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Dynamics of a drop at a fluid interface under shear
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We analyze the dynamics of a two-dimensional drop lying on a fluid interface, sometimes called a liquid
lens, subjected to simple shear flow. The three fluids, the drop and the two external fluids, meet at a triple point
(or a triple line in three dimensiopsA requirement for steady drop shapes is that the triple points are
stationary. This leads to a flow topology different than that of a freely suspended drop. Results are substantiated
with numerical results using a level set method for interface evolution and treatment of triple points. Possible
implications for new drop instabilities are also discussed.
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I. INTRODUCTION nal interface and the triple points affects both the steady and
) o o o unsteady behaviors of the drop. This scenario appears to
The effect of flow in the mixing of immiscible fluids is a payve peen little studied to date, either analytically, experi-
fundamental problem in the processing of incompatible mamentally, or numerically. In this paper we analyze interfacial
terials [1,2]. In many cases extra components are added t@rop flow by using kinematical arguments, and demonstrate
the incompatible materials to increase their miscibility. Ing5,r conclusions numerically. In the last section we discuss

polymer blends, for example, minority components aréyossible implications of our analysis on instabilities of inter-
added to decrease the interfacial energy and/or to improvgcial drops under shear flow.

the mechanical properties of the final matefig]. The mi-
nority component segregates at the interface of the majority
components, where it often forms its own phfge6]. When
flow is imposed to this multiphase fluid a series of morpho- We consider the two-dimensional system illustrated in
logical changes are expected. The segregation processesHiy. 1. The region of space occupied by phaiselabeled();.
incompatible binary fluids in the absence of shg&arl() as  The external fluids ar€, and(), while the drop isQ2;. The
well as the effect of shear flow on the decomposifibh-15  boundary of(); is labeledl’; and the common interface be-
have been extensively studied. Flow in ternary fluids is moreween(); and(); is I';; (i.e.,I';=I';NT’)). The triple points at
complicated since it may involve the deformation of a fluid the left and right tips of the drop are labele@ndR, respec-
drop at a fluid interface. tively. The external flow, far from the drop, is simple shear,
In a binary incompatible fluid the minority component u(x)=(yy,0). The viscosity of(); is w; and the interfacial
forms drops. The response of a drop suspended in an externahsion onl;; is oy;. Since the system is two dimensional,
fluid to extensional and shear flows has been a topic of study
since the pioneering work of Tayl§t 6] as reviewed in Refs.
[17,18. This scenario, which we refer to as a simple drop,
has widespread relevance in many problems besides fluid
mixing. In ternary fluids complicated morphologies occur
when the range of interfacial tension is such that the three Q
fluids meet at a stable triple point in two dimensions, or at a
triple line in three dimensions. In this case no fluid wets the
interface between the other two fluids. Thus a drop of a given
fluid can remain confined to the interface between two exter-
nal fluids. We call this an interfacial drop. The dynamics of
interfacial drops is not only relevant to flow in multiphase

II. SYSTEM DESCRIPTION

[
Ll

bulk systemq19], but also in microchannelg0Q], to liquid O \
lenses, surfactant monolayers, oil spills, and even to high- 2 r
energy physic$21]. Significantly, the presence of the exter- 23
*Present address: LPMCN, Université Claude Bernard, 69622 <
Villeurbanne, France.
Electronic address: ksmith@Ipmcn.univ-lyonZ1.fr FIG. 1. Interfacial drop in shear flow.
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FIG. 3. Computed streamlines in the small deformation limit for
a simple drop in shear flow. The drop interface is the largest circular
streamline.

a stable triple point, and thus a stable interfacial drop,
- exists. The “dominant” casd3l, D2, andD3 are the equi-
D1 libria in the limit where one of the interfacial tensions

FIG. 2. Schematic diagram of the dependence of drop configugoes to zero and the other two are equal. T.hls system has
ration on interfacial tensions. The drop is stable at the interface iriw_0 Qegrees of freedom. By contrast, a solid sphere _at a
the region between the three curves. The system has WAteA?, luid interface has only one degreg of freedo_m, the height
andW3 outside this region, and stated, D2, andD3 in the limit ~ Of the sphere center of mass relative to the interfiate-
that one interfacial tension-0 with the other two being equal. Vature of the interface due to gravity is not considered

