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Hopf bifurcation cascade in small« laser diodes subject to optical feedback
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We analyze theoretically the dynamics of a semiconductor laser subject to optical feedback, on the basis of
the well-known Lang-Kobayashi equations. Previous investigations on this laser system suggest that a small
linewidth enhancement factor(facton stabilizes the laser dynamics. By contrast, we unveil here optical
feedback induced instabilities which are present for a small value lmit which disappear whea increases
abovea~1. By combining numerical simulations and modern continuation methods for delay-differential
equations, we unveil cascades of subcritical and supercritical Hopf bifurcations on the first external-cavity
mode (ECM). We unveil for the first time, to our knowledge, the occurrence of subcritical Hopf bifurcation
points for intermediate values of the EC length, i.e. close to the boundary between the short and the long EC
regimes. They lead to severe laser instabilities such as large intensity and possibly chaotic pulsations. More-
over, these Hopf bifurcation cascades for small values afe shown to be responsible for different bifurca-
tion scenarios leading to restabilization of the first ECM and to ECM bistability.
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[. INTRODUCTION periodicity and possibly lead to chaotic intensity oscillations.
The Hopf bifurcation on ECMs therefore plays an important
Optical feedback in semiconductor lasers, i.e., the reflecrole since it is often the first bifurcation in the route to more
tion of the emitted light into the laser cavity, has attracted thecomplex optical feedback-induced laser instabilities. Most of
attention of many scientists since more than 20 years, owinthe instabilities in the LK equations originate frosuper-
to its practical importance as well as its rich and complexcritical Hopf bifurcationson ECMs. As we increase a bifur-
nonlinear dynamicgfor a review, see, e.g., Petermaf]l  cation parameter, the ECM steady state undergoes a Hopf
and van Tartwijk and Lenst{&]). An in-depth understanding bifurcation from which emerges stabletime-periodic solu-
of the instabilities in laser diodes subject to feedback is intion. The time-periodic solution grows in amplitude as we
dispensable in order to avoid them, or to control and stabilizéncrease the bifurcation parameter and may destabilize to
the laser emission. On the other hand these instabilities mayore complex laser outputs. Supercritical Hopf bifurcations
be useful for new applications of laser diodes such as thbave been reported, for example, in the cascade of bifurca-
recently suggested interferometric applicatip8f cryptog-  tions leading to chaotic low-frequency fluctuatiors,24,
raphy based on optical chap4,5], and also the all-optical in the route to regular pulse package dynanj,25, and
generation of high-frequency electrical signgds-10]. recently they were shown to be responsible for the high-
The theoretical modeling of the dynamics of laser diodedrequency harmonic intensity oscillations resulting from a
with optical feedback is very often based on the Lang-beating between two ECM$-10,24.
Kobayashi(LK) equationg 11]. The LK equations model a Very recently, we have shown thstibcritical Hopf bifur-
single-mode laser diode subject to a weak to moderate optzations are also possible in the LK equatioh®7], in the
cal feedback from a flat, distant mirror. New problems con-so-called short EC regime, i.e., when the EC frequency is
cerned with optical feedback effects in multi-longitudinal much larger than the relaxation oscillatitRO) frequency of
mode edge-emitting lasergl2,13 and in vertical-cavity the solitary laser diod€6,7]. By contrast to the case of su-
surface-emitting laser§d,9,14—20 have motivated exten- percritical Hopf bifurcations, the ECM that undergoes a sub-
sions of the LK equations to more complex rate equationscritical Hopf bifurcation destabilizes to annstabletime-
However, the dynamics of the simple LK equations is still periodic solution. Very often this time-periodic solution
only partially understood and new regimes of instabilities arestabilizes as we increase the bifurcation parameter, and the
regularly reported 21,22, which motivate new theoretical laser then exhibits sharp, high-frequency and large intensity
investigations in different sets of laser and feedback parampulses[27]. These subcritical Hopf bifurcations are found in
eters. a large range of laser and feedback parametetsle re-
Experiments and numerical simulations have shown thatnaining in the short EC regimeut they usually disappear
the chaotic instabilities arising in laser diodes subject to deand become supercritical as the linewidth enhancement fac-
layed feedback emerge from a cascade of bifurcations on ther « decreases below=1 (except for particular parameter
steady states of the laser system, i.e., the so-called externalalues [27,28.
cavity modes(ECMs) [23]. The ECMs destabilize from a The a factor is one of the fundamental parameters of
Hopf bifurcation and the emerging time-periodic solution semiconductor lasers. It is responsible for the enhancement
may in turn destabilize to period-doubling regimes or quasi-of the laser linewidth, and it affects the frequency chirp, the
modulation response, and the effect of optical feedljask
In the search for large bandwidth and high-frequency tele-
*Electronic address: Sciamanna@telecom.fpms.ac.be communication systems, there is an increasing need for
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small-« laser diodes, which can greatly benefit from the re- dy
cent developments of quantum d@®D) active materials E=(1+ia)ZY+ nexp(—iQy0)Y(s—0), )
[30]. These new interests also motivate further investigations

on the dynamical effects of optical feedback in smalaser dz
diodes. All previous studies on the impact of a snaatin the T—=
feedback-induced instabilities have reported on stabilization ds

effects. For example, ag decreases, we have the following. , i ) o
(i) The amount of feedback leading to the onset of thewhereY is the slowly varying amplitude of the electric field

chaotic coherence collapse increafgs,32, i.e., the laser and Z is the carrier number in excess with respect to its
exhibits higher resistance to feedback-induced chaotic instdhreshold valuee is the linewidth enhancement factor. The
bilities. parametelT is defined as the ratio between the carrier life-
(if) The stability of the maximum gain ECM is signifi- time 75 and the photon lifetimer,, i.e., T=7/7,. Pis a
cantly improved with respect to the occurrence of chaotinormalized pump termg=rg,/7, is the external-cavity

