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The reduction of a continuous Markov process with multiple metastable states to a discrete rate process is
investigated in the presence of slow time-dependent parameters such as periodic external forces or slowly
fluctuating barrier heights. A quantitative criterion is provided under which condition a kinetic description with
time-dependent frozen rates applies and nonadiabatic corrections to the frozen rates are obtained. Finally it is
shown how the long-time behavior of the underlying continuous process can be retrieved from the knowledge
of the discrete process by means of an appropriate random decoration of the discrete states. As a particular
example of the presented theory an overdamped bistable Brownian oscillator with periodic driving is
discussed.
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I. INTRODUCTION

The separation of time scales is a frequently met dynami-
cal feature of physical, chemical, and biological processes. In
practically all cases the parameters characterizing a particu-
lar system are only constant on a limited time scale. On
longer time scales they may change their values because the
surrounding environment slowly changes its state. We just
note that even the most fundamental “constants” of nature
such as, e.g., the fine structure constant possibly undergo a
very slow change in time[1]. On the other hand, most natu-
ral processes also display very fast changes which usually
will be disregarded in a phenomenological description. They
only will show up in a more detailed description in which the
effective degrees of freedom of the phenomenological model
are represented as functions of microscopic degrees of free-
dom. The time evolution of these microscopic degrees of
freedom typically takes place on much faster time scales than
those of the macroscopic observables whereas, as already
mentioned, global aspects of the environment may undergo
temporal variations that are much slower than the dynamics
of the considered macroscopic system.

It is this separation of time scales that allows one to de-
scribe a system in terms of a comparatively simple model
that is closed in the sense that only a few macroscopic ob-
servables are subject to the dynamics. The key technical no-
tion here is that of aconstrained equilibriumthat is reached
by the fast part of a system before the slow constituents
change their values on their time scale. So, on the slow time
scale, the fast constituents immediately adapt the respective
constrained equilibrium values governed by the slow ones.

This approach has been applied in many branches of
physics and other sciences and is vital for various methods
such as adiabatic elimination, averaging, synergetics, subdy-
namics, chemical kinetics, and hierarchical computational
schemes[2]. In the present paper we consider Markovian
processes the dynamics of which can be subdivided into a
fast and a slow component. In particular, we have in mind
the case where the slow motion is caused by transitions be-

tween metastable states[3]. The relaxation toward these
states constitutes the fast part of the dynamics. Additionally,
some of the system’s parameters may undergo slow varia-
tions in time that may be caused by a slow drift, or fluctua-
tions of the parameters, or by an external driving of the sys-
tem. The dynamics of the considered system then has two
slow components: The transitions and the driving. About
their relation we do not make further assumptions: The slow
intrinsic dynamics can be faster or slower than the external
driving that must only be slow compared to the fast dynam-
ics of the system. In Ref.[4] we have called this type of
situation the semiadiabatic limit, in contrast to the adiabatic
limit in which the driving is slow compared to the total in-
trinsic dynamics including that of the transitions. Clearly, the
adiabatic limit is contained in the semiadiabatic limit as a
special case.

Stochastic resonance is just one example for which the
semiadiabatic limit is of relevance when the period of the
signal is large[5,6]. Ratchets, or Brownian motors, provide
another class of systems which also operate in the semiadia-
batic regime[7]. Atomic force microscopes and optical twee-
zers often act on time scales that are slow compared to the
vibrational and other intrinsic time scales of the molecules
that are manipulated by them[8]. The present investigation is
complementary to previous works that are restricted to peri-
odic driving with an intermediate regime of external driving
frequencies and are valid in the limit of weak noise[9].

This paper contains three main results.
(i) The quantitative derivation of the kinetic description

of a continuous process with time-dependent parameters in
terms of a master equation with time-dependent rates.

(ii ) A quantitative criterion for the validity of so-called
adiabatic or frozen rates in this approach.

(iii ) The full statistical information of the considered con-
tinuous process on large time scales.

The paper is organized as follows. In Sec. II the reduction
of a Fokker-Planck process with multiple metastable states to
a master equation is reviewed as it was developed in Refs.
[10,11]. This method is generalized to processes with slowly
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time-dependent parameters in Sec. III. The time rate of
change of the probability now consists of two contributions.
One is given by the rate as it would result if the parameters
of the process were frozen and the other contribution mainly
takes into account the changes of the geometry of the do-
mains of attraction of the metastable states. This geometric
contribution is proportional to the time rate of change of the
parameters and therefore is negligible compared to the frozen
rates if the time-dependent parameters change sufficiently
slowly. In contrast to previous investigations[12], we find
that the fastest time dependence of the parameters for which
one may neglect the geometric contributions is not only de-
termined by the deterministic time scales of the process but
in general also depends on the strength of the noise. The way
how the noise here enters depends on the particular process.

