vorticity allows
helicity invariants was obtained in R¢B] for the particular  opiaining the strict generalization of the Kelvin's theorem for
case of the icompressible flows. In the following section it isy, o barotropic flows. But with some restrictions it is valid
shown that there exists MHD generalization for the Ertel, s for the non barotropic flows. Namely, circulatibnof

invariant, and results of Ref8] relating to the vorticity and 4 hydrodynamic part of the velocity over the closed mate-

helicity can be extended to compressible barotropic MHDy5 contourC is a constant of motion if the entropy is

flows. constant on this contour
A. Generalized vorticity DI'=0, I'= ﬁcvh -dl for /¢ =const. (72
Let us prove that the quantit,/p, where The proof strictly follows from the velocity representation
wy, = curlvy, = Sﬁth -dl

P

=-|V|—1|V _ A (o2

[ (,;) Q} —956(d<p+ ?md,um+ ;ds)

:—[V()\—m)x v ]—{V(i'> X Vs} (69) A o

p Him p ’ =4, Pl + ds). (73)

is the frozen-in field(*hydrodynamic” part of the vorticity Differentiating I' and taking into account thaDpun
for the barotropic MHD flows. It would be a trivial conse- =p() /p)=0 we obtain

guence of the fact thdlL X L']/p, whereL, L’ are Lamb-

type invariants, is the local invariant of the frozen-in type if _ o)\ _ _ _

all quantities Q and P/p satisfy homogeneous transport DI'= gSCdSD<;> - _SﬁCTdS_ 0for sl =const.
equations beingy- or |-type invariants(remember thaV « (74)
and VI, are L-type invariants But ¢ and o/p satisfy the

inhomogeneous equations of motion. Therefore, let us start Note that for barotropic flows this result strictly follows
with equation of motion for the “hydrodynamic” part of the from the fact thatwy/p is the frozen-in field. Namely, for
velocity. Differentiating Eq(16) and making use of relations any J-type invariant it can be easily proved that

D(VX) = V(DX) = (Vup) - dnX DJ dSpd n=0,
we have 2
P p p where integration is performeq over the substantial surface
Dv;,= - D(—) .VQ-—-V(DQ) +—(Vuy) - d,Q ﬁ Then for pJ=w,, after applying the Stokes theorem, we
p p p ave

=TVs—-VW-0%2)-vpmVom

. Df dEwh-n=D95&.Vh-d|=0.
or, after simple rearrangements, s

Dvp,==Vplp+@Wmn=vnm - Vo (69
. . . . C. Generalized helicity
Taking the curl of this equation results in ) ) ) )
Now it can be proved that generalized helichy, defined

dwn == cUrvmdnvy) +[Vp X V pl/p? = curl(vpm V v in terms of the “hydrodynamic” part of the velocity
=[Vp X Vpllp?>+curlomV vrm=vhmV vm) - hy = @y, - Vh, (75)
The term in the square brackets is equal #gVuv,, is the integral of motion for barotropic flows. Differentiating
~UhmY Um=V X w,, and we obtain Eg. (75 and taking into account Eq&9) and(70) for baro-
5 tropic flows we arrive at the local conservation law of the
deon=[Vp X V pllp~+curlv X w]. (700 form (rather cumbersome calculations are given in the Ap-
For the barotropic flowsp=p(p), the first term in the RHS pendi:
becomes zero and we can see #gip is the frozen-in field dhy+divgy=0, gqu=hyv+(x-v¥2w,. (76)
o, o, In analogy with the hydrodynamic case we can conclude that
D " = " Vv, (71)  the integral helicityZ,, [defined by means of E467)] is the

integral invariant, moving together with the fluid if the nor-

At H=0, wy, corresponds to the conventional hydrodynamicmal component of the vorticity tends to zeka,,=0, on the
vorticity. surface of the corresponding substantial volwhéote that
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the conditionwp,=0 is invariant of the motioridue to the Vi + Vi = Vit V.
frozen-in character aody,/ p) and therefore it can be related to
the initial surface only. Then
D. Generalized Ertel invariant Tg-Ze= fT/ dr Vs (e - ) = fT,dr Vs (oy - awy).

