
Dynamics of a drop at a fluid interface under shear
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We analyze the dynamics of a two-dimensional drop lying on a fluid interface, sometimes called a liquid
lens, subjected to simple shear flow. The three fluids, the drop and the two external fluids, meet at a triple point
(or a triple line in three dimensions). A requirement for steady drop shapes is that the triple points are
stationary. This leads to a flow topology different than that of a freely suspended drop. Results are substantiated
with numerical results using a level set method for interface evolution and treatment of triple points. Possible
implications for new drop instabilities are also discussed.
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I. INTRODUCTION

The effect of flow in the mixing of immiscible fluids is a
fundamental problem in the processing of incompatible ma-
terials [1,2]. In many cases extra components are added to
the incompatible materials to increase their miscibility. In
polymer blends, for example, minority components are
added to decrease the interfacial energy and/or to improve
the mechanical properties of the final material[3]. The mi-
nority component segregates at the interface of the majority
components, where it often forms its own phase[4–6]. When
flow is imposed to this multiphase fluid a series of morpho-
logical changes are expected. The segregation processes in
incompatible binary fluids in the absence of shear[7–10] as
well as the effect of shear flow on the decomposition[11–15]
have been extensively studied. Flow in ternary fluids is more
complicated since it may involve the deformation of a fluid
drop at a fluid interface.

In a binary incompatible fluid the minority component
forms drops. The response of a drop suspended in an external
fluid to extensional and shear flows has been a topic of study
since the pioneering work of Taylor[16] as reviewed in Refs.
[17,18]. This scenario, which we refer to as a simple drop,
has widespread relevance in many problems besides fluid
mixing. In ternary fluids complicated morphologies occur
when the range of interfacial tension is such that the three
fluids meet at a stable triple point in two dimensions, or at a
triple line in three dimensions. In this case no fluid wets the
interface between the other two fluids. Thus a drop of a given
fluid can remain confined to the interface between two exter-
nal fluids. We call this an interfacial drop. The dynamics of
interfacial drops is not only relevant to flow in multiphase
bulk systems[19], but also in microchannels[20], to liquid
lenses, surfactant monolayers, oil spills, and even to high-
energy physics[21]. Significantly, the presence of the exter-

nal interface and the triple points affects both the steady and
unsteady behaviors of the drop. This scenario appears to
have been little studied to date, either analytically, experi-
mentally, or numerically. In this paper we analyze interfacial
drop flow by using kinematical arguments, and demonstrate
our conclusions numerically. In the last section we discuss
possible implications of our analysis on instabilities of inter-
facial drops under shear flow.

II. SYSTEM DESCRIPTION

We consider the two-dimensional system illustrated in
Fig. 1. The region of space occupied by phasei is labeledVi.
The external fluids areV1 andV2 while the drop isV3. The
boundary ofVi is labeledGi and the common interface be-
tweenVi andV j is Gi j (i.e., Gi j =Gi ùG j). The triple points at
the left and right tips of the drop are labeledL andR, respec-
tively. The external flow, far from the drop, is simple shear,
usxd=sġy,0d. The viscosity ofVi is mi and the interfacial
tension onGi j is si j . Since the system is two dimensional,
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line tension at a triple line can be omitted from consider-
ation. A characteristic drop lengtha is defined as the radius
of a circular drop with the same area asV3. For all flows
examined, here length scales are assumed to be sufficiently
small that the system is dominated by viscous shear stresses
and interfacial tension, thus we can neglect inertiasRe
=rUa/m→0d and gravitysBo=Drga2/s→0d. Viscosity ra-
tios are expressed asli j =mi /m j and interfacial tension ratios
aski jk =si j /s jk. Then an interfacial drop can be described by
five dimensionless parameters:l21, l31, k321, k312, and a cap-
illary number Ca=m1aġ /s13. In this work we consider only
cases wherel21=l31=1. When there is no external flow the
equilibrium conformation is that which minimizes the total
interfacial energy and is determined entirely byk312 and
k321. Equilibrium contact angles atL andR are given by the
Neumann triangle relation