In Sec. IV we assume the validity of the master equation
with frozen rates and determine a time-dependent decoration
of the discrete states such that the dynamics of the continu-
ous variables of the underlying Fokker-Planck process are
recovered on the long-time scale. The archetypical example
for stochastic resonance namely that of a periodically
damped bistable Brownian oscillator is discussed in Sec. V
and the validity of the McNamara-Wiesenfeld model of sto-
chastic resonance[13] is discussed. The paper ends with a
summary in Sec. VI.

II. MULTISTABLE SYSTEMS AT SMALL NOISE

In this section we review the reduction of a Fokker-Planck
equation describing atime-homogeneousprocess with mul-
tiple metastable states to a master equation that gives the
dynamics on the time scales of the transitions between the
metastable states. For this purpose we consider a dynamical
system under the influence of weak random forces and as-
sume that these forces can be modeled by Gaussian white
noise. Then the stochastic dynamics is described by a
Fokker-Planck equation[14]:

]

] t
rsx,td = Lrsx,td, s1d

whereL denotes the Fokker-Planck operator:

L = − o
i

]

] xi
Kisxd + o

i,j

]2

] xi ] xj
Dijsxd. s2d

Here,x=sx1,x2, . . . ,xnd denotes a point with coordinatesxi in
then-dimensional state spaceS; further,K sxd=(Kisxd) is the
drift vector andDsxd=(Di,jsxd) the diffusion matrix resulting
from the random forces. We further restrict ourselves to sys-
tems with a uniquely defined stationary probability density
r0sxd with respect to which detailed balance holds. Conse-
quently, the Fokker-Planck operator satisfies the relation
f14g

Lr̂0 = r̂0L̃
+, s3d

whereL+ is the backward or adjoint Fokker-Planck operator:

L+ = o
i

Kisxd
]

] xi
+ o

i,j
Di,jsxd

]2

] xi ] xj
. s4d

The tilde denotes the operation of time reversal, i.e.,x̃i
=eixi with parity ei = ±1 andr̂0 is the multiplication operator
with the probability density, i.e.,r̂0fsxd=r0sxdfsxd where
fsxd is an arbitrary state space function.

In the deterministic limit the diffusion matrix goes to zero
and the drift vector approaches the deterministic vector field
K s0dsxd governing the deterministic motion of the system:

ẋstd = K s0d
„xstd…. s5d

In the presence of weak random perturbationsK sxd may dif-
fer from K 0sxd by small noise induced contributions.

We here are interested in cases where the deterministic
system(5) has a numberm of coexisting attractors labeled by
a. To each attractora there belongs a domain of attraction
Da. The domains are disjoint and partition the total available
state space, see Fig. 1 for an example:

Da ù Da8 = x for a Þ a8, s6d

ø
a=1

m

Da = S. s7d

For weak noise the stationary probability density is almost
zero everywhere except close to the attractors. If the noise
vanishes the stationary density shrinks to Diracd functions
sitting at the attractors of the deterministic system. Because
no transitions between the different attractors may occur in
the noiseless case, each of thed functions is a stationary
solution of the Fokker-Planck equation −Si]Ki

0sxdr0sxd /]xi

=0 belonging to anm-fold degenerate eigenvalue 0 of the
corresponding Fokker-Planck operator.

FIG. 1. The overdamped deterministic motionẋ(td=−V8(xstd) in
the above shown potential induces a partitioning of the state space
S=R1 into the domains of attractionDa of the three attractorsa
=1,2,3 at thepotential minima. Here the locations of the local
potential maxima determine the boundaries between the domains of
attraction.
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The degeneracy also follows from the backward equation
which is governed by the adjoint Fokker-Planck operatorL+

defined in Eq.(4). In the deterministic case the diffusion
matrix vanishes, so the second derivatives disappear and
the stationary solutions of the backward operator are con-
stant along the trajectories of the deterministic system. Be-
cause within a single domain of attraction all trajectories
approach the same attractor the stationary solutions of the
noiseless backward equation are constant on the domain of
attractionDa. One then can choose the characteristic func-
tions xa