P—Z—(1+22)|Y|? (2

low-frequency fluctuations33—36. _ _ round-trip time 7, normalized byr,. Qo=wy,7,, where
(iii) The quasiperiodic oscillations which typically accom- wy, is the frequency of the solitary laser at threshoig.
pany the two ECM beatings in short ECs disapdda). =fr . wheref is the feedback rate.

(iv) The subcritical Hopf bifurcations responsible for
large intensity oscillations in short EC convert to muchfro
smoother supercritical Hopf bifurcatioh27].

In this paper, we show however that a smafactor may
also induce instabilities on the ECM steady states, which arg: . .
not present for conventional, larger valuesaofA combina- ifurcation and_the Hopf frequencqu. _These equations
tion of numerical integration of the LK equations with mod- N@ve been derived in several publicatiofsee, e.g., Ref.
ern continuation methods for delay-differential equationd38) and can be written as
[37] allows us to report on cascades of subcritical and super-

The Hopf bifurcations on the ECMs can be determined
m a standard linear small perturbation analysis on the
ECM steady states. We obtain two transcendental equations
%or ny, I.e., the critical feedback rate leading to a Hopf

critical Hopf bifurcations on the first ECM. First, we show 0=2¢[P+ 7,c08A)] 74F1Q+ 2w 7nF4
that the decrease of the factor is responsible for the ap- —
pearance of subcritical Hopf bifurcations which, by contrast 1+2pP

to previous report$27], appear for values of the EC length XLmFa— oncosA)] ®1—27codA)

such that the EC frequency is comparable or smaller than the P, 5

RO frequency of the solitary laser, i.e., in the long EC re- X[7a(F1=F2)+20yucodA)Fr—oi],  (3)
gime. These subcritical Hopf bifurcations lead to large inten-

sity, possible chaotic pulsations. Second, we show that these 0228[E+ 7o A) ] (7F2Q— wy) — oy

Hopf bifurcation cascades may induce restabilization mecha-

nisms of the first ECM and lead to ECM bistability. Finally, X[ n3(Fi—F3)+ 2wy 73cog A)Fo— wd],

our bifurcation study complemented by time traces and spec- _

tral analysis allows us to yield some insight into the different 1+2P

physical origins of the reported Hopf-induced instabilities on —sz nFl 7iF2— wncogA)], (4)

the first ECM. The dynamical scenarios which we analyze
here clearly show that, by contrast to what can be concludegihere we define
from previous reportssee, e.g., Ref$31,33—-36), a smalla

factor may also play a destabilizing role in the dynamics of a e=1/T, (5)
laser diode with optical feedback. Our results are therefore
thought to give new insight into the Hopf instabilities of Q=cogA)—sin(A)a, (6)
delayed laser diodes and also to motivate new experimental
studies. Both the subcritical Hopf bifurcations and restabili- F,=coqwyf)—1, 7
zation mechanisms have typical dynamical signatures which
should be easily recognized in experiments. F,=—sin(wy6). @)

The plan of our paper is as follows. In Sec. Il we remind
the reader the Lang-Kobayashi equations and the Hopf bifur- gacause of the time delay in the LK equations, it is hardly
cation problem. Our analysis of Hopf bifurcations in delayedpossible to solve Eqg3) and (4) analytically. Several ana-
lasers with a smalk factor is performed in Sec. Ill. Section lytical estimates of the Hopf bifurcations on ECMs have
IV illustrates the laser instabilities emerging from the Hopf .o suggested but they are valid only in a limited range of
bifurcations shown in Sec. Ill, on the basis of bifurcation |ocar or feedback parametéfs7,39. Our procedure to ana-
djagrgms of the laser intensity. Our conclusions are SUMM&,e the Hopf bifurcations is therefore the following. We
rized in Sec. V. solve numerically the Hopf equatiof3) and(4) and analyze
the solutionsy, and wy as a function of the EC delay time
0. Indeed we are interested in analyzing whether the ob-

Our theoretical analysis is based on the well-known LKtained Hopf bifurcations are limited to the short or to the
equations[11]. In a dimensionless form the LK equations long EC regimes, which depend @h Once the Hopf bifur-
can be written a§38] cation points have been located, we classify these points into

Il. HOPF BIFURCATION PROBLEM
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0.45 ! @l O ©) (long) EC regime corresponds to values of the EC lengths

0.af 0041 e |,| such that9<(>)170.