Asymmetric conformations occur g andwa. Symmetric confor-  her@. The position of the drop center of mass can be
mations occur asa, sh, andsc varied in two distinct ways. Starting from the origin in

Fig. 2 the drop center can be shifted upwards by increas-
ing 0,3 (Moving up along the vertical axis in the phase
diagram or by decreasingr;3 (moving to the left along
the horizontal axis In the former cas#; — 0 and the drop
comes circular as thé/1 curve is approached. In the
ter case, — /2 and the drop becomes a semicircle in
the D2 limit.

line tension at a triple line can be omitted from consider-
ation. A characteristic drop lengthis defined as the radius
of a circular drop with the same area 8s. For all flows
examined, here length scales are assumed to be sufficien
small that the system is dominated by viscous shear stress
and interfacial tension, thus we can neglect ineftiRe
=pUa/ u— 0) and gravity(Bo=Apga®/ o— 0). Viscosity ra-

tios are expressed ag = u;/ u; and interfacial tension ratios IIl. KINEMATICAL ARGUMENTS
askij =0/ oj. Then an interfacial drop can be described by _ .
five dimensionless parameteksi, A1, k321, K312 and a cap- The presence of the external interfacg and the triple

illary number Ca=,ay/ 045 In this work we consider only pointsL andRimposes a constraint on allowable steady state
cases wher@,;=\3;=1. When there is no external flow the flows, namely, that the drop cannot rotate. The kinematical
equilibrium conformation is that which minimizes the total constraint in a steady state flow is that the velocity on any
interfacial energy and is determined entirely ky;, and  interface has no normal component. Consequentnd R
K321 EQuilibrium contact angles &t andR are given by the must be stationary. For a simple drop, pure extensional flow
Neumann triangle relation produces recirculation inside the drop with four stationary
points on the drop surfagsee, for instance, Reff22]). Such
sin(m = 63)/ o1, = sin(m = B) ay3=sin(m = Oy)lo3 (1) a flow is compatible with an interfacial drop if two of the
stationary points coincide with the triple points. In simple
shear, however, the vorticity in the external flow causes a
Sin(7r — 03) = SiN(7 — )/ ka1o= SIN(T— )/ Kk3py, (2)  SiMPple drop to rotatésee Fig. 3. Fluid elements on the drop
surface lie on a closed streamline and return to their original
where¢, is the contact angle if);. A given fluid ); wetsT'y,  positions in a finite amount of time. Closed streamlines also
whenoy > oy; + oy We refer to this wetting case agvi.” At exist in the external fluid close to the drop or {terizonta)
the other extreme, wherey < o, =0y the boundanf’; be-  centerline. Points farther away lie on open streamlines,
comes flat at the triple pointé,= ). We refer to this case, which eventually move away from the drop in both forward
where the interfacial tensions @i dominate the equilibrium and backward time. This flow field, a region of closed
conformation, asDi.” A qualitative phase diagram illustrat- streamlines surrounded by open streamlines above and be-
ing all of these configurations is shown in Fig. 2. Each of thelow, is topologically equivalent to a field containing two hy-
wetting case®V1, W2, andW3 occurs over a region of phase perbolic points with smoothly joined stable and unstable
space bounded by an open curve. The region between theanifolds. The region of closed streamlines maps to the
three curves represents the valuesgf and k43,1 for which  space bounded by the common manifolds. In fact for a peri-

or equivalently
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IV. GOVERNING EQUATIONS
AND NUMERICAL METHOD
We consider a system of three immiscible fluids where the
v v viscosities and densities of all fluids are taken to be equal.
The fluids are incompressible and are governed by the

(@ (b) Navier-Stokes equations.

