PHYSICAL REVIEW E 69, 046109(2004

Rate description of Fokker-Planck processes with time-dependent parameters
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The reduction of a continuous Markov process with multiple metastable states to a discrete rate process is
investigated in the presence of slow time-dependent parameters such as periodic external forces or slowly
fluctuating barrier heights. A quantitative criterion is provided under which condition a kinetic description with
time-dependent frozen rates applies and nonadiabatic corrections to the frozen rates are obtained. Finally it is
shown how the long-time behavior of the underlying continuous process can be retrieved from the knowledge
of the discrete process by means of an appropriate random decoration of the discrete states. As a particular
example of the presented theory an overdamped bistable Brownian oscillator with periodic driving is
discussed.
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[. INTRODUCTION tween metastable statg8]. The relaxation toward these
states constitutes the fast part of the dynamics. Additionally,
cal feature of physical, chemical, and biological processes. If°Me of the iystem S é)aramet%rsb may Iundgr%o Slc}‘l’v varia-
practically all cases the parameters characterizing a partictﬁ!—ons In time that may be caused by a slow drift, or fluctua-
lar system are only constant on a limited time scale. Orfions Of the parameters, or by an external driving of the sys-

longer time scales they may change their values because tHgMm- The dynamigsthr:‘ the considered dsyiterr& then hﬁﬁ two
surrounding environment slowly changes its state. We jusfho‘.’v components: The transitions and the driving. About
eir relation we do not make further assumptions: The slow

note that even the most fundamental “constants” of naturé . X
intrinsic dynamics can be faster or slower than the external

such as, e.g., the .fint_a structure constant possibly undergogs}iving that must only be slow compared to the fast dynam-
very slow change in timgl]. On the other hand, most natu- ics of the system. In Refl4] we have called this type of

ral processes also display very fast changes which usu""”é/ituation the semiadiabatic limit, in contrast to the adiabatic

will be disregarded in a phenomenological description. Theyimit in which the driving is slow compared to the total in-
only will show up in a more detailed description in which the yinsic dynamics including that of the transitions. Clearly, the
effective degrees of freedom of the phenomenological modelgiapatic limit is contained in the semiadiabatic limit as a
are represented as functions of microscopic degrees of fregpecial case.
dom. The time evolution of these microscopic degrees of = Stochastic resonance is just one example for which the
freedom typically takes place on much faster time scales thagemiadiabatic limit is of relevance when the period of the
those of the macroscopic observables whereas, as alreagignal is large[5,6]. Ratchets, or Brownian motors, provide
mentioned, global aspects of the environment may underganother class of systems which also operate in the semiadia-
temporal variations that are much slower than the dynamicbatic regimg7]. Atomic force microscopes and optical twee-
of the considered macroscopic system. zers often act on time scales that are slow compared to the
It is this separation of time scales that allows one to devibrational and other intrinsic time scales of the molecules
scribe a system in terms of a comparatively simple modethat are manipulated by thef8]. The present investigation is
that is closed in the sense that only a few macroscopic obeomplementary to previous works that are restricted to peri-
servables are subject to the dynamics. The key technical nadic driving with an intermediate regime of external driving
tion here is that of @onstrained equilibriunthat is reached frequencies and are valid in the limit of weak no[§g.
by the fast part of a system before the slow constituents This paper contains three main results.
change their values on their time scale. So, on the slow time (i) The quantitative derivation of the kinetic description
scale, the fast constituents immediately adapt the respectivaf a continuous process with time-dependent parameters in
constrained equilibrium values governed by the slow ones.terms of a master equation with time-dependent rates.
This approach has been applied in many branches of (ii) A quantitative criterion for the validity of so-called
physics and other sciences and is vital for various methodadiabatic or frozen rates in this approach.
such as adiabatic elimination, averaging, synergetics, subdy- (iii) The full statistical information of the considered con-
namics, chemical kinetics, and hierarchical computationatinuous process on large time scales.
schemeq?2]. In the present paper we consider Markovian The paper is organized as follows. In Sec. Il the reduction
processes the dynamics of which can be subdivided into af a Fokker-Planck process with multiple metastable states to
fast and a slow component. In particular, we have in minda master equation is reviewed as it was developed in Refs.
the case where the slow motion is caused by transitions bg10,11]. This method is generalized to processes with slowly