s0dsxd of the domains of attraction asm independent
solutions of the stationary deterministic backward equation
SiKi

s0dsxd]xs0dsxd /]xi =0:

xa
s0dsxd = H1 for x P Da

0 else.
s8d

In the presence of weak noise these functions can be modi-
fied slightly such that they still solve the stationary backward
equation up to corrections that are exponentially small in the
noise strength: The steplike discontinuities then are smeared
out on layers located at the boundaries of the domains of
attractionDa. The functions can be constructed by means of
the method of matched asymptotic expansionsf15g, see also
Refs.f10,11g. Outside the boundary layers no modification is
required and hence they retain their property of localizing the
different domains of attraction. In the following, these local-
izing functions will be denoted byxasxd. We summarize
their main properties: They solveL+xasxd=0 up to exponen-
tially small corrections in the noise strength, have the values
one within and zero outsideDa, and interpolate between
these values smoothly on a thin boundary layerf16,17g. As
solutions of these particular boundary value problems, the
functions xasxd are thesplitting probabilities that give the
relative frequencies with which a trajectory starting atx first
reaches the attractora before it visits any other attractor
f18g.

The splitting probabilities in general are not eigenfunc-
tions of the backward operator. However, they span the sub-
space of eigenfunctions that emerges from the eigenspace of
the m-fold degenerate eigenvalue 0 of the deterministic dy-
namics if weak noise perturbs the system and lifts the degen-
eracy. The resulting finite eigenvalues are still small com-
pared to all other finite eigenvalues of the backward operator.
Hence, this subspace describes the slow dynamics of the sys-
tem at weak noise. In particular, it contains the constant
function which is the exact eigenfunction of the backward
equation belonging to the eigenvalue 0. At weak noise this
eigenfunction can be represented as the sum over the char-
acteristic functionsxasxd:

o
a

xasxd = 1. s9d

Because of detailed balance, the slow subspace of the
forward operator is spanned by the basis sethx̃asxdr0sxdj,
where x̃asxd=xasx̃d denotes the image ofxasxd under time
reversal. Hence, the probability density describing the slow
dynamics can be represented as

rsx,td = o
a=1

m

castdx̃asxdr0sxd. s10d

As already noted the characteristic functionsxasxd and,
therefore also their time reversed partnersx̃asxd, are well
localized functions as long as the noise does not become too
large. As a consequence, one may use the functionsxasxd in
order to determine the probabilitypastd that the system re-
sides in the domain of attraction of the attractora [11]:

pastd = „xa,rstd…, s11d

where the scalar product is defined as the integral of the
product of its arguments over the state space:

sf,gd =E
S

dnxfsxdgsxd. s12d

If we assume that the probability densityrstd is of the form
s10d we obtain

pastd = castdna, s13d

where we have made use of the localization of the character-
istic functions at weak noise:

sxa,x̃a8r0d = da,a8na, s14d

and have introduced the functionna=ednxxasxdx̃asxdr0sxd
<ednxxasxdr0sxd giving the population of the metastable
statea in the equilibrium distributionr0sxd.

The time evolution of the probabilitiespastd now follows
from the projection of the Fokker-Planck equation(1) onto
the slow subspace, i.e., we assume the probability density to
take the form(10) and determine the scalar product with
xasxd on both sides of the Fokker-Planck equation. This
yields

d

dt
pastd = o

a8

sxa,Lx̃a8r0d

na8
pa8std. s15d

Under the sum on the right-hand side we expressed the co-
efficients ca8std by means of Eq.s13d in terms of the prob-
abilities pa8std leading to the equilibrium weightsna8 in the
denominator of the respective coefficient. ForaÞa8 the co-
efficient sxa ,Lx̃a8r0d /na8 coincides with the Rayleigh-
quotient expressions for the rate froma8 to a f17g. The
integral is dominated by a neighborhood of the saddle point
that connects the domains of attractionDa8 and Da f19g.
Within this neighborhood, for small noise, the localizing
function xasxd can be approximated by the characteristic
function of Da, xa