0l 0.02 sf| ] Hopf bifurcations_ progressively appear on the ECM
: ; ! steady states as we increase the feedbacksyrated as new

03 \01"56 200 i ECM steady states are created. However, we concentrate

i

(=]

oosll- — stable Hopf bifurcation points can be either supercritical or
~_ IR sub_crlt_lcal de_pendlng on the stablllty_ of _the emerging time-

o 50 100 150 200 250 0 50 100 150 200 250 periodic solution. By solid lin¢dotted ling is shown the part

8 6 of the Hopf curve corresponding to supercriti¢slibcritica)

FIG. 1. (a,b Analysis of the Hopf bifurcation curve in the H.opf blfurcatlon points. _By Co,ntraSt’ we call unstablg Hopf
planes @, 7,y) and (8, wy/wgro), respectively. By thick lingdot- blfurcat|on§ the Hopf b|furc_at|ons. that QO not modify the
ted ling is shown the part of the Hopf curve corresponding to ECM stability. These Hopf bifurcation points may appear on
supercritical (subcritica) Hopf bifurcation points. The dashed- antimodes, i.e., saddle-typ@lways unstable ECMs, but
dotted line corresponds to a branch of unstable Hopf bifurcatiofhey may also appear on an ECM that has been previously
points. The inset irfa) shows an enlargement of the Hopf curve, in destabilized. The unstable Hopf bifurcation points are plotted
order to better analyze the new subcritical and supercritical Hopfvith a dashed-dotted line. They are shown for clarity since,
bifurcation points. as plotted in Fig. 1, a branch of supercritical or subcritical

Hopf bifurcation points may convert into a branch of un-
either supercritical or subcritical Hopf points, depending onstable Hopf points.
the stability of the time-periodic solution emerging from  As shown in Fig. 1a), a first set of subcritical Hopf bi-
these Hopf points: sup@ubcritical Hopf bifurcations lead furcation points(dotted ling appears for very small value of
to stable(unstablg time-periodic solutions. The stability of ¢ (5=<#=<40). They appear close to turning points in the
the time-periodic solutions emerging from the Hopf bifurca-S-shaped Hopf curve. These subcritical Hopf bifurcation
tion points has been computed with the use of a recentlyoints, which are typical of the short EC regime and which
developed continuation package for delay-differential equamay also appear for larger values @f have been exten-
tions, DDE-BIFTOOL [37]. This continuation package is inter- sively studied in Ref[27]. Interestingly, our analysis of the
esting in that it allows us to analyze the stability of steadyHopf bifurcation in smalle laser diodes unveils new Hopf
states and time-periodic solutions, and to follow branches obifurcation cascades and instabilities whér T, i.e.,
steady states and time-periodic solutions irrespective of theiglose to the boundary with the long EC regime. First, another
stability. In this sense, the use of continuation methods iget of subcritical Hopf bifurcation points appears for 105
more powerful than a direct integration of the rate equationss 9<165. As shown in the following, these subcritical Hopf
since the direct integration only allows us to track the stablgifurcations have dramatic consequences on the laser output

0251 i 2 \ ] here on the first Hopf bifurcations that appear on the first
& 0zl y | EI % ECM steady state. We distinguish different types of Hopf
N ; ° 4t \ 1 bifurcations. We call stable Hopf bifurcation points the Hopf
0.18F) ! bifurcations that modify the stability of the ECM steady
0] : Al ] state, either stabilizing or destabilizing the ECM. These

attractors. and lead to large intensity pulsations and possibly chaotic
oscillations. Second, new turning points in the Hopf bifurca-

[ll. SUBCRITICAL AND SUPERCRITICAL HOPF tion curve appear for these large valueséofAs we shall
BIFURCATIONS FOR SMALL « analyze in more details in the following, these turning points

in the Hopf curve are indicative of restabilization mecha-
nisms of the first ECM: as we increase the feedback rate
a first Hopf bifurcation destabilizes the first ECM but it may
.restabilize for larger values aof from a second Hopf bifur-

b I diod d has b I Ration. This second, restabilizing Hopf bifurcation, may be
QD Fabry-Perot laser diod¢S0] and has been recently sug- ubcritical, as it is the case fer=162, or supercritical, as it

gested in the context of optical feedback experiments on Q X the case for 198 =<230. A third im :
o ) =230. portant result in our
distributed feedback laser diodg32]. The other parameters Hopf bifurcation analysis is the situation which appears for

are fixed toP=1.155, T=1710, and(}o6=, which are  165<9<190: the feedback rate needed to destabilize the
typical values often used in agreement with optical feedbackirst ECM with a Hopf bifurcation is much larger than for
experimentgsee e.g., Ref.22]). We have checked that our smaller or larger values af. The first ECM therefore exhib-
conclusions are valid in a large range of values of laser angs an increased stability in a rather large regionéofind
feedback parameters providing that théactor is small. The  gestabilizes from a supercritical Hopf bifurcation for larger
Hopf frequency wy, is normalized by the RO frequency yajues of 5. This supercritical Hopf point belongs to a
wro= V2P/T. For the parameters we have considered inbranch of Hopf bifurcation points that were unstable Hopf
Fig. 1, the period of the laser relaxation oscillatiolgo  points(dashed-dotted linefor smaller values of.