The separation of time scales is a frequently met dynami
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time-dependent parameters in Sec. lll. The time rate of
change of the probability now consists of two contributions.
One is given by the rate as it would result if the parameters
of the process were frozen and the other contribution mainly
takes into account the changes of the geometry of the do-
mains of attraction of the metastable states. This geometric
contribution is proportional to the time rate of change of the
parameters and therefore is negligible compared to the frozen
rates if the time-dependent parameters change sufficiently
slowly. In contrast to previous investigatiof$2], we find

that the fastest time dependence of the parameters for which
one may neglect the geometric contributions is not only de-
termined by the deterministic time scales of the process but

in general also depends on the strength of the noise. The way Iy e D 'l' Ds—
how the noise here enters depends on the particular process. Z » | ¢ | > | <
In Sec. IV we assume the validity of the master equation o 1 2 3

with frozen rates and determine a time-dependent decoration
of the discrete states such that the dynamics of the continu- F|G. 1. The overdamped deterministic motik(t) = -V’ (x(t)) in

ous variables of the underlying Fokker-Planck process arghe above shown potential induces a partitioning of the state space
recovered on the long-time scale. The archetypical examplg=R; into the domains of attractio, of the three attractors

for stochastic resonance namely that of a periodically=1,2,3 at thepotential minima. Here the locations of the local
damped bistable Brownian oscillator is discussed in Sec. \potential maxima determine the boundaries between the domains of
and the validity of the McNamara-Wiesenfeld model of sto-attraction.

chastic resonancfl3] is discussed. The paper ends with a

summary in Sec. VI. P

L= 2 Ki(x) .

IX; (9X]

o T2 D) (4)
Il. MULTISTABLE SYSTEMS AT SMALL NOISE b

) ) ) _ The tilde denotes the operation of time reversal, .,
In thls section we review the reduction of a Fokker—PIanck: ex with parity €=+ 1 andp, is the multiplication operator
equation describing ame—homogeneouprocgss with mul- with the probability density, i.e.pof(x)=po(X)f(x) Where
tiple metastable states to a master equation that gives tt}?x) is an arbitrary state space function
dynamics on the time scales of the transitions between the '

tastable states. For thi id d . In the deterministic limit the diffusion matrix goes to zero
metastable states. For this purpose we consicer a ynam|c§l]d the drift vector approaches the deterministic vector field

system under the influence of weak random forces and as; (g . P . .
. ; X verning th terministic motion of th tem:
sume that these forces can be modeled by Gaussian white (x) governing the dete stic motion ot the syste

noise. Then the stochastic dynamics is described by a x(t) = KOx(t). (5)
Fokker-Planck equatiofiL4]:
In the presence of weak random perturbati&riz) may dif-

J fer from K%(x) by small noise induced contributions.
Ep(x't) =Lp(x.0), @) We here are interested in cases where the deterministic
system(5) has a numbem of coexisting attractors labeled by
whereL denotes the Fokker-Planck operator: a. To each attractotrr there belongs a domain of attraction
D,. The domains are disjoint and partition the total available
J P state space, see Fig. 1 for an example:
L=-2 KX+ D;;(x). 2)
i IX ij 9% X% D,ND,=@ fora+a, (6)
Here,x=(xq,Xy, ... ,X,) denotes a point with coordinatgsin m
the n-dimensional state spa& further,K (x)=(K;(x)) is the UubD,=2. (7)
drift vector andD(x) =(D; ;(x)) the diffusion matrix resulting a=1

from the random forces. We further restrict ourselves to SySgor weak noise the stationary probability density is almost
tems with a uniquely defined stationary probability densityero everywhere except close to the attractors. If the noise
po(x) with respect to which detailed balance holds. Conseyanishes the stationary density shrinks to Digfunctions
quently, the Fokker-Planck operator satisfies the relatioritting at the attractors of the deterministic system. Because
[14] no transitions between the different attractors may occur in

the noiseless case, each of theunctions is a stationary

Lpo = poL*, (3)  solution of the Fokker-Planck equatior®sK (x)po(x)/ ax;

=0 belonging to amm-fold degenerate eigenvalue 0 of the

whereL* is the backward or adjoint Fokker-Planck operator:corresponding Fokker-Planck operator.
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The degeneracy also follows from the backward equation m
which is governed by the adjoint Fokker-Planck operatbr p(x,t) = > C, () xa(X)po(X). (10
defined in Eq.(4). In the deterministic case the diffusion a=1
matrix vanishes, so the second derivatives disappear and pq already noted the characteristic functiongx) and,

the stationary solu_tions .Of the backward_o_pe_rator are CoMparefore also their time reversed partngrgx), are well
stant along the trajectories of the deterministic system. Ber !

cause within a single domain of attraction all tra’ectorieslocalized functions as long as the noise does not become too
9 ; a large. As a consequence, one may use the funcjgts in

approach the same attractor the stationary solutions of the der to determine the probability,(t) that the system re-

noiseless backward equation are constant on the domain of P “« Y

attractionD,. One then can choose the characteristic func-Sldes in the domain of attraction of the attractof11]:

. (0) . . .
tlons.)(a (x) of the dgmams of attrggthn as mdependent' Pu(0) = Grasp(t)), (11)
solutions of the stationary deterministic backward equation
EinO)(x)aX((’)(x)/axi:O: where the scalar product is defined as the integral of the
product of its arguments over the state space:
(0) 1 forxeD,
Xo (X) = | (8)
0 else. (f.9 = j d™xf(x)g(x). (12)
)