\/\/ %:_VD—U-VU+(1/R9V2U_E 3
—/\/C

V.u=0, (4)

/\f - where F is the interfacial tension force. We set Re=0.1

) which is sufficiently small that interfacial effects are neg-
© ligible. The method used for representing the interface is a
FIG. 4. Possible classes of flow in the vicinity of an interfacial level set algorithm, as developed in Ref25,26], with a

drop. Interfacescircular for the drop and horizontal between the CONtinuum treatment of interfacial tensiof27]. This
bulk fluids) are only for illustration and do not represent actual M€thod has been extended to track interfaces in ternary

interfacial shapes. fluids [19], and compute the motion of triple lind&8].
There are several viable techniques for representing fluid
interfaces such as boundary integral and volume-of-fluid

odic series of dropgsuch as when periodic boundary condi- Méthods. Distinct advantages of the level set method in-
tions are imposed numericajlytyperbolic points exist at the C€lude @ natural handling of topological changes in the in-
box borders and the flow is equivalent to the phase plane df'face, easy extension to any number of spatial dimen-
a pendulum(see for example Ref23]). Since no stationary sions, aqd a fundamental connection  to hyperbolic
points exist on the drop surface this flow is not Compatibleconserv"’ltlon Ia}ws. We determine the evolution of a set of

. . : level set functions{¢y(X,t), da(X,t), P3(x,t)} and the ve-
with a steady interfacial drop. Instead a new type of ﬂowIOCit field u(x.t). The location of a boundary; is de-
occurs which must satisfy the following conditions. ocity o . :

(i) The boundary condition on the velocity is simple fined by &i(x.t) according to
shear flow far above and below the drop. >0 inQ,

(i) L and R are stauongry points of the flowelse a $=10 onT, 5)
steady interface cannot exjist

(i) There are no other stationary points B Points on <0 elsewhere
I'y3 flow towardsR and points orl’,; flow towardsL (since  and interface evolution is given by
the system is highly viscous

Four kinematically possible classes of flow exist which I i =-u-V¢ (6)
can be distinguished by the velocity br,. We refer to these at a
as classA, B, C, andD flows as shown in Fig. 4. In clags
flow u=0 onTI';,, all points in{); move steadily to the right
o, ot €54 dtance o 0T, Thend .2 Smooth uncon sat.
tral stability (I';,) (with a symmetrical situation ). If the Isfying
flow onT';, is away from the drojclassB) thenI';, contains V| =1. (7)
unstablemanifolds of bothL and R. To satisfy continuity ) . _ .
there must be a stable manifold &fin Q, and a stable FOr @ single interface, defined bj(x,1), the forceF in Eq.
manifold of R in Q,. L andR are hyperbolic points and there (3) ¢an be written as
is a recirculating region near each where elements flow to- —
wards the triple point initially and then away from it. For F=[1(Re Calx($) VH(4), ®
classC the flow onI';, is directed towards the drop so the wherex is the interface curvatureeomputed fromg) andH
stablemanifolds ofL andR lie on I';,. The unstable mani- is the Heaviside function. The evolution of the velocity field
fold of L lies in ), and that ofR lies in ();. ClassA, B, and  and the interface is determined from the coupled solution of
C flows all have a symmetry of rotation about the center line Egs. (3), (4), and (6). For a two fluid system only a single
In classD flow, which is not symmetric, all points ohi;,  level set function is needed and this description is complete.
flow in the same direction. The drop moves relativeltg ~ The treatment of a system of three or more fluids proceeds in
and bothL andR have manifolds in the same external fluid a similar manner, where a unique level set function defines
(Q4 if the drop moves to the right and, if it moves to the  the boundary of each phase. This approach leads to problems
left). This is similar to the picture of a drop rolling over a at triple lines and other multiple junctionge., quadruple
solid surface proposed in RgR4]. points. A sketch of the methodology developed in REif8]

Additionally, we requireg; to be a signed distance function,
meaning that at any position, |¢,(x)| is equal to the short-
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and[28] is as follows: At a given poink’ in €; which is

closer tol’; than tol' it follows from the signed distance [——————-——
property that f©t