=27/wgrg, corresponds toTgo=170. According to the The frequency of the Hopf bifurcation is plotted as a func-
definition of the short and long EC regimg&,7], the short tion of ¢ in Fig. 1(b). For most of the values of, the first

In Figs. Xa) and 1b), we have plotted the solutionsy
andwy of Egs.(3) and(4) as a function of the EC delay time
# and in the case of a small factor (¢=0.5). Such a small
but nonzerax parameter has been measured, for example,
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01 @ 7 01 o) single supercritical Hopf bifurcation point and then remains
0.08 ; 0.08 unstable whatever the further increase of the feedback rate.
L 006 ! L 006 The Hopf bifurcation cascade in which the first ECM resta-
= ool e ! YV bilizes as a result of a subcritical or a supercritical Hopf
el e point is therefore strongly related to a smalffactor.

0.02 ~ 0.02 ~
........ E ol

foo 150 g 200 0 foo 50 o 2 V. LASER INSTABILITIES EMERGING FROM THE HOPF
BIFURCATIONS

0.1 0.1

0.08 @ 0.08 © We have shown in Sec. Ill that a smallfactor may be
0.06 i 0.06 responsible for new bifurcation mechanisms on the first
& W & . ECM. In this section, we shall analyze in more details the
0048~ ' N 0.04 "\»\,\‘_;\,\ e laser instabilities that emerge from these Hopf bifurcations.

0.02 N T 0.02 S We shall plot the intensity=|Y|? of the first ECM steady

%0 o 20 250 % 0 200 280 states and_thelr Hopf bifurcatiofisymbol §>) as they appear

0 6 when we increase the feedback raje i.e., a bifurcation

diagram for the steady state ECMs. These bifurcation dia-
grams have been computed with the recently developed con-
tinuation method for delay-differential equationspe-
BIFTOOL [37], since we are interested in a global picture of
the instabilities on the first ECMs, including both stable and
Hopf bifurcation on the first ECM exhibits a frequency close unstable attractors. By solidashedlline is shown the stable
to the RO frequency. However, for 18%=190, the first (unstabl¢ part of each branch. Hopf bifurcation points are
ECM destabilizes with a supercritical Hopf bifurcation shown with ¢, and the bold¢ indicate the Hopf bifurca-
which, interestingly, exhibits a frequency much larger thantion points that modify the stability of the first ECM. Hopf
the RO frequency. In the previous reports on the dynamics ofoints with bold¢® belong in fact to the solid or dotted lines
delayed laser diodes with short £E6-10,23, the first Hopf  in Fig. 1(a). Each bifurcation diagram of the steady state
bifurcation always occurs with a frequency corresponding teeCMs will be complemented by another figure, in which we
the RO frequency and only the Hopf bifurcations that occurplot the branches of time-periodic solutions emerging from
for larger feedback ratg exhibit a larger frequency, close to the Hopf bifurcation points. The stability of these time-
the EC frequency. Our analysis shows that, while for most operiodic solutions has been computed from an analysis of the
the values off the first Hopf bifurcation exhibits indeed the Floquet multipliers, numerically obtained with the package
RO frequency, there might be @mal) range of ¢ where  ppe-BIFTOOL The stablgunstable parts of the branches of
there is no Hopf bifurcation at the RO frequency but onlytime-periodic solutions are shown in solidashedl lines.
Hopf bifurcations with much higher frequencies. The time-periodic solutions may destabilize either from a
Our Hopf bifurcation analysis has unveiled instabilities ontorus bifurcation'symbol *), from a limit point(symbold),
the first ECM in the case of a smadl factor: (1) a large  or from a period doubling bifurcatiotsymbol A). Different
region of subcritical Hopf bifurcations close to the boundarySecs. IV A—IV D correspond to increasing values of the de-
with the long EC regime and2) the possibility of three |ay time ¢, for which the laser dynamics is qualitatively
consecutive Hopf bifurcations on the same, first ECM. Indifferent.
order to confirm that these instabilities are strongly related to  The instabilities emerging from Hopf bifurcations in the
the small value of ther factor we have analyzed the Hopf case of a very short EC have been largely discussed in an-
bifurcation curve as in Fig. (&) but for larger values ofr;  other recent publicatiofi27]. We are interested here in the
see Fig. 2. Thex factor is varied frome=1 (a) to «=4 (d), new set of subcritical and supercritical Hopf bifurcation
all the other parameters remaining equal to those of Fig. 1. lpoints, unveiled in Fig. 1, which appear wheris small and
we compare Figs.(@)—2(d) with Fig. 1(a), we can conclude for values of¢ close to the boundary with the long EC re-
that the increase ofr has dramatic consequences on thegime (§=Tgo=170).
Hopf bifurcations. First, the sequence of two consecutive
subcritical Hopf bifurcation points, which was observed
close to#=162 in Fig. 1, is not present anymore when
increases. Still we find subcritical Hopf bifurcation points
but in a range off that progressively decreases as we in- As shown in Fig. 18), when 105 #=< 165 the first ECM
creasea, which indicates that these subcritical Hopf bifur- destabilizes from a subcritical Hopf bifurcation point. Fig-
cations emerge as a consequence of a small valae 8ec- ures 3a) and 3b) illustrate the ECM stability whend
ond, the sequence of three consecutive supercritical Hop£160. As we increase the feedback ragefrom zero, the
bifurcations, which was shown in Fig.(d for 190<¢ first ECM destabilizes from a subcritical Hopf bifurcation
=230, disappears when increases abovee=1. As we point and remains unstable if we further increageFrom
increase thex factor the laser dynamics is mostly character-the subcritical Hopf bifurcation point emerges an unstable
ized by a situation in which the first ECM destabilizes with abranch of time-periodic solution. The branch of time-

FIG. 2. Analysis of the Hopf bifurcation curve in the plang (
ny) for different values ofa: (a) a=1, (b) a=2, (c) =3, and
(d) a=4. The other parameters are the same as in Fig. 1.