In the presence of weak noise these functions can be modi-

fied slightly such that they still solve the stationary backwardIf we assume that the probability densiist) is of the form
equation up to corrections that are exponentially small in th€10) we obtain

noise strength: The steplike discontinuities then are smeared

out on layers located at the boundaries of the domains of p.(t) =c,(Hn,, (13
attractionD,. The functions can be constructed by means of

the method of matched asymptotic expansifi®, see also Where we have made use of the localization of the character-
Refs.[10,11]. Outside the boundary layers no modification is istic functions at weak noise:

required and hence they retain their property of localizing the _

different domains of attraction. In the following, these local- (X Xa'PO) = O N (14)

izing functions will be denoted bw,(x). We summarize ) ] | -
their main properties: They solte x,(x)=0 up to exponen- and have introduced the function,=/d™x(X)Xa(X)po(X)
tially small corrections in the noise strength, have the values™/d™Xa(X)po(x) giving the population of the metastable

one within and zero outsid®,, and interpolate between Statéa in the equilibrium distributiorpg(x).
these values smoothly on a thin boundary laj,17). As The time evolution of the probabilitigs,(t) now follows
solutions of these particular boundary value problems, thérom the projection of the Fokker-Planck equatid onto
functions y,(x) are thesplitting probabilitiesthat give the the slow subspace, i.e., we assume the probability density to
relative frequencies with which a trajectory startingedtrst ~ take the form(10) and determine the scalar product with
reaches the attractar before it visits any other attractor X«(X) on both sides of the Fokker-Planck equation. This
[18]. yields

The splitting probabilities in general are not eigenfunc- _
tions of the backward operator. However, they span the sub- d _ (Xa:LXaP0)
space of eigenfunctions that emerges from the eigenspace of d_tpa(t) = E ——puV). (15
the m-fold degenerate eigenvalue 0 of the deterministic dy- “

namics if weak noise perturbs the system and lifts the degeny,qer the sum on the right-hand side we expressed the co-

eracy. The resulting_ fini_te eigenvalues are still small com—¢icients ¢ () by means of Eq(13) in terms of the prob-
pared to all other finite eigenvalues of the backward operator, . iicc D :”(t) leading to the equilibrium weights,, in the

Hence, this subspace describes the slow dynamics of the sy anominator of the respective coefficient. ko# o' the co-

tem at weak noise. In particular, it contains the constant .. . ~ o . .
function which is the exact eigenfunction of the backward fficient (xa,Lxapo)/N, coincides with the Rayleigh
guotient expressions for the rate froai to « [17]. The

equation belonging to the eigenvalue 0. At weak noise this . ) . .
eigenfunction can be represented as the sum over the ch integral is dominated by a neighborhood of the saddle point

acteristic functions,(x): Fhat connects the domains of attractiéh, and D, [19].
an Within this neighborhood, for small noise, the localizing
function y,(x) can be approximated by the characteristic
2 xa¥) =1, © function of D,, x2(x) [20]. The resulting coefficient then
¢ coincides with the better known flux-over-population expres-
Because of detailed balance, the slow subspace of theion for the respective raf@]. In particular, one can show
forward operator is spanned by the basis §gl(X)po(x)},  that for sufficienty weak noise the expression
where'y,(X)=x,(X) denotes the image of,(x) under time  (x,,Lx.po)/Nn, is positive fora# a’'. From Eq.(9) it fol-
reversal. Hence, the probability density describing the slowows that the sum of the coefficients ovewanishes. Hence,
dynamics can be represented as Eq. (15) has the proper form of a master equation:

o'
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d reach an equilibrium distribution relative to which the sys-
apa(t)= 2 TaaPar®= 2 Twaba®, (160 tem obeys detailed balance:

o #a o #a

where L(t)po(t) = po(HL* (1), (19

( mLNQ’ )
= % (17)

aa where, as in the time-independent case of the preceding sec-
tion, the tilde denotes time reversal apglt) is the multipli-
is the transition probability per unit time from’ to a. cation operator with the equilibrium distributigr(x,t) that