Let us show that there exists strict generalization of th N .
Ertel invariant for the MHD case. For this purpose let useBUt Vs (e~ ey)=-div[VsX (vy—vw)] and, therefore,

prove that without any restrictions related to the character of
I’E—IE:—f~dE n-[VsX (vy, —vw)].
N

the flow the quantity

he = (@, V's) (77 Now we can proceed in the two ways. First, making use of
obeys the conservation law of the form identity Vs X X =curl(sX)—s- curlX we obtain
dhg +divge =0, Qgg=hev. (78) I’E—IEz—f~ d3 n - {eurl[s(v{, = viu)] - s curl(vy, = vy)}.
N
Equivalently, the quantityag=hg/p is transported by the !
fluid Here the integral of the first term vanishg@hat is trivial for
a closed boundaryV and assumes the necessary decrease of
DCYE:O, a/E=hE/p, (79)

the integrand for the infinite volum¥) and we have
being a-type invariant. For the barotropic flows it immedi-
ately follows from the fact thadv,,/p is the frozen-in field if TE-Tg= f
the composition rules given by Eq&7) and (56) are taken

into account. In order to make the proof for the nonbarotro-
pic flows more transparent let us consider a more gener

situation. Let] satisfy equation of motion of the form

_dX sn-curlvy —vy). (83
N
his representation immediately suggests that integral Ertel
variant becomes gauge independent for the substantial vol-
umeV chosen in such a way that its boundary coincides with
the entropy-constant surfasgy =const.

The second way is as follows. Bearing in mind thgt
differing from the frozen field equatio(b4) by existence of =vy=-[hx(M’-M)] we obtain
the termZ that violates homogeneity. Then, df represents

lef - IE = J

DI=J-V)v+Z, (80)

any scalar Lagrange invariant, we have A3 n-{Vsx[hx(M'=-M)]}. (84
N

DJ-Va&)=DJ-Va+J-DVa Inasmuch as both ' andM satisfy Eq.(11), their difference

=Z - Va+((3-V)WV)-Va-Q Vo) - dna. M=M'-M is governed by the homogeneous equation
Here the two last terms cancel and we get (?tl\W: curllv X I\W],

DU -Va)=Z-Va if DI=J-V)v+Z ie. ﬁ:l\W/p is frozen-in field. Then we can conclude that
B the vector VsX[hXm] entering the integrand is the
and Da=0. (81) frozen-in field, as it follows from recursion relations
For Z=0 these relations prove the generating rule of Eq.(56)—(58)- Therefo.re.,. if we .fcldopt I’e|.atI0ﬂwn-[VS><[h
~ x m]]|;=0 as the initial condition, then it holds true for all
(57). But we can see thak- V « becomes the local Lagrange ts. For inst this relation is fulfilleddt.=0 and
invariant under less restrictive conditiah- Va=0. That is mo_men S. For Instance, this retation IS fulhile HE,= anc
m,=0 at the initial moment. Evidently, these two conditions

the case for the Ertel invariard:=[Vp X V p]/p® is orthogo- . ) .
nal to Vs due to the fact that the scalar product of any threecannot be fulfilled for an arbitrary gauge. But we can restrict

. o ourselves to a such subset of the initial conditions for the
thermodynamic quantities is equal to zébecause any ther- - . _ : :
. . : o ) . subsidiary fieldM that M|, = fH|., wheref is an arbi-
modynamic variable in the equilibrium state is a function of 0 0

two basic variables This concludes the proof. _trary function._[Then diM =diV_M |t:‘0: vi 'H|t:to Is time
The conserved integral quantity associated wighis independent in accordance with Ed.1), and for the par-
ticular choice off such thatH|t:to-Vf=O we have di

=0.] For these initial conditiongM along with M’ are
IE:ﬁdrhE* % Ze=0. (82) collinear toH at the initial moment and therefore the ini-
v tial value of the scalar product:(Vs,[h,m]) is zero. Due
Note that by the structur&g is not gauge invariant in con- to the frozen-in character of the quantifysx[hxm]
trast to the hydrodynamic case. Let us examine its changequationn-(Vsx[hxm])=0 holds true for the arbitrary
under gauge transformation that results/jil v{, vy O vy, moment. Thus we can make the conclusion that gauge
with dependence of the Ertel's invariant can be partly elimi-
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nated by appropriate choice of the initial conditions orcomplete set of independent invariants, and, respectively, the

substantial volumes. complete set of the corresponding Casimirs, see RgfFor
instance, existence of the three independent basic local in-
E. Specific gauge variants for the nonbarotropic flows, «g, andh) immedi-