A. Subcritical Hopf bifurcation, bistability and large intensity
oscillations
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FIG. 3. (a) Bifurcation diagram of the intensity for the first 0 SO0 —————— o/ 0.05
branches of ECMs as a function of the feedback ratdor 6 @ 0.05 @ 0.05
=160. The other parameters are the same as in Fig. 1. The Hopj 4
bifurcation points are shown witk> , and the points indicated with 2 0 ) o
bold ¢ represent the Hopf points corresponding to a change ofo 005 . 005
stability of the first ECM. In(b) are shown some branches of time- ° Time (ns) 5 (SO) 2(3 46) SQ 86 0 Time (n 5 (° “ 49 SQ Se
periodic solutions emerging from the Hopf bifurcations. The He)-ls-0)+42, ime (ns) - ¢(s)-0(s-0)+2,

branches of time-periodic solutions are shown in sdtidshed
lines when they are stablenstabl¢. They destabilize either from a
torus bifurcation(*), a limit point (O), or a period doubling bifur-
cation (A).

FIG. 4. Large intensity oscillations emerging from a subcritical
Hopf bifurcation in delayed laser diode with smallfactor. We plot
the time traces of the intensityand the system trajectory in the
phase plané®(s) — ¢(s— 0) +Qy6, Z) for increasing values of:
periodic solution grows in amplitude as we decregsand  (@1,22 #=0.00400, (b1,0b2 »=0.00500, (c1,c2 »=0.00602,
coexists with the steady state branch of the first ECM. A(d1,d2 #=0.00640, (el,e2 »=0.007 20, (f1,f2) 7=0.007 90,
bistability between a time-periodic solution and the steady91:92 7=0.00830, andhl,h2 7=0.01000. The values of the
state ECM is therefore observed. as a result of a subcriticaﬂther parameters are the same as in Fig. 3. The circles indicate the
Hopf bifurcation. The branch of time-periodic solution stabi- =M sSteady states.
lizes for small values o# through a limit point (J) and the
stable branch of time-periodic solutions destabilizes forclose to the RO frequency. This situation is plottedbid),
larger values ofy through a torus bifurcatiof¥). The sub- (b2) for »=0.00500. As shown in Fig. (B), the time-
critical Hopf bifurcation has therefore a dramatic conse-periodic solution emerging from the subcritical Hopf bifur-
quence on the laser output. If we increase the feedback ratation destabilizes for larger values gfwith a torus bifur-
7 from zero, we observe first a steady output power andtation. Figures &1) and 4c2) show that forp=0.006 02 a
then, suddenly, a very large intensity oscillation with a maxi-small modulation appears on the intensity pulses and the
mum of the order of six to seven times the output power ofphase space trajectory exhibits a “noisy” attractory that re-
the laser without optical feedback. Moreover, the torus bifursults from the combination of the fast pulsating behavior
cation indicates that the laser output may exhibit quasiperiwith a slower envelope modulation. For still larggr the
odic and possibly chaotic oscillations for slightly larger val- modulation depth has increased and the laser system exhibits
ues of 7. a typical quasiperiodic oscillation with a slow modulation of

We have analyzed in more details the laser dynamic$ast intensity pulses; se@ll), (d2) for »=0.006 40. As we
emerging from the subcritical Hopf bifurcation point. In Fig. increasern the window of quasiperiodic oscillations is inter-
4 we plot the time trace dftogether with the system trajec- spersed with windows of time-periodic oscillations, as
tory in the plane(¢(s) — ¢(s— 0) + Q4 6, Z), for several in-  shown in(el), (e2) for »=0.007 20. The laser system exhib-
creasing values of the feedback rate ¢(s) is the phase of its a time-periodic pulsating behavior with a period much
the field Y(s)=|Y|exdi#(s)—iQy0]. The function ¢(s) larger than the fundamental period (bl), (b2). The limit
— ¢(s— 0)+ Q.0 is interesting in that its steady state solu- cycle attractor in the phase space projectief) closes on
tion corresponds to the ECM frequency. The continuatioritself after a large number of turns. Faer=0.007 90, (f1),
packagepDE-BIFTOOL only allows us to compute the steady (f2), the time-periodic solution may bifurcate to a chaoticlike
state and time-periodic solutions. We have therefore compledynamics, in which the intensity exhibits irregular bursts of
mented the continuation study with a direct numerical intefast intensity pulseé¢f1l). The system trajectory is very com-
gration of the LK equations, in order to track also the period-plex in the phase plan&2) and encircles the first ECM
doubling, quasiperiodic and possibly chaotic solutions. Foisteady state. For largey, the windows of chaoticlike inten-
7=0.00400,(al), (a2, the laser exhibits a steady state so-sity oscillations are interspersed with windows of time-
lution corresponding to the first ECM. As we increase theperiodic oscillations, as shown ingl), (g2 for 7
feedback ratey, the first ECM undergoes a subcritical Hopf =0.00830. Similar to the casésl), (e2), the laser exhibits a
bifurcation and, as shown in Fig(l8, the laser then jumps time-periodic behavior with irregular bursts of fast intensity
to a large limit cycle attractor, which corresponds to thepulses. The period is however larger than(@l), (e2 and
emission of sharp, large intensity pulses with a frequencyhe system trajectory now encircles the first ECM and makes
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(@) (b)