The regime of validity of this approximation, of course, would be attained if the parameter values were frozen at the
depends on the particular system and the degree of accuragyiues that they assume at tirhe
one would like to achieve. By its very nature this master
equation is only appropriate for the long-time dynamics of
the Fokker-Planck equation and therefore requires a clear L(t)po(x,t) = 0. (20)
separation of time scales dividing the process into fast relax- For vanishing noise the system will move toward the
ations within the domains of attraction and slow transitionsnearest attractor as defined by the momentary values of the
between the attractors. We note that various definitions Obarameters_ During this relaxation time, the parameters of
transition rates exist which are different from a phySicalthe System are Supposed to Change by such a small amount
pOint of view but which still yleld the same result if a master that they can be considered as kept constant. On|y when the
equation provides a correct description of the long-time dysystem has reached the attractor and stays there for a much
namics. It turns out that the actual differences between thesgnger time, the change of parameters will become notice-
rate expressions are exponentially small in the noise strengt@ple and the system will follow the slow motion of the at-
i.e., of the form exp-AV/kgT} whereAV is a relevant bar-  tractor as it results from the changing parameters. In order to
rier height andksT the noise strength. So if we are ready to have a quantitative measure one can introduce the value
accept an error of, say 1%, all barriers in the system must bghat compares the rate of change of fastest system’s param-

a

higher than~4.5gT. eteru(t) to a typical time scaler, of the deterministic mo-
tion:
Ill. SLOW DRIVING .
_ u(t)
After these preparatory considerations we turn to our € —rrmtax @ . (21

main topic and consider a Fokker-Planck process of the kind
of the previous section with the only difference that we now
allow for slow changes of the parameters of the systemfor exampler, can be the relaxation time toward a local
These could result from a slow drift of the environmental attractor. The rate of Change of the deterministic drift then
parameters of the system such as, e.g., the temperaturecan be estimated by the same quanttghat is assumed
slow increase of an external field, or a slow periodic forcesmall in the sequel:
driving the system, to name but a few possible realizations.

We emphasize that the change of the parameters must be :
slow compared to the fast relaxation within each domain of K (x.0)] 7. =0(e). (22
attraction but no assumption is made how it compares to the K(x,t)] "
slow intrinsic dynamics of the system describing the transi-

thﬂS. between different domal_ns of attraction. We assumejnder this very condition many of the properties of the time-
that in the presence of these time-dependent parameters OR8mogeneous process carry over to the case with time-
still can identify domains of attraction which do not merge or gependent parameters.

split as time changes but retain their identity. In other words, T4 each attractow then there belongs a domain of attrac-
we restrict ourselves to changes of the parameters that do ngg D,(t) together with its characteristic functiqﬁf)(x,t)

lead to topolqglcal changgs O].c the system. . which is 1 onD,(t) and O elsewhere i&. The domains of
The resulting process IS S_t'" Markovian and is governedattractions also slowly depend on time and so the character-
by a Fokker-Planck equation: istic functions do. If the system is weakly perturbed by noise
9 the characteristic functions will change into smooth func-
Ep(t) =L()p(1), (18)  tions y,(x,t) that coincide with the noiseless functions ev-
erywhere except in a thin boundary layers@,(t), where a
where the Fokker-Planck operatbft) is of the form given steep but smooth transition from 1 to 0 takes place. As in the
in Eq. (2) with time-dependent drif (x,t) and possibly also time-independent case, they are solutions of the homoge-
a time-dependent diffusion matri(x,t). In particular, we neous backward equation that approach 1 in the interior of
assume that all parameter values which the system experP,(t) and vanish on all other attractoss # . Further one
ences in the course of time correspond to equilibrium sysalso can represent the slow dynamics of the probability den-
tems, i.e., that for any frozen parameter value the system wility in terms of linear combinations &f,(x,t)po(X,1):
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m

_ ga,a/(t)
p(x,1) = 2 (XX, Dpo(X,1). (23 =
a=1 ra,a’(t)
The dependence of this ratio on the noise strength is dis-
cussed for a particular example in Sec. V. The master equa-
tion following from the Eqs(25—(30) now takes the form

O(e). (31

The probability to find the system in the stateis analo-
gously defined as in the case with constant parameters:

Pa(1) = (Xal(D),p(1). (24) d
. _pa(t) = 2 [ra',a’(t) + ga,a’(t)]pa’(t)
The time rate of change gf,(t) consequently has two dt o ta
contributions, resulting from the derivative gf(x,t) and of
p(x,1): = 2 [Fara® + 0 DI, (32
a #a

gpa(t) = <i Y0, p(t)) + ( Xa(t).i p(t)). (25)  Where we used that the sums of both coefficients (t) and
dt Jt dt 0.« () over the first indexa vanish. This master equation

. o . with time-dependent rates is the central result of the present
The latter probabilistic contribution can be expressed iMaper. For a sufficiently slow parameter change, i.e., a small

terms of the Fokker-Planck equation yielding value of ¢, the geometric contribution to the time rate of
change of the probabilitp,(t) can be neglected and a master
(Xa(t).ip(t)) = E F oo (DD (1), (26) equation results that is completely determined by the frozen
at o ratesr , . (t):

. . _ d

where we used Eq23) and introduced the time-dependent —Pa)= 2 TP (®) = 2 Furo(OpL1). (33
transition rates , () in an analogous way as in the time- dt

homogeneous case, see ELj):

o #a o #a

We note that the time-dependent ratgs, (t) (27) have the

(Xa(1), L)XYo (1) po(1) same general form and therefore the same formal properties