A(X') = = B(x) > 0> (X)), O
If each element of ¢, P», b3} is evolved independently it is @)

possible for this criterion to be violated. To avoid this we

treat Eq.(9) as a constraint ofigy, ¢,, ¢s}. Then itis pos- ————me——
- . . /—\

sible to remove a degree of freedom by performing a linear

projection of the level set functions onto a reduced set of == \__O——\

variables, i.e.{¢1, ¢d,, st —={a(X, 1), (X, 1)}. Thisis done  ——na —

as follows: e
= (b)
Upn=2d1— ¢~ ¢3)/\6, (10)
g = (2~ P3)lN2. (1)
The inverse transformatiofiy, ¢g}—{ b1, Po, P3} is
6,=2y/\6, (12)
— !/_ !,_
02= = a6 + /N2, (13 FIG. 5. Computed streamlingsiear the dropand interfacial
_ _ shapegover the entire systepfor symmetric conformations(a)
O3=— a6 — g/ 2, (14 Kgp1=K312=0.6,Ca=0.125sa conformation.(b) x3,1=x31o=1,Ca
=0.075, sb conformation. (C) «gz»1=k31o=4,Ca=0.141, sc
$h1= (01— 0, = O3+ min(6y, 65, 65))/2, (15) ~ conformation.
- ; However one cannot entirely eliminate the possibility of very
=(=0,+6,— 05+ 2 1 . : . . ;
$2= (= Ou+ 0, = O3+ Min(6y, 0, 0))/2, (16 narrow recirculating regions which are beyond the numerical
. resolution. At larger values ot;;, classB flow is observed
3= (= 6= b, + By + Min(61,0,,69)12.  (17) 0 1

with recirculating regions clearly present. ClaSdlow has

By evolving{y, ¥} rather thar{ ¢y, ¢,, ¢4} all of the inter-  Not been observed for any value ©f;,. Thesbandscflows

faces remain well defined and mutually consistent at anyare qualitatively similar but the width of the recirculating
multiple junction. region increases withs;, as the drop becomes less elon-

gated.

Shear also has a noticeable effect on the external interface
and the triple linesL andR lie below and above the center-

In order to determine which, if any, of the flows predicted line, respectivelyI';, has an upward slope atandR which
in Fig. 4 occur we turn to numerical calculations. Steadyis approximately equal to the slope of the line betweemd
state flow fields for several equilibrium conformatiofis- R. Streamlines in the recirculating regions are nearly sym-
beled in Fig. 3 are determined. Symmetric conformations metrical, from which it can be deduced that the stable mani-
[(SA)Kap1=K312<1; (SD)Kkgp1=K31,=1,(SOK3m=Kg1,>1] as folds of L andR are similar in shape to the unstable mani-
well as asymmetric conformatiori§da) xsx=1,k31,<1 and  folds (which lie onT';;) and do not have high curvature.
(Wa) k3p1>1,k31,= 1] are considered. In all cases the drop isUnlike the simple drop scenario not only the drop shape is of
placed between parallel plates moving at constant velocitjterest but also the shape bf, away from the drop. Since
with periodic boundaries in the horizontal direction. A box the system is periodic, the height bf, at the box borders
size of 2x1 with a=1/8 is used. Grid resolution is 256 femains at a constant value. At a sufficient distance from the
X 128. drop I';; has a downward slope. Because of this the box
length is more relevant to the steady shape than in the case of
a simple drop. In order to determine whether interface shapes
near the drop are dependent on box size the results for dif-

For the symmetric case in whicks;,=k3,1<2 the equi- ferent box lengths were compared. We found that the drop
librium configuration varies only in the extent to which the shape and the shape bf, near the drop converged with
drop spreads acrods;,. In the absence of any symmetry increasing box length. Additionally the shape of the inter-
breaking instability only clasé, B, andC flows can occur. faces near the triple points is of interest and a few comments
For the equilibrium shapesa, sh, andsc as specified in Fig. are pertinent here. In our numerical technique it is the bal-
2, the computed steady state flow fields shown in Fig. Sance of interfacial tension forces which drives the interfaces
confirm this prediction. For a slender dr¢gg, lowestks;,)  towards their equilibrium contact angles at a triple point.
we observe clasé flow with no recirculation neat or R. Interfacial tension is numerically resolved over a narrow re-

V. NUMERICAL RESULTS

A. Symmetric drops (k315= K321
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Y

ably blunt near the drop. Significant curvature is evident in
the manifolds inQ);. Near the triple lines these manifolds
appear to lie much closer 16,5 than toI';,. For theda case