sinsp − u3d/s12 = sinsp − u2d/s13 = sinsp − u1d/s23 s1d

or equivalently

sinsp − u3d = sinsp − u2d/k312= sinsp − u1d/k321, s2d

whereui is the contact angle inVi. A given fluid Vi wetsG jk
whens jk.si j +sik. We refer to this wetting case as “Wi.” At
the other extreme, wheres jk!si j =sik the boundaryGi be-
comes flat at the triple pointsui =pd. We refer to this case,
where the interfacial tensions onGi dominate the equilibrium
conformation, as “Di.” A qualitative phase diagram illustrat-
ing all of these configurations is shown in Fig. 2. Each of the
wetting casesW1, W2, andW3 occurs over a region of phase
space bounded by an open curve. The region between the
three curves represents the values ofk312 andk321 for which

a stable triple point, and thus a stable interfacial drop,
exists. The “dominant” casesD1, D2, andD3 are the equi-
libria in the limit where one of the interfacial tensions
goes to zero and the other two are equal. This system has
two degrees of freedom. By contrast, a solid sphere at a
fluid interface has only one degree of freedom, the height
of the sphere center of mass relative to the interfacescur-
vature of the interface due to gravity is not considered
hered. The position of the drop center of mass can be
varied in two distinct ways. Starting from the origin in
Fig. 2 the drop center can be shifted upwards by increas-
ing s23 smoving up along the vertical axis in the phase
diagramd or by decreasings13 smoving to the left along
the horizontal axisd. In the former caseu1→0 and the drop
becomes circular as theW1 curve is approached. In the
latter caseu1→p /2 and the drop becomes a semicircle in
the D2 limit.

III. KINEMATICAL ARGUMENTS

The presence of the external interfaceG12 and the triple
pointsL andR imposes a constraint on allowable steady state
flows, namely, that the drop cannot rotate. The kinematical
constraint in a steady state flow is that the velocity on any
interface has no normal component. ConsequentlyL and R
must be stationary. For a simple drop, pure extensional flow
produces recirculation inside the drop with four stationary
points on the drop surface(see, for instance, Ref.[22]). Such
a flow is compatible with an interfacial drop if two of the
stationary points coincide with the triple points. In simple
shear, however, the vorticity in the external flow causes a
simple drop to rotate(see Fig. 3). Fluid elements on the drop
surface lie on a closed streamline and return to their original
positions in a finite amount of time. Closed streamlines also
exist in the external fluid close to the drop or the(horizontal)
centerline. Points farther away lie on open streamlines,
which eventually move away from the drop in both forward
and backward time. This flow field, a region of closed
streamlines surrounded by open streamlines above and be-
low, is topologically equivalent to a field containing two hy-
perbolic points with smoothly joined stable and unstable
manifolds. The region of closed streamlines maps to the
space bounded by the common manifolds. In fact for a peri-

FIG. 2. Schematic diagram of the dependence of drop configu-
ration on interfacial tensions. The drop is stable at the interface in
the region between the three curves. The system has statesW1, W2,
andW3 outside this region, and statesD1, D2, andD3 in the limit
that one interfacial tension→0 with the other two being equal.
Asymmetric conformations occur atda andwa. Symmetric confor-
mations occur atsa, sb, andsc.

FIG. 3. Computed streamlines in the small deformation limit for
a simple drop in shear flow. The drop interface is the largest circular
streamline.

SMITH, OTTINO, AND OLVERA DE LA CRUZ PHYSICAL REVIEW E69, 046302(2004)

046302-2



odic series of drops(such as when periodic boundary condi-
tions are imposed numerically) hyperbolic points exist at the
box borders and the flow is equivalent to the phase plane of
a pendulum(see for example Ref.[23]). Since no stationary
points exist on the drop surface this flow is not compatible
with a steady interfacial drop. Instead a new type of flow
occurs which must satisfy the following conditions.

(i) The boundary condition on the velocity is simple
shear flow far above and below the drop.

(ii ) L and R are stationary points of the flow(else a
steady interface cannot exist).