Mo () = " (27)  as the time-independent onds): Those fora # a’ are posi-
Mo (D) tive and the sum over the first index vanish&s; r, . (t)

=0. For faster driving the geometric contributions of the
rates have to be taken into account and BB®) must be
used. However, the geometric contributions may become
negative, and therefore formally negative rates may result if
the driving is too fast. This indicates that then the instanta-
~ neous eigenfunctions of the Fokker-Planck equation no
Na(D) = (Xa(V): Xa(Dpo(D) =~ (Xalt). o)., (28) longer provide a sufficient basis on which the long-time dy-
namics can be projected. In principle, corrections to the slow
basis may be calculated in a systematic way using the gen-
eral perturbative approach outlined in REef].

It determines the rate of change of the probability(t)
caused by transitions from’ to a. Heren,,(t) is the popu-
lation of the metastable state’ in the frozen equilibrium
distribution pg(x,t). It is given by

where the ternjy,(x,t) is neglected in the second equation.
This approximation holds up to exponentially small terms in
the noise strength.

The other contribution(dy,(t)/dt,p(t)) describes the
change of the probability caused by the geometric change of
the domainD,(t). It also is linear in the probabilitieg,,(t)
and can be written as Often the knowledge of the probabilitigg(t) to find the

system at time in the metastable state is not sufficient.
J _ For example, one may be interested in the average position
(atX“(t)'p(t)> - 2 Jaar (DPar (D), (29 of the system or its single-time or multitime statistical prop-
“ erties. We here show how the time dependence of these
where quantities on the slow time scales of the transitions and the
external driving can be retrieved from exactly the same in-

(0 Xa®/3t, X0 (D po(1) formation that is necessary to determine the transition rates
Og,or(t) = (30) from the Fokker-Planck equation. For that purpose we first
N (1) consider the average of an arbitrary functigr) of the po-

The coefficientsg, ,/(t) are proportional to the smallness sition:

parametek defined in Eq(21) because they contain the time

derivative of the functiony,(x,t) which depends on time <f(t)>:J d%f()p(x,1) = 2 (f()]a)p,(t),  (34)

only through the slowly changing parameters of the system. ¢

The proportionality factor roughly is of the same order of where(f(t)|) denotes the expectation value fk) under
magnitude as the transition ratg,,(t): the condition that the system residestan the domain of

IV. DECORATING THE METASTABLE STATES
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attractionD,(t). Using the long-time behavior of the prob- AV S . P
ability densityp(t) as given by Eq(23) one finds Ls(t) = Ix_ ax + 2 (40
(f(t)|a) =f d™f(x)p(x,t] ), (35)  Where throughout dimensionless units are used. t#etds
the noise strength which is proportional to the temperafure

of the fluid surrounding the oscillator, andx,t) is a time-

here the conditional probabili ,t|a) to find the system .
N " P liy(x, fo) to f y dependent potential:

in the continuous state e D (1) is given by
V(x,t) = $x* = 2x2 - Ax sin(Q), (42)

plxtia) = X2 ) (36

o(t) whereA denotes the strength of the perigdic force. It is sup-
Similarly, one finds the following expression for the corre- Posed to stay within the limit$A| <2/(3y3) in order that
lation of two functionsf(x) andg(x) at timest andt+rbeing ~ the topology of the potential does not change. Actualy,
separated by a positive timethat is long compared to the Must keep some finite distance from these bounds in order
fast time scale of intrawell relaxations: that the following asymptotic theory applies. Under this
condition on the strength of the external force, the poten-
(f(t+Dg) = > (F(t+ D]a)gt)|a’p(a,t + Fa’,H)p,(t). tial has three stationary points that are solutions of the
wa' algebraic equation:

(37 X3 = x= A sin(Qt). (42
Herep(a,t+7a’,1) is the conditional probability to find the
system in the metastable stateat timet+ 7 provided it was
in the staten’ at the earlier timeé. This conditional probabil-
ity is the solution of the master equati¢d3) subject to the
initial conditionsp(a,t/a’,t)=4, .. Equation(37) holds for
arbitrary functionsf(x) and g(x). Therefore the conditional
probability of finding the system at time+ r at the continu-

As time varies they form three branchesg(t) andx,(t) are
those tracing the two local minima that &0 assume the
valuesx;(0)=-1 andx,(0)=1, respectively, ana(t) gives
the location of the local potential maximum between the
minima. Att=0 it is located aix,(0)=0. The corresponding
extreme values of the potentisl(x,t) are denoted by

ous statex if it was at the earlier time aty takes the form V() =V, (b)) for a=1,2
P(th + Tyvt) = E P(th + Tla)Xa’(yvt)p(avt + T|a’!t)'
aa V(1) = V(X(1),1). (43
(38) The instantaneous well and barrier frequencies are defined

For an independent derivation of this result see the Appenaccordingly as
dix.