o] 0.02 0.04 006 0 0.02 0.04 0.06

FIG. 5. Same as in Fig. 3 but f&=162. FIG. 6. Same as in Fig. 3 but f&r=175.

several loops before closing on itself. As we incregskir-
ther the laser system again locks to a steady-state solution, tig1e-periodic solution emerging from the second subcritical
shown in(h1), (h2) for =0.01000, but corresponding to Hopf bifurcation point on the first ECM connects to an anti-
the second ECM. As shown ith2), a new pair of ECMs mode at much larger values af [out of the range ofy in
(mode-antimodehas been created and the system locks td=ig. 5(b)] and it never stabilizes. Finally, the branch of time-
the mode with the maximum gaitthe smallerZ). periodic solution emerging from the third supercritical Hopf
The Hopf bifurcation points appearing for larger values ofbifurcation on the first ECM destabilizes as we increase
7 on the first branch of ECM in Fig. 3 are unstable since thethrough a torus bifurcation and restabilizes for larger values
first ECM is already unstable. The branches of time-periodi®f » through an inverse period-doubling bifurcatiGymbol
solutions emerging from these Hopf points are therefore alsd\). It then connects a supercritical Hopf bifurcation on the
unstable but they may eventually stabilize as we increase th@ode branch of a next ECM.
bifurcation parameter, as shown in Fig(bB close to 7 If we compare Fig. 5 with Fig. 3, we see that the different
=0.035: a branch of time-periodic solution connects an uncascade of Hopf bifurcations has modified the topology of
stable Hopf point on the first ECM to a supercritical Hopf the bifurcation diagram and has important consequences on
point on the upper branch of the next ECM, i.e., on the modéhe laser dynamics. First, the first ECM can now be restabi-
branch of the next ECM. The laser dynamics emerging fronlized with an inversedsubcritica) Hopf bifurcation. This re-
such an ECM bridge is very different from the one emergingstabilization mechanism therefore leads to a bistability be-
from the subcritical Hopf bifurcation on the first ECM, as tween this now restabilized first ECM and a second ECM

will be discussed in more details in Sec. IV D. which has appeared stable for smaller valueg o$ee Fig. 5
for 0.022< 6=<0.035. Depending on the initial conditions or
B. Re-stabilization of the first ECM with a subcritical Hopf under presence of noise, the system can therefore exhibit
bifurcation either one steady state or the other one, i.e., either the ECM

. i - with the maximum gair(higher intensity or the now resta-

If 0 is close t0#=162, the first ECM may exhibit & i 0q first ECM with a smaller intensity. Second, the
sequence of two consecutive subcritical Hopf bifurcationy, o op, of time-periodic solution shown for larger valuerof
]E)omts, f"?‘s shO\t/)vn_l_n IIZIEI (a?.b'.l;he f'r.St iCM destab|l|zets). (which connects the first ECM to a next EGMow exhibits
rom a Irst, subcritical Hopf bifurcation but it may restabl- 15 stable parts close to the two supercritical Hopf bifurca-
lize for larger values ofyy from a second subcritical HOPT g it connects. As shown in Fig. 2, the small value of the

bifurcation point. : . . . .
O - fact ble for th de of Hopf bifurcat
This situation is illustrated fop=162 in Figs. %a) and IC:] :(I:a(;relrsdrigzzovr\]/istlh gpt(i)(:al ;gecfsgske O Ropt bifurcations
! .

5(b). Let us first analyze the bifurcation cascade on the firs
ECM. As we increasey from zero, the first ECM destabi-
lizes from a subcritical Hopf bifurcation as in the cage
=160 but by contrast to this previous case, the first ECM
now restabilizes from a second subcritical Hopf bifurcation For =165, the first Hopf bifurcation which destabilizes
for a larger feedback ratg. A third supercritical Hopf bifur-  the first ECM is now supercritical, as shown in Figajl
cation point appears for larger values gfand definitely Different situations are however possible depending on the
destabilizes the first ECM steady state. This sequence ofalues of §. We first illustrate the bifurcation on the first
three Hopf bifurcations illustrated in Fig(& emerges from ECMs whend=175; see Figs. @) and @b).