0sxd f20g. The resulting coefficient then
coincides with the better known flux-over-population expres-
sion for the respective ratef3g. In particular, one can show
that for sufficiently weak noise the expression
sxa ,Lx̃a8r0d /na8 is positive foraÞa8. From Eq.s9d it fol-
lows that the sum of the coefficients overa vanishes. Hence,
Eq. s15d has the proper form of a master equation:
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d

dt
pastd = o

a8Þa

ra,a8pa8std − o
a8Þa

ra8,apastd, s16d

where

ra,a8 =
sxa,Lx̃a8r0d

na8
s17d

is the transition probability per unit time froma8 to a.
The regime of validity of this approximation, of course,

depends on the particular system and the degree of accuracy
one would like to achieve. By its very nature this master
equation is only appropriate for the long-time dynamics of
the Fokker-Planck equation and therefore requires a clear
separation of time scales dividing the process into fast relax-
ations within the domains of attraction and slow transitions
between the attractors. We note that various definitions of
transition rates exist which are different from a physical
point of view but which still yield the same result if a master
equation provides a correct description of the long-time dy-
namics. It turns out that the actual differences between these
rate expressions are exponentially small in the noise strength,
i.e., of the form exph−DV/kBTj whereDV is a relevant bar-
rier height andkBT the noise strength. So if we are ready to
accept an error of, say 1%, all barriers in the system must be
higher than<4.5kBT.

III. SLOW DRIVING

After these preparatory considerations we turn to our
main topic and consider a Fokker-Planck process of the kind
of the previous section with the only difference that we now
allow for slow changes of the parameters of the system.
These could result from a slow drift of the environmental
parameters of the system such as, e.g., the temperature, a
slow increase of an external field, or a slow periodic force
driving the system, to name but a few possible realizations.

We emphasize that the change of the parameters must be
slow compared to the fast relaxation within each domain of
attraction but no assumption is made how it compares to the
slow intrinsic dynamics of the system describing the transi-
tions between different domains of attraction. We assume
that in the presence of these time-dependent parameters one
still can identify domains of attraction which do not merge or
split as time changes but retain their identity. In other words,
we restrict ourselves to changes of the parameters that do not
lead to topological changes of the system.

The resulting process is still Markovian and is governed
by a Fokker-Planck equation:

]

] t
rstd = Lstdrstd, s18d

where the Fokker-Planck operatorLstd is of the form given
in Eq. s2d with time-dependent driftK sx ,td and possibly also
a time-dependent diffusion matrixDsx ,td. In particular, we
assume that all parameter values which the system experi-
ences in the course of time correspond to equilibrium sys-
tems, i.e., that for any frozen parameter value the system will

reach an equilibrium distribution relative to which the sys-
tem obeys detailed balance:

Lstdr̂0std = r̂0stdL̃+std, s19d

where, as in the time-independent case of the preceding sec-
tion, the tilde denotes time reversal andr̂0std is the multipli-
cation operator with the equilibrium distributionr0sx ,td that
would be attained if the parameter values were frozen at the
values that they assume at timet:

Lstdr0sx,td = 0. s20d

For vanishing noise the system will move toward the
nearest attractor as defined by the momentary values of the
parameters. During this relaxation time, the parameters of
the system are supposed to change by such a small amount
that they can be considered as kept constant. Only when the
system has reached the attractor and stays there for a much
longer time, the change of parameters will become notice-
able and the system will follow the slow motion of the at-
tractor as it results from the changing parameters. In order to
have a quantitative measure one can introduce the valuee
that compares the rate of change of fastest system’s param-
eter ustd to a typical time scaletr of the deterministic mo-
tion:

e = trmax
t
U u̇std

ustd
U . s21d

For exampletr can be the relaxation time toward a local
attractor. The rate of change of the deterministic drift then
can be estimated by the same quantitye that is assumed
small in the sequel:

uK̇ sx,tdu
uK sx,tdu

tr = Osed. s22d

Under this very condition many of the properties of the time-
homogeneous process carry over to the case with time-
dependent parameters.

To each attractora then there belongs a domain of attrac-
tion Dastd together with its characteristic functionxa

s0dsx ,td
which is 1 onDastd and 0 elsewhere inS. The domains of
attractions also slowly depend on time and so the character-
istic functions do. If the system is weakly perturbed by noise
the characteristic functions will change into smooth func-
tions xasx ,td that coincide with the noiseless functions ev-
erywhere except in a thin boundary layer at]Dastd, where a
steep but smooth transition from 1 to 0 takes place. As in the
time-independent case, they are solutions of the homoge-
neous backward equation that approach 1 in the interior of
Dastd and vanish on all other attractorsa8Þa. Further one
also can represent the slow dynamics of the probability den-
sity in terms of linear combinations ofx̃asx ,tdr0sx ,td:
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rsx,td = o
a=1

m

castdx̃asx,tdr0sx,td. s23d

The probability to find the system in the statea is analo-
gously defined as in the case with constant parameters:

pastd = „xastd,rstd…. s24d

The time rate of change ofpastd consequently has two
contributions, resulting from the derivative ofxasx ,td and of
rsx ,td:

d

dt
pastd = S ]