Yet another equivalent way exists to characterize the con- | (1) = PV(%(1),1) =32t -1 for a=1,2
tinuous process on the long-time scale: One takes the dis- ¢ ax? “ "
crete procesg(t) assuming the valueg=1, ... maccording
to the master equatiof83) and decorates the states with a
random point in the state spacgz(t),t), depending on time wp(t) = 5
and the particular state=z(t) that is realized at the timee If Jx
the probability density of the decoratiof(«,t) is chosen as
the conditional probability density(x, /) given in Eq.(36) at the timet=0. The formal smallness parameternf the
the mean values and the correlation functions of the ProceSgeneral theory, see E¢R1), can here be identified with the
X(z(1),1) coincide with the expressiori84) and(37), respec-  gimensionlessdriving frequencyQ). For later use we give
tively, and accordingly are characterized by the Conditionafhe time derivatives of the barrier position and the barrier

probability (38). The decorated process is Markovian and hasfrequencies. For the position one finds from E4Q)
the same single- and two-time probability density as the con-

_ w = \/T&(ﬁ(t)- “4

Note that time is scaled such that the barrier frequency is one

tinuous process(t) on the long-time scale and hence coin- ) QA
cides there with it: Xp(t) = = ——cod ), (45
wp(t)
X0 = X(z(1). 9. (39 and for the frequency it follows
V. BISTABLE OVERDAMPED OSCILLATOR wp(t) = - 3Xb_((t))5<b(t)_ (46)
Wp t

We here consider the example of an overdamped bistable
Brownian oscillator that is periodically driven at a frequency The instantaneous stationary solution of the Smoluchowski
Q which is slow compared to the typical relaxation rates. Itsequation Lg(t)pg(x,t)=0 is given by the time-dependent
dynamics is given by the Smoluchowski operator Boltzmann distribution:
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po(x.t) = Z7 p)e VY, (47) Fa(t) = =11 4(t) = o1 ep(t) e AV
where for small noise the partition function is given by
NN P2 { expi= V(D) | expi- BVz(t)}}_ g I Y RN
B w1 (0] ’ ' 2m

Here algebraic correction terms of the or@f. /[ BAV (t)])
were neglected. The domains of attraction of the instanta- A. The geometric correction to the rate
neous locally stable states(t), =1,2, extend from minus
infinity to the instantaneous barrier and from there to infin-
ity: D1(t)=(—,x%p(t)), and D,(t) =(x,(t) ,), respectively.

The corresponding localizing functiong(x,t) are the so-
lutions of the backward equation

Now we come to the discussion of the corrections of these
frozen rates that are determined by the geometric contribu-
tions (dx,()/dt, x H)po(t)), a,a’'=1,2. For therelative
magnituder(t) of the geometric correction to the frozen rate
r,1(t) one finds after some algebra

] &
Uy — _ g S = t
{wb(t) [x=%(0]~ +5 axz} Xo(x)=0 (49 ) = %21
_ N rza(t)
with the boundary conditions _ (0 20191, x1(D po(t))
1 for x— - (20, Le(t) x2(H) po(1)
Xl(X,t) =
0 for x— o, B. * 3xp(t)
=- _Xb(t)J dyl — Ty+1
_J0  for x— - —
XY= o x e, (50 X ertd wy(t)\BI2ylexp{- Bly"4 +x(Dy°]}.
The solutions readily are found: &7
1 — As expected, the error is proportional to the driving fre-
x1(%,t) = 5 erfc{wy()VBI2[x = x,(D ]}, quency () via the time derivativex,(t). The remainingQ
dependence may be absorbed in a rescaled tizfet. An
xo(X,t) =1 = x1(x,1), (51)  analytic solution of the integral in Eq57) is not known. In

. ) Fig. 2 the error divided by the driving frequency is shown as
where erf¢z) is the complementary error function. In the j reqyits from a numerical evaluation for different values of
present model there is only a single variable, the coordwate {he griving strengttA and inverse temperature as a function
which - transforms evenly under time reversal, henceqftime. Both, increasing driving strengthand inverse tem-