(iii ) There are no other stationary points onG3. Points on
G13 flow towardsR and points onG23 flow towardsL (since
the system is highly viscous).

Four kinematically possible classes of flow exist which
can be distinguished by the velocity onG12. We refer to these
as classA, B, C, andD flows as shown in Fig. 4. In classA
flow u=0 onG12, all points inV1 move steadily to the right
and all points inV2 move to the left.L has one stable mani-
fold sG23d, one unstable manifoldsG13d, and one line of neu-
tral stability sG12d (with a symmetrical situation atR). If the
flow on G12 is away from the drop(classB) thenG12 contains
unstablemanifolds of bothL and R. To satisfy continuity
there must be a stable manifold ofL in V1 and a stable
manifold ofR in V2. L andR are hyperbolic points and there
is a recirculating region near each where elements flow to-
wards the triple point initially and then away from it. For
classC the flow onG12 is directed towards the drop so the
stablemanifolds ofL andR lie on G12. The unstable mani-
fold of L lies in V2 and that ofR lies in V1. ClassA, B, and
C flows all have a symmetry of rotation about the center line.
In classD flow, which is not symmetric, all points onG12
flow in the same direction. The drop moves relative toG12
and bothL andR have manifolds in the same external fluid
(V1 if the drop moves to the right andV2 if it moves to the
left). This is similar to the picture of a drop rolling over a
solid surface proposed in Ref.[24].

IV. GOVERNING EQUATIONS
AND NUMERICAL METHOD

We consider a system of three immiscible fluids where the
viscosities and densities of all fluids are taken to be equal.
The fluids are incompressible and are governed by the
Navier-Stokes equations.

] u

] t
= − ¹ p − u · ¹ u + s1/Red¹2u − F, s3d

¹ ·u = 0, s4d

where F is the interfacial tension force. We set Re=0.1
which is sufficiently small that interfacial effects are neg-
ligible. The method used for representing the interface is a
level set algorithm, as developed in Refs.f25,26g, with a
continuum treatment of interfacial tensionf27g. This
method has been extended to track interfaces in ternary
fluids f19g, and compute the motion of triple linesf28g.
There are several viable techniques for representing fluid
interfaces such as boundary integral and volume-of-fluid
methods. Distinct advantages of the level set method in-
clude a natural handling of topological changes in the in-
terface, easy extension to any number of spatial dimen-
sions, and a fundamental connection to hyperbolic
conservation laws. We determine the evolution of a set of
level set functionshf1sx ,td ,f2sx ,td ,f3sx ,tdj and the ve-
locity field usx ,td. The location of a boundaryGi is de-
fined by fisx ,td according to

fi = 5.0 in Vi

0 on Gi

,0 elsewhere

s5d

and interface evolution is given by

] fi

] t
= − u · = fi . s6d

Additionally, we requirefi to be a signed distance function,
meaning that at any positionx , ufisxdu is equal to the short-
est distance fromx to Gi. Thenfi is a smooth function sat-
isfying

u¹fiu = 1. s7d

For a single interface, defined byfsx ,td, the forceF in Eq.
s3d can be written as

F = f1/sRe Cadgksfd = Hsfd, s8d

wherek is the interface curvaturescomputed fromfd andH
is the Heaviside function. The evolution of the velocity field
and the interface is determined from the coupled solution of
Eqs. s3d, s4d, and s6d. For a two fluid system only a single
level set function is needed and this description is complete.
The treatment of a system of three or more fluids proceeds in
a similar manner, where a unique level set function defines
the boundary of each phase. This approach leads to problems
at triple lines and other multiple junctionssi.e., quadruple
pointsd. A sketch of the methodology developed in Refs.f19g

FIG. 4. Possible classes of flow in the vicinity of an interfacial
drop. Interfaces(circular for the drop and horizontal between the
bulk fluids) are only for illustration and do not represent actual
interfacial shapes.