I . . ately leads to the two denumerable sets of the monomial
Examination of the integrals of motion shows that thezysct,j“);r invariants

are gauge dependent. This dependence is attributed to differ-

ent decompositions of the velocity field into the “hydrody- a;jm) =(h- V)™, a<Em) =(h- V)"ag, ag> = ap,
namic” and “magnetic” parte=v,,+v,,. Underline that there
exists a wide subgroup of the gauge transformations that a(EO):aEI m=0.1.2, ....

include transformations that change the generalized poten-
tials ¢, pm, N, and o with no change inM. The “hydrody-  The first set was discussed in REf], and the second subset
namic” part of the velocity representatiay does not evi- is a new one along with the “parent” Ertel invariaat.
dently vary under the action of transformations of this, sayEvidently,

“hydrodynamic” subgroup. Then the generalized circulation, )

integral helicity and Ertel integral are likewise invariant un- ‘a= f({af:m)},{afgm b,

der these gauge transformations. The simplest way to restrict

the gauge transformations by this subgroup consists in adopwheref is an arbitrary function, is also the scalar Lagrange

ing zero initial conditions for the subsidiary fied. This |r'1varia_nt. Therefore, we imm_ed_iately arrive at the following
choice does not restrict in any way the character of a flow, inset of integrals of motioCasimirg

particular, all integrals of motion can possess nonzero values. (h 5 ()

The more detailed discussion of the gauge dependence of the I= J~ drpf({ep '} {ag" '}, (85)
additional integrals considered will be presented elsewhere. v

which is much wider than that discussed in the literature, see
V. CONCLUSIONS Eg. (10.23 in Ref.[1]. The additional set of the scalar mo-

The results obtained can be summarized as follows. Firs{/OMial Lagrange invariants can be generated by the mag-
netic helicity under the specific gauge conditidn=A -v,

the variant of introducing the canonical description of the ", : . L

MHD flows by means of the variational principle with con- 'aﬁvl)=(h-V)“aM. ,Th's enables evident generalization of the
straints is presented. It is shown that in order to describdntegrals of motion(85). - . :

general-type MHD flows it is necessary to use in the gener- ©ON€ example of the additiondlinvariants reads

alized Clebsch-type representation for the fluid velocity field ' =[VsX V agllp.

the vector Clebsch variablgéthe Lagrange markers and con-

jugate momentaalong with the entropy terngsee Refs. In turn, one can get new sets of the scalar invariants by
[25,24 describing the hydrodynamic cgsand the conven- applying operatior(J’-V) to the previous scalar invariants
tional magnetic term introduced first in RgR2). Such a and so on. Obviously, this also leads to additional Casimirs
complete representation allows one to deal with general-typto that indicated in Eq(85).

MHD flows, including all type of breaks, see R¢t4]. Sec- For the barotropic flows the picture is analogous: the ba-
ond, it is proved that the generalized Weber transformatiorsic set of the scalar Lagrange invariants involves the gener-
introduced leads to the velocity representation, which isalized helicityay=hy/p, anday, (under the gauge condition
equivalent to that introduced by means of the variationakpecified abovg and withJ invariantsh and w;,. Therefore,
principle. Third, the existence of the generalized Ertel invari-we obtain additional scalar invariam:é:):(h-V)”aH, a,(\;l’),

ant for MHD flows is proven. Forth, there are generalized the;, Q)Z(P_lwh'v)“aw w f\;}):(p—lwh.v)naM and the con-
vorticity and helicity invariants for the compressible barotro-served integrals of the form

pic MHD flows (first discussed for the incompressible case

in Ref. [8]). Fifth, the relations between the local and integral _ n N~ (M~ ("

invariants are discussed along with the gauge dependence of 1= Ldrpf({aL Hoal M@l L@ b, (89

the latter.