Xo(X,D)=xa(x,1). Using Eq. (51), the scalar products perarureg, lead to an increase of the extrema of the relative
(Xa(V), Ls(t)xa () po(1), @,@’'=1,2 can beexpressed by a grror 4(t) that must be compensated by a smaller driving

single one that we denote tyt): frequency in order that the master equation with the frozen
rates provides a valid description. Further we note that the
O, LsOx2()po(t) geometric correction to the rate is negative during half the
= (x2(), Ls(t) x2 (D) po(t)) = = (xa(t), Lo(t) x1(t) po(t)) driving period. At too low noise strengths or too high driving
_ _ frequencies this may lead to a negative total rate indicating a
=~ (ea(®), LsOxapolt) = (), (52) breakdown of the present theory and the crossover to the
whereq(t) takes the form weak noise, finite frequency theory of Reimann and co-
x0\? workers[9]. Note that by now no uniform theory exists that
- J xa(xt would bridge this theory and the one presented here.
— 1
an =4 f dx( IX ) PolX.0). (53 As an average measure we introduce the root mean square

error E=[[{dt72(t)/ T]*2 which is strictly proportional to the
driving frequency(). The proportionality factore/Q) in-
wp(H)e PV creases as a function of the inverse temperature first as a
qt)y=——F7—. (54 power law and changes to an exponential growth for large
Z(t)V2mp values ofB, see Fig. 3.

the frozen equilibrium distribution become at weak noise  fect: At large 8 the noise is very small such that a particle
that has reached at some time the top of the barrier has a very

Using Eq.(51) for weak noise one can further simplify it as

27 e VB small chance to be pushed to either side by the noise. During
n,(t) = Ew Mzt (55) the time when it resides there, the potential moves such that

the particle no longer will sit on top of the barrier. Depend-
With Eq. (27) this gives for the rates the instantaneous ex-ing on the direction of the motion of the potential the particle
pressiong 3] may then be located on the opposite side of the barrier or on
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& FIG. 3. The asymptotic exponential growth of the frequency
(b) =60 02/ 0.5 independent ratid/ () is shown for the driving strengtA=0.12.
41 o1 The straight line corresponds to a barrier height XaD3.
21 metastable states and study the asymptotic motion of the
o average oscillator position as a simple example. From Eq.
= 0 (34) it results as
=
5 (X(1)) = (X(®)|Lpa(t) +{X(V)[2)p2(1), (58)
where(x(t)| ) denotes the conditional average of the posi-
4] tion in the well corresponding to the metastable state
Xo(X,1)
-6 , ‘ . ‘ ‘ xX(t)|ay = f dx X ® po(X,t) = X, (1). (59
1 2 3 4 5 6 Mo

T . . . .
In the last equation we disregarded small contributions of the

FIG. 2. The relative error of the rate oscillates as a function oforderO(1/(w,(t)V3)). The probabilitieg,(t) follow as the

time 7=Qt. It vanishes at the extrema of the driving force. Paapl ~asymptotic solutions of the master equation:
shows 7(7)/Q for different inverse temperaturgd=30,60,90 at

the driving strengthA=0.15 and panetb) for different driving Td dK(MK(S)]

strengthA=0.1,0.15,0.2 ap=60. The parameter values are indi- o S r1.A0 t

cated close to the respective curves. py(t) = & e KO 4 f dsetO KO, s),
0

the original side where it came from. In the former case the
geometric correction leads to an increase of the rate and in po(t) =1 —py(t), (60)
the latter case to a decrease of the transition rate. Because it
then again has to overcome a barrier the increase of the raféhere
is exponentially large in the inverse temperature. t
Finally we note that the deviation from the frozen rate on K(t) :J dgry At) +ro4(t)]. (61)
the noise strength depends on the particular model. For ex- 0
zmplel, In symmetric systems with varying barrier he!ght the Rather than considering the time dependence, in Fig. 4 we
eviation only grows with the square root of the inverse

X . show the dependence of the position on the driving force
temperature rather than exponentially as in the above CagEH _ A o o )
. . . (t)=Asin (Qt). In general the position lacks behind the

where both the location and the height of the barrier change . . .
in time. orce and therefore the dependence is hysteretic. Only if the
driving is either very slow or very fast compared to the av-
erage rates there is no hysteretic behavior. In the slow case
many transitions occur before a change of the potential be-

After having projected the continuous dynamics of acomes sensible. The asymptotic probabilitiggt) take the
bistable Brownian oscillator onto a discrete two-state procestorm of the stationary probabilities for the frozen rates. They
we consider the same system to illustrate the decoration dhen depend on the force but not on its rate of change. In the

B. Average motion
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11 the driving frequency is lower than an upper bound that de-
48 pends on the noise strength. Interestingly, the bound de-

creases with decreasing noise with an Arrhenius-like depen-

0.5 35 dence at very weak noise. Future work still has to show to

which extent an improvement can be achieved if the geomet-
ric corrections to the rates are taken into account and the full
75 master equation is used. The rates then are no longer strictly
in phase with the driving parameters. The third main out-
come of the present approach is a partial retrieval of the
underlying dynamics of the continuous variables by means
-0.51 of a proper decoration of the discrete states with time-
dependent random variables.

The different forms of the hysteresis curves found for the

<x(t)>
<

1 example of the bistable oscillator demonstrate that within the
004 —0.02 0 002 004 range of validity of the present theory the whole regime from
F(1) linear to fully nonlinear response is covered.