the turning point of the Hopf bifurcation curve when ana- The first ECM is now stable in a large range of feedback
lyzed in the plane 4, 6); see Fig. 1a). The branch of time- ratesy but destabilizes from a supercritical Hopf point when
periodic solution emerging from the first subcritical Hopf #=0.03. Interestingly, as shown in Fig(hl, the frequency
bifurcation point is very similar to that of the cage=160. It ~ of this Hopf bifurcation is much larger than the RO and is
connects the first subcritical Hopf bifurcation point on thevery close to 14. The Hopf bifurcation with a frequency
first ECM branch to an unstable Hopf bifurcation located onclose to the RO frequency, which was the first Hopf bifurca-
the antimode branch of the second ECM. The branch ofion to destabilize the first ECM in the previous cases of

C. High-frequency supercritical Hopf bifurcation on the first
ECM

046209-6



HOPF BIFURCATION CASCADE IN SMALL« LASER DIODES. .. PRYSICAL REVIEW E 69, 046209 (2004

3 : : : ;
(@
2f |
IVAVAVAVAVAWA
0 . . . .
0 0.2 0.4 0.6 0.8 1
- 3 .
g oL ® ]
| VAVAVAVAVAVAVAVAV
08 % 02 0.4 0.6 0.8 1
" *" Time (ns) .
0.8 6 8
0 0.02 0.04 0.06 0 0.02 0.04 0.06 £ (c) (d)
n n
% 4 6 two mode
FIG. 7. Same as in Fig. 3 but far=195. a ~ beating
n RO 4
Secs. IVA and IV B, has now disappeared and has been re %2 5
placed by a Hopf bifurcation at larger value pfand with a o

higher frequency. It therefore gives a large range of stability %% 0 5 o 5 10 5% = o s 20
to the first ECM. As shown in Fig.(6), the branch of time- Frequency (GHz) Frequency (GHz)
periodic solution emerging from the supercritical Hopf bifur- _ _ ) _
cation destabilizes through a torus bifurcation but becomes FIG. 8. Time trace of the laser intensity and corresponding op-
stable for larger feedback rates through an inverse periodical spectrum for the parameters of Fig. 7 and witho 7
doubling bifurcation. It then connects a supercritical Hopf ~0-005 and(b,d #=0.025. In(a,0 is shown a time-periodic in-
bifurcation on the mode branch of the next ECM. The brancH€nsity dynamics with a frequency close to the RO frequency. It
of time-periodic solution shown in Fig () is therefore very emerges from the destabilization of the first ECM for small value of
similar to the branch in Fig. (6) WhiCh. appears close tg 7 and is observed for a value of along the completely stable
—0.035. but the first b .h f 1 iodi Iuti branch of time-periodic dynamics that connects the first ECM to
—9.0s9, bu e nrs ranc_ 0 . |me-pe_r|o Ic solu 'on_ap'itself. In (b,d) is shown a time-periodic intensity dynamics with a
pearing for small values of; in Fig. 5b) is not present in

) . . . frequency larger the RO frequency. It emerges from the destabili-
Fig. 6(b), as a result of the increased stability for the first, ion of the first ECM for a larger value of than in(a) and is

ECM. observed for a value of along a bridge of time-periodic solutions
that connect the first stable ECM to a second mdable ECM.
D. Restabilization of the first ECM with a supercritical Hopf

bifurcation . I -
stable limit cycle oscillation restabilizes for larger values of

When 196s 9= 230, the first ECM exhibits a sequence of 7 through an inverse period-doubling bifurcation. The inten-
three supercritical Hopf bifurcation points as we increase thgity dynamics along this branch of time-periodic solutions is
feedback raten, as shown in Fig. (B). This situation is illustrated in Fig. 8b) for =0.025. By contrast to the time-
illustrated for§=195 in Figs. 7a) and qb). periodic oscillations that appear for a smaller value;aind

As we increasen from zero, the first ECM destabilizes shown in Fig. &a), the frequency of the intensity oscillations
from a supercritical Hopf bifurcation, then restabilizes fromis not related to the RO frequency and is about twice the RO
a second supercritical Hopf bifurcation, and for larger valuesrequency.
of 7 the first ECM destabilizes from a third supercritical ~ The physical origin of the harmonic intensity oscillations
Hopf bifurcation. The branches of time-periodic solutionsshown in Figs. 89 and 8b) is very different, as illustrated
plotted in Fig. Tb) show that, interestingly, a completely by the corresponding optical spectra in Figéc)8and &d).
stable branch of time-periodic solution connects the firstThe optical spectrum shown {8) corresponds to the dynam-
ECM to itself for small values ofp. As we increase the ics plotted in(a) and which appears from the completely
feedback rate from zero, the laser intensity exhibits first astable branch of time-periodic dynamics that connects the
steady state solution, then a small modulation of intensityfirst ECM to itself. A dominant peak appears at the frequency
appears for increasing, and the modulation depth increases of the first ECM and side peaks are separated from the domi-
progressively as we increasguntil it reaches a maximum nant peak by a frequency span corresponding approximately
and then decreases again for larger The laser intensity to the RO frequency. Harmonics of the side peaks are also
then reaches its previous steady state once again. The frpresent in the optical spectrum. The time-periodic dynamics
qguency of the laser intensity modulation is close to the RGshown in(a) therefore emerges from the destabilization of
frequency, in agreement with the Hopf frequency we com-+he first ECM through a Hopf bifurcation, which results in an
puted in Fig. 1b). A typical time trace corresponding to this undamping of the relaxation oscillations. Its physical origin
time-periodic dynamics is shown in Fig.(8. Another does not involve the other ECMs that appear for larger feed-
branch of time-periodic dynamics is shown in Figb)7ffor  back raten. By contrast, the optical spectrum {d), which
larger 5. This branch emerges from the third Hopf bifurca- corresponds to the time-periodic dynamics showrbin ex-
tion and since the Hopf is supercritical, the branch is stablédibits only two peaks which are located at the frequencies of
as soon it is created. However it destabilizes through @awo ECMs. This suggests that the time-periodic dynamics
period-doubling bifurcation for larger values @t The un-  shown in(b) physically corresponds to a beating between
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0.06 @ 0.02 ©) -0.005 © tion. The differences between these three dy_namics are also
004 very clear when we analyze the phase trajectory, for ex-
0.01 -0.01 ample, in the planel(Z); see Fig. 9. The first case corre-
0.02 sponds to the dynamidbl) in Fig. 4: the dynamics exhibits
0 -0.015 a large excursion of intensities during each pulse and the
N0 N N trajectory is therefore strongly asymetric in the plaheZ).
_0.02 -0.02 This phase space trajectory is typical of the emission of large
-0.01 intensity pulses. In casé), which corresponds to the dy-
-0.04; s — PR — namics(a) in Fig. 8, the trajectory is now very close to a