As a consequence of the completeness of the proposelhis set of the Casimirs generalizes that presented in Ref.
velocity representation we get the correct limit transition[1], the latter follows from Eq(86) if we replace the func-
from the MHD to the conventional hydrodynamic flows. The tion f depending on the four sets of the monomial invariants
results obtained allow one to consider the complicated MHDby a function depending only on the invariamt%,').
problems in terms of the Hamiltonian variables. The use of Note that we can construct the following generations of
this approach was demonstrated for the specific case of inthe local invariants by means of the recursion relations and
compressible flows in the series of pap@8s9] devoted to obtain Casimirs of a more sophisticated structure than that
the nonlinear stability criteria. We emphasize that the exispresented in Eq$85) and(86). The problem of obtaining the
tence of the additional invariants proved in our paper is oftomplete set of the local invariants and gauge invariance of
high importance for the stability problems. the corresponding integral invariants is rather complicated

Note that existence of the additional basic invariants ofand is still under examination. This questions will be dis-
the motion makes it actual to examine the problem of thecussed in detail in the forthcoming paper.
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APPENDIX
In order to prove Eq(31) let us substitutg¢ from Eq.(30)
into expressionj X h] dx/da;. Then

p J 9%
[ Nl =Dm > HR = [m - ¥ v x HI
Jd
- a_;kD([m X H]0 = ([m X D(ph)]c

+[(m - V)va]k)Z—::. (A1)

Proceeding with the terms in the second brackets we obtain

[m X D(ph) ]+ [(m- V)v X H],
=[m X h],-Dp+[pm X Dh] +[(m- V)v X H],
==[M X h],-diw+[M X (h- V)v],
+[(M - V)v X h],

=-[M X h]s&kvsa (A2)

whereM =pm and the dynamic equatidbh=(h-V)v along
with identity
[M X (h-V)V],+[(M - V)v X h],
=[M X h]ds—[M X hlsdovs
are taken into account. Introducing for brevity notation
Y=mXH=M Xh,
we can represent the RHS of E@\1) as

d X d Xy X dvug
_DYk + YS_(?kUS: _DYk + YS_
g g g g
I X J
= DY, + Y,—(Dx)
g 9g;
dX
-o{]
7g;

This proves Eq(31).
Let us check on the integral relatigd). It is sufficient to
prove the differential form, namely,

DM -d2) =j -d3, (A3)

whered, is some infinitesimal oriented area moving with

the fluid. It can be presented as
d =dl; X dl,, (A4)

wheredl,, dl, are frozen-in linear elements. Thudl,, a
=1,2, areinvariants of theJ type and satisfy equations

PHYSICAL REVIEW E 69, 046303(2004

D(dl,) = (dl, - V)v.

Consequently, from the recursion relati@9) it follows that
pdY is L- type invariant and hence it is governed by the
dynamic equation

D(pdX) =- V (pv-dX) +v X curl(pdX)
or in the coordinates
D(pdZ)) = = (pdZ) dvy-

Now it is easy to prove relatiofA3) without any restrictions
for the type of flow. Namely,

(A5)

D(M -d%)=D(m - pd)
=Dm - pd% + mD(pd3;)
=pdY - (M- V)v+j - -d¥ - mpd,divy
=j-d3. (AB)

In order to prove the helicity conservatiqii6), let us
consider some scalar quantity of the form

Y:Vh . \],
where J is some frozen-in field. Then, taking into account

that Eq.(69) for the barotropic flows can be rewritten as

DVy =~V (x=0%2) = vpm- Vo, XEfdp/P,

we obtain
DY =Dvp,-J+Vv,-DI=- V(x-v%2)-J.
For J=w,/p we proceed
D(Vp, - @wy/p) == p [V (x ~v72) - wy]
== p div[(x — v*/2)ax].
Then
D(Vh - @) = pD(Vy, - @i/p) + (Vh, - wy/p)Dp
=—div[(x - v¥2) wy,] = (Vp, - wp,)divv
or

an=(x = v42) o, + V(Vy, - wy)
(A7)

(Vy - ) = — divgp,

that evidently coincides with Eq76).

It is noteworthy that the proof is valid for arbitradytype
invariant if the fieldpJ is divergence free and the flow is
barotropic:

d(pd -vp) ==divg, q=(x=v%2)pd +V(pJ - vy)

for div(pJ) = 0. (A8)

For instance, choosing=h immediately leads to the cross-
helicity invariant if one takes into account thidtv,=H -v.
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