6, is obtuse and the recirculating regions are narrower and

:
)

)

D> more similar to those observed for symmetric drops.
—
#
e VI. DISCUSSION AND CONCLUSIONS
(@ (b)

For a simple drop in shear flow at moderate viscosities
FIG. 6. Computed streamlines for asymmetric dropsy there is a critical capillary number, ¢& above which the

Wa, Kago=1,k3,=1.8,Ca=0.019; (b) da,ks,=0.6k3,=1,Ca drop has no steady shape and undergoes continuous defor-

=0.33. mation. In a three-dimensional system the drop can develop

narrow necks, due to end pinching or the capillary instability,

which undergo pinch-off, producing smaller drops. We refer

grid length on either side of the interface. Thus the forces iﬁo th|_s as 3'”."0'9 pm.Ch'Oﬁ' A bro?der range of instabilities is
eoossmle for interfacial drops which has yet to be addressed

the neighborhood of the triple point are resolved over a finit h hiv. Wi lude by di . ible implicati
number of grid points. As grid resolution is increased, the oroughly. Ve conclude by diSCussing possible implications

area of this region decreases. We have done calculations 3&:}:‘; iﬂwgt:”urg gofnfronr]mattlocn .on |thne <jt:10pirl1r:3:?blllty. Tkr:e
higher grid resolutions and found convergence in the shap etric dropsb delorms at L4 along the Interiace suc

. . that the distance betweénandR increases with drop length
of the interfaces and no change in the flow topology. [Fig. 7/@]. In this case a three-dimensional drop could un-
dergo pinch-off such that the subsequently formed drops re-
main on the external interface. This process, which we call

When k31,7 K321 the flow is not symmetrical about the interfacial pinch-off, differs from simple pinch-off because
center line and clas® flow may occur. Steady flows for two of the presence of the triple line. Simple pinch-off has been
distinct asymmetric conformation@va and da in Fig. 20  viewed as a singularity of the interface which occurs in finite
have been compute@-ig. 6). In both cases the center of time [29]. For small neck widthgclose to the pinch-off
mass of the drop lies abou#;, and the drops “rolls” along evenj the problem is locally axisymmetric and fluid is
I';15. While topologically equivalent, the two flows have sig- driven out of the neck due to interfacial tension induced
nificant differences. For theva case#, is acute and the re- pressure gradients. For interfacial pinch-off the triple lines
circulating regions are large while the streamlines are noticeeliminate the axisymmetry. Additionally the effect of line

gion about the interface whose width is approximately on

B. Asymmetric drops («312% K351

e

(b)

o —o— O =

e I I

(© ()

FIG. 7. Instabilities for several equilibrium conformatioa) sb, k31,=k321=1; (b) da, x315=0.1k351=1; (C) Wa, k31o=1,k321=1.8; (d)
SC, K310= K321~ 10.
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tension[30] could be significant. Any decrease in neck width may be removed completely from the external interface by
would increase the curvature of the triple lines and thughe shear[Fig. 7(c)]. Finally, the change in topology de-
would be opposed by positive line tension. Thus there is &cribed in Fig. 4 occurs because interfacial tension of the
competition between interfacial tension, which promotesexternal interface resists drop rotation, which would increase
breakup, and line tension, which stabilizes elongated dropshe length ofl';,. As o,— 0 (sb) this effect is lost and the
For theda conformation the drop also deforrisig. 7(b)] at  drop resembles a simple drop whétg is a passive material
Ca,; but in this case it stretches into one of the externaline. ThenI';, may become unstable at low Ca where the
fluids such thatL and R do not move apart. In this case drop is stable. In this case the flow resembles Fig. 3[apd
simple pinch-off can occur away froi,,, producing a se- wraps around the drofFig. 7(d)].

ries of drops in the external fluid and a single drop remaining
on the interface. Instabilities also exist for which the drop
undergoes only finite deformation. For the conformation
the drop does not “stick” to the external interface as much as This work was supported by IGERT-NSF Grant No.
it does for theda case(that is, #; is smalley. Then the drop 9987577 and by NSF Grant No. DMR-0109610.
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