[ [ [ symmetric one, hence confirming that the intensity dynamics
exhibits harmonic oscillations with well-distributed intensity
excursions in the duration of an oscillation. Finally, cése
which corresponds to the mode beatity shown in Fig. 8,
exhibits the most symmetric limit cycle trajectory with

two ECMs. The two beating ECMs correspond to the two-Strongly harmonic intensity oscillations.
frequency peaks in the optical spectrum. The frequency dif-

ference between these two ECMs being much larger than the V. CONCLUSION
RO frequency, this explains the faster intensity oscillations in
Fig. 8(b) with respect to that in Fig.(&). The time-periodic
dynamics shown in Fig. (8) belongs to what is called a
Hopf bifurcation bridge: as shown in Fig(ly, a bridge of
time-periodic solutions indeed connects two EC[{24]. The
typical case of Hopf bifurcation bridge connects a mod

(stable ECM to an antimoddsaddle-type ECM[6,7,24,28. o i . i ) -
It is worth noting that in our case the two beating ECMs areMay exhibit subcritical Hopf bifurcations which are associ

not a mode and an antimode but two stable EGMsdes. ated with strongly pulsating, .Iarge mten_sﬂy, laser outputs.
. . Moreover, the first ECM, which destabilizes from a Hopf
We have recently performed an important analysis of the_. . . .
) . ' ifurcation as we increase the feedback rafemay restabi-
bridges between ECMs in the short EC regime and found o " AR
i ; ize with either a subcritical or a supercritical inverse Hopf
that bridges between two modes are indeed favored by

small @ factor[10]. Interestingly, our bifurcation analysis in ifurcation for larger values ofy, hence leading to ECM
L a ' Sungly, Y bistability. These restabilization mechanisms and the sub-
this paper shows that bridges between modes may also

ap- ) . . . )

. ; A ritical Hopf bifurcations on the first ECM progressively dis-

Eecz:arrf;’(il;i]rif Is close to the RO periotiro, i.€., in the long appear when the factor increases abowe~ 1. Our results
The time traces shown in Fig.(atl) and Figs. &) and therefore show, to our knowledge, for the first time that the

8(b) are three examples of time-periodic dynamics in thedecrease of the factor may also play a destabilizing role in

laser system with small value of, which are of physically the dynamics of a laser diode subject to optical feedback.

and mathematically different origins. The dynamics shown inOur results are thought to yield new insights into the theo-

. o , . retical aspects of the Hopf bifurcation on ECMs and moti-
Fig. 4(b1) emerges from a subcritical Hopf bifurcation on the vate new experimental studies of smalllaser diodes sub-
first ECM, while the dynamics shown in Figs(@8 and 8b) iact t i FI)f dback
emerge a supercritical Hopf bifurcation on the first Ecv,16¢t to opticat feedback.

While they both emerge from a supercritical Hopf bifurca-
tion, the dynamicga) in Fig. 8 is also very different from
that shown in(b), since as we have demonstrated one dy- The authors acknowledge support from the Fonds Na-
namics emerges from a Hopf destabilization of a singletional de la Recherche Scientifiq(leNRS, Belgium and the
ECM, while the second dynamics emerges from a beatingnter-University Attraction PolglAP) program of the Bel-
between two ECMs that are destabilized by a Hopf bifurcagian federal government.

FIG. 9. Trajectory of the laser system in the plaheZ), for the
limit cycle oscillation shown in Fig. @1), Fig. 8a), and Fig. &b),
respectively.

In summary, we have shown that a smalfactor may be
responsible for various Hopf bifurcation instabilities in laser
diodes subject to optical feedback and modeled by the LK
equations. For values of the EC delay tirieclose to the

eperiod of the laser relaxation oscillatiofise., at the bound-
ary between the short and the long EC regimése laser
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