] t
xastd,rstdD + Sxastd,

]

] t
rstdD . s25d

The latter probabilistic contribution can be expressed in
terms of the Fokker-Planck equation yielding

Sxastd,
]

] t
rstdD = o

a8

ra,a8stdpa8std, s26d

where we used Eq.s23d and introduced the time-dependent
transition ratesra,a8std in an analogous way as in the time-
homogeneous case, see Eq.s17d:

ra,a8std =
„xastd,Lstdx̃a8stdr0std…

na8std
. s27d

It determines the rate of change of the probabilitypastd
caused by transitions froma8 to a. Herena8std is the popu-
lation of the metastable statea8 in the frozen equilibrium
distributionr0sx ,td. It is given by

nastd = „xastd,x̃astdr0std… < „xastd,r0std…, s28d

where the termx̃asx ,td is neglected in the second equation.
This approximation holds up to exponentially small terms in
the noise strength.

The other contribution(]xastd /]t ,rstd) describes the
change of the probability caused by the geometric change of
the domainDastd. It also is linear in the probabilitiespa8std
and can be written as

S ]

] t
xastd,rstdD = o

a8

ga,a8stdpa8std, s29d

where

ga,a8std =
„] xastd/] t,x̃a8stdr0std…

na8std
. s30d

The coefficientsga,a8std are proportional to the smallness
parametere defined in Eq.s21d because they contain the time
derivative of the functionxasx,td which depends on time
only through the slowly changing parameters of the system.
The proportionality factor roughly is of the same order of
magnitude as the transition ratera,a8std:

ga,a8std

ra,a8std
= Osed. s31d

The dependence of this ratio on the noise strength is dis-
cussed for a particular example in Sec. V. The master equa-
tion following from the Eqs.s25d–s30d now takes the form

d

dt
pastd = o

a8Þa

fra,a8std + ga,a8stdgpa8std

− o
a8Þa

fra8,astd + ga8,astdgpastd, s32d

where we used that the sums of both coefficientsra,a8std and
ga,a8std over the first indexa vanish. This master equation
with time-dependent rates is the central result of the present
paper. For a sufficiently slow parameter change, i.e., a small
value of e, the geometric contribution to the time rate of
change of the probabilitypastd can be neglected and a master
equation results that is completely determined by the frozen
ratesra,a8std:

d

dt
pastd = o

a8Þa

ra,a8stdpa8std − o
a8Þa

ra8,astdpastd. s33d

We note that the time-dependent ratesra,a8std s27d have the
same general form and therefore the same formal properties
as the time-independent oness17d: Those foraÞa8 are posi-
tive and the sum over the first index vanishes:oa ra,a8std
=0. For faster driving the geometric contributions of the
rates have to be taken into account and Eq.s32d must be
used. However, the geometric contributions may become
negative, and therefore formally negative rates may result if
the driving is too fast. This indicates that then the instanta-
neous eigenfunctions of the Fokker-Planck equation no
longer provide a sufficient basis on which the long-time dy-
namics can be projected. In principle, corrections to the slow
basis may be calculated in a systematic way using the gen-
eral perturbative approach outlined in Ref.f4g.

IV. DECORATING THE METASTABLE STATES

Often the knowledge of the probabilitiespastd to find the
system at timet in the metastable statea is not sufficient.
For example, one may be interested in the average positionx
of the system or its single-time or multitime statistical prop-
erties. We here show how the time dependence of these
quantities on the slow time scales of the transitions and the
external driving can be retrieved from exactly the same in-
formation that is necessary to determine the transition rates
from the Fokker-Planck equation. For that purpose we first
consider the average of an arbitrary functionfsxd of the po-
sition:

kfstdl =E dnxfsxdrsx,td = o
a

kfstdualpastd, s34d

where kfstdual denotes the expectation value offsxd under
the condition that the system resides att in the domain of
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attractionDastd. Using the long-time behavior of the prob-
ability densityrstd as given by Eq.s23d one finds

kfstdual =E dnxfsxdrsx,tuad, s35d

where the conditional probabilityrsx ,tuad to find the system
in the continuous statexPDastd is given by

rsx,tuad =
x̃asx,td
nastd

r0sx,td. s36d

Similarly, one finds the following expression for the corre-
lation of two functionsfsxd andgsxd at timest andt+t being
separated by a positive timet that is long compared to the
fast time scale of intrawell relaxations:

kfst + tdgstdl = o
a,a8

kfst + tdualkgstdua8lpsa,t + tua8,tdpa8std.