DYNAMICS OF A DROP AT A FLUID INTERFACE… PHYSICAL REVIEW E 69, 046302(2004)

046302-3



and f28g is as follows: At a given pointx8 in Vi which is
closer toGi j than toGik it follows from the signed distance
property that

fisx8d = − f jsx8d . 0 . fksx8d. s9d

If each element ofhf1,f2,f3j is evolved independently it is
possible for this criterion to be violated. To avoid this we
treat Eq.s9d as a constraint onhf1,f2,f3j. Then it is pos-
sible to remove a degree of freedom by performing a linear
projection of the level set functions onto a reduced set of
variables, i.e.,hf1,f2,f3j° hcAsx ,td ,cBsx ,tdj. This is done
as follows:

cA = s2f1 − f2 − f3d/Î6, s10d

cB = sf2 − f3d/Î2. s11d

The inverse transformationhcA,cBj° hf1,f2,f3j is

u1 = 2cA/Î6, s12d

u2 = − cA/Î6 + cB/Î2, s13d

u3 = − cA/Î6 − cB/Î2, s14d

f1 = „u1 − u2 − u3 + minsu1,u2,u3d…/2, s15d

f2 = „− u1 + u2 − u3 + minsu1,u2,u3d…/2, s16d

f3 = „− u1 − u2 + u3 + minsu1,u2,u3d…/2. s17d

By evolving hcA,cBj rather thanhf1,f2,f3j all of the inter-
faces remain well defined and mutually consistent at any
multiple junction.

V. NUMERICAL RESULTS

In order to determine which, if any, of the flows predicted
in Fig. 4 occur we turn to numerical calculations. Steady
state flow fields for several equilibrium conformations(la-
beled in Fig. 2) are determined. Symmetric conformations
[ssadk321=k312,1; ssbdk321=k312=1,sscdk321=k312.1] as
well as asymmetric conformations[sdadk321=1,k312,1 and
swadk321.1,k312=1] are considered. In all cases the drop is
placed between parallel plates moving at constant velocity
with periodic boundaries in the horizontal direction. A box
size of 231 with a=1/8 is used. Grid resolution is 256
3128.

A. Symmetric drops „k312=k321…

For the symmetric case in whichk312=k321,2 the equi-
librium configuration varies only in the extent to which the
drop spreads acrossG12. In the absence of any symmetry
breaking instability only classA, B, andC flows can occur.
For the equilibrium shapessa, sb, andsc, as specified in Fig.
2, the computed steady state flow fields shown in Fig. 5
confirm this prediction. For a slender drop(sa, lowestk312)
we observe classA flow with no recirculation nearL or R.

However one cannot entirely eliminate the possibility of very
narrow recirculating regions which are beyond the numerical
resolution. At larger values ofk312 classB flow is observed
with recirculating regions clearly present. ClassC flow has
not been observed for any value ofk312. Thesbandscflows
are qualitatively similar but the width of the recirculating
region increases withk312 as the drop becomes less elon-
gated.

Shear also has a noticeable effect on the external interface
and the triple lines.L andR lie below and above the center-
line, respectively.G12 has an upward slope atL andR which
is approximately equal to the slope of the line betweenL and
R. Streamlines in the recirculating regions are nearly sym-
metrical, from which it can be deduced that the stable mani-
folds of L and R are similar in shape to the unstable mani-
folds (which lie on G12) and do not have high curvature.
Unlike the simple drop scenario not only the drop shape is of
interest but also the shape ofG12 away from the drop. Since
the system is periodic, the height ofG12 at the box borders
remains at a constant value. At a sufficient distance from the
drop G12 has a downward slope. Because of this the box
length is more relevant to the steady shape than in the case of
a simple drop. In order to determine whether interface shapes
near the drop are dependent on box size the results for dif-
ferent box lengths were compared. We found that the drop
shape and the shape ofG12 near the drop converged with
increasing box length. Additionally the shape of the inter-
faces near the triple points is of interest and a few comments
are pertinent here. In our numerical technique it is the bal-
ance of interfacial tension forces which drives the interfaces
towards their equilibrium contact angles at a triple point.
Interfacial tension is numerically resolved over a narrow re-

FIG. 5. Computed streamlines(near the drop) and interfacial
shapes(over the entire system) for symmetric conformations:(a)
k321=k312=0.6,Ca=0.125sa conformation.(b) k321=k312=1,Ca
=0.075, sb conformation. (c) k321=k312=4,Ca=0.141, sc
conformation.
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gion about the interface whose width is approximately one
grid length on either side of the interface. Thus the forces in
the neighborhood of the triple point are resolved over a finite
number of grid points. As grid resolution is increased, the
area of this region decreases. We have done calculations at
higher grid resolutions and found convergence in the shape
of the interfaces and no change in the flow topology.