The necessary time-scale separation forced us to exclude
FIG. 4. The response of the average position on the drivinghe occurrence of bifurcations of the deterministic dynamics
force for the driving strengttA=0.05 and driving frequenc§)  caused by the change of the parameters. Such bifurcations
=107 strongly depends on the magnitude of the noise. #0985  are accompanied by a slowing down of the deterministic
the noise is relatively large such that the average position C|059|ﬂynamics and at the same time by a lowering of a barrier
fol!ows its adie_tbatic value_ and therefore shows aln_wo_st no hysterheight and consequently by a decreasing time scale of tran-
esis; for3=48 it stays behind the force, and fB=75 itis hardly  gjtions, Hence, for time-dependent parameters, the time-scale
|nf|uenced_ by the f_qrce. The hysteresis curves are traced in thgeparation between interwell and intrawell dynamics is vio-
mathematically positive sense. lated within a time window around the instant of a bifurca-
tion. It seems plausible that it should be possible to cut out
opposite fast limit the asymptotic probabilities see only thethis time window and to bridge it by suitable connection
average rates and hence are time independent. condition for the probabilities of those states that are in-
volved in the bifurcation.
Apart from the separation of the time scales, another as-
sumption was made in the present work. We assumed that for

In this paper we studied the dynamics of externally drivenfixed values of the parameters the system reaches a state of
systems with multiple metastable states in the semiadiabati@ermal equilibrium and hence it obeys detailed balance. We
limit. The full dynamics of the system comprising the fast think that this assumption is not really essential for our re-
and the slow time scales of the intrawell relaxations and ofults but it simplifies the analysis considerably. Without de-
the external driving as well as of the transitions between théailed balance more general limit sets of the dynamics can
metastable states, respectively, is supposed to be Markovig¢cur apart from limit points such as limit cycles and chaotic
and continuous and, hence, described by a Fokker_P|ancfﬂateS. In general, the Stationary densities are not known in
equation. We showed that the long-time dynamics of thigbsence of detailed balance, the weak noise asymptotics is
Fokker-Planck equation is equivalent to the dynamics of thelagued by notorious nonanalyticitifa2], and rather little is
master equation for the transitions between the discrete met§nown about transition rates in nonequilibrium systems. On
stable states. The rates that determine this master equatiéte other hand there are many important systems that are
are time dependent taking values as if the parameters weflfiven out of equilibrium by time-dependent parameters.
frozen at their instantaneous values. This kind of kinetic de-
scription is not new and has long been used in the literature
[13,27. The present work, however, provides three impor-
tant novel aspects. First the master equation does not result The authors thank Igor Goychuk, Peter Hanggi, Sigmund
from an educated guess. It rather is obtained as the result gfohler, Marcin Kostur, and Michael Schindler for valuable
the projection of the dynamics onto the slow subspace of theiscussions and hints. This work was supported by the Deut-
Fokker-Planck equation. This systematic approach additionsche Forschungsgemeinsché®B438 and the ESF Pro-
ally gives a quantitative criterion when deviations from thegramme STOCHDYN.
master equation with frozen rates must be expected. This
criterion does explicitly take into account the time change of
the parameters and in contrast to other wofkg] is not APPENDIX: THE CONDITIONAL PROBABILITY AT
based on a comparison of time scales of the frozen dynamics LONG TIMES
with the rate of change of the parameters. As a particular For a sufficiently long time lag the conditional probabil-
result we found for a periodically driven overdampedity p(x,t+7|y,t) of the continuous procesgt) can be ex-
bistable Brownian oscillator that its dynamics only can bepressed in terms of the basis functiopgly,t) andy,(x,t
reduced to a two-state master equation with frozen rates i 7)pg(x,t+7) spanning the slow subspaces of the backward

VI. SUMMARY
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operator at time¢ and the forward operator at tinte- 7, re-
spectively. One therefore can write

p(xt+7y,t) = X d(a,a’;t, Ip(X,t+ 7a)xa (y,1),

!
a,a

(A1)

where we expressed the basis functigyix,t+7)pg(X,t+7)
by p(x,t+7|a)n,(t+7), see Eq(36) and introduced the yet
undetermined coefficientd(«, o’ ;t, 7) into which the time-

PHYSICAL REVIEW E69, 046109(2004

dependent facton,(t) is absorbed. We now multiply the
conditional probability of the continuous procegsx,t
+7]y,1) with p(y,t|”), integratex andy over the domains
of attractionD (t+7) and D (1), respectively, and obtain
the conditional probability of the discrete processy,t
+7|a”,1). Using the ansatZAl) for p(x,t+7|t) we then
find for the coefficientsd(a, a’;t, 7)=p(a,t+7|,a’,t). To-
gether with Eq.(Al) this yields the expression E¢38)

for the conditional probability of the continuous process
as claimed in Sec. IV.
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