B. Asymmetric drops „k312Åk321…

When k312Þk321 the flow is not symmetrical about the
center line and classD flow may occur. Steady flows for two
distinct asymmetric conformations(wa and da in Fig. 2)
have been computed(Fig. 6). In both cases the center of
mass of the drop lies aboveG12 and the drops “rolls” along
G12. While topologically equivalent, the two flows have sig-
nificant differences. For thewa caseu1 is acute and the re-
circulating regions are large while the streamlines are notice-

ably blunt near the drop. Significant curvature is evident in
the manifolds inV1. Near the triple lines these manifolds
appear to lie much closer toG13 than toG12. For theda case
u1 is obtuse and the recirculating regions are narrower and
more similar to those observed for symmetric drops.

VI. DISCUSSION AND CONCLUSIONS

For a simple drop in shear flow at moderate viscosities
there is a critical capillary number, Cacrit, above which the
drop has no steady shape and undergoes continuous defor-
mation. In a three-dimensional system the drop can develop
narrow necks, due to end pinching or the capillary instability,
which undergo pinch-off, producing smaller drops. We refer
to this as simple pinch-off. A broader range of instabilities is
possible for interfacial drops which has yet to be addressed
thoroughly. We conclude by discussing possible implications
of the equilibrium conformation on the drop instability. The
symmetric dropsb deforms at Cacrit along the interface such
that the distance betweenL andR increases with drop length
[Fig. 7(a)]. In this case a three-dimensional drop could un-
dergo pinch-off such that the subsequently formed drops re-
main on the external interface. This process, which we call
interfacial pinch-off, differs from simple pinch-off because
of the presence of the triple line. Simple pinch-off has been
viewed as a singularity of the interface which occurs in finite
time [29]. For small neck widths(close to the pinch-off
event) the problem is locally axisymmetric and fluid is
driven out of the neck due to interfacial tension induced
pressure gradients. For interfacial pinch-off the triple lines
eliminate the axisymmetry. Additionally the effect of line

FIG. 6. Computed streamlines for asymmetric drops.(a)
wa,k312=1,k321=1.8,Ca=0.019; (b) da,k312=0.6,k321=1,Ca
=0.33.

FIG. 7. Instabilities for several equilibrium conformations.(a) sb,k312=k321=1; (b) da,k312=0.1,k321=1; (c) wa,k312=1,k321=1.8; (d)
sc,k312=k321=10.
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tension[30] could be significant. Any decrease in neck width
would increase the curvature of the triple lines and thus
would be opposed by positive line tension. Thus there is a
competition between interfacial tension, which promotes
breakup, and line tension, which stabilizes elongated drops.
For theda conformation the drop also deforms[Fig. 7(b)] at
Cacrit but in this case it stretches into one of the external
fluids such thatL and R do not move apart. In this case
simple pinch-off can occur away fromG12, producing a se-
ries of drops in the external fluid and a single drop remaining
on the interface. Instabilities also exist for which the drop
undergoes only finite deformation. For thewa conformation
the drop does not “stick” to the external interface as much as
it does for theda case(that is,u1 is smaller). Then the drop

may be removed completely from the external interface by
the shear[Fig. 7(c)]. Finally, the change in topology de-
scribed in Fig. 4 occurs because interfacial tension of the
external interface resists drop rotation, which would increase
the length ofG12. As s12→0 ssbd this effect is lost and the
drop resembles a simple drop whereG12 is a passive material
line. ThenG12 may become unstable at low Ca where the
drop is stable. In this case the flow resembles Fig. 3 andG12
wraps around the drop[Fig. 7(d)].
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