s37d

Herepsa ,t+tua8 ,td is the conditional probability to find the
system in the metastable statea at time t+t provided it was
in the statea8 at the earlier timet. This conditional probabil-
ity is the solution of the master equations33d subject to the
initial conditionspsa ,tua8 ,td=da,a8. Equations37d holds for
arbitrary functionsfsxd and gsxd. Therefore the conditional
probability of finding the system at timet+t at the continu-
ous statex if it was at the earlier timet at y takes the form

rsx,t + tuy,td = o
a,a8

rsx,t + tuadxa8sy,tdpsa,t + tua8,td.

s38d

For an independent derivation of this result see the Appen-
dix.

Yet another equivalent way exists to characterize the con-
tinuous process on the long-time scale: One takes the dis-
crete processzstd assuming the valuesa=1, . . . ,m according
to the master equation(33) and decorates the states with a
random point in the state space,X(zstd ,t), depending on time
and the particular statea=zstd that is realized at the timet. If
the probability density of the decorationXsa ,td is chosen as
the conditional probability densityrsx ,tuad given in Eq.(36)
the mean values and the correlation functions of the process
X(zstd ,t) coincide with the expressions(34) and(37), respec-
tively, and accordingly are characterized by the conditional
probability(38). The decorated process is Markovian and has
the same single- and two-time probability density as the con-
tinuous processxstd on the long-time scale and hence coin-
cides there with it:

xstd = X„zstd,t…. s39d

V. BISTABLE OVERDAMPED OSCILLATOR

We here consider the example of an overdamped bistable
Brownian oscillator that is periodically driven at a frequency
V which is slow compared to the typical relaxation rates. Its
dynamics is given by the Smoluchowski operator

LSstd =
]

] x

] Vsx,td
] x

+ b−1 ]2

] x2 , s40d

where throughout dimensionless units are used. Hereb−1 is
the noise strength which is proportional to the temperatureu
of the fluid surrounding the oscillator, andVsx,td is a time-
dependent potential:

Vsx,td = 1
4x4 − 1

2x2 − Ax sinsVtd, s41d

whereA denotes the strength of the periodic force. It is sup-
posed to stay within the limitsuAu,2/s3Î3d in order that
the topology of the potential does not change. Actually,A
must keep some finite distance from these bounds in order
that the following asymptotic theory applies. Under this
condition on the strength of the external force, the poten-
tial has three stationary points that are solutions of the
algebraic equation:

x3 − x = A sinsVtd. s42d

As time varies they form three branches:x1std andx2std are
those tracing the two local minima that att=0 assume the
valuesx1s0d=−1 andx2s0d=1, respectively, andxbstd gives
the location of the local potential maximum between the
minima. At t=0 it is located atxbs0d=0. The corresponding
extreme values of the potentialVsx,td are denoted by

Vastd = V„xastd,t… for a = 1,2,

Vbstd = V„xbstd,t…. s43d

The instantaneous well and barrier frequencies are defined
accordingly as

vastd =Î]2Vsxastd,td
] x2 = Î3xa

2std − 1 for a = 1,2,

vbstd =Î−
]2Vsxbstd,td

] x2 = Î1 − 3xb
2std. s44d

Note that time is scaled such that the barrier frequency is one
at the timet=0. The formal smallness parametere of the
general theory, see Eq.(21), can here be identified with the
(dimensionless) driving frequencyV. For later use we give
the time derivatives of the barrier position and the barrier
frequencies. For the position one finds from Eq.(42)

ẋbstd = −
VA

vbstd2cossVtd, s45d

and for the frequency it follows

v̇bstd = − 3
xbstd
vbstd

ẋbstd. s46d

The instantaneous stationary solution of the Smoluchowski
equation LSstdr0sx,td=0 is given by the time-dependent
Boltzmann distribution:
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r0sx,td = Z−1stde−bVsx,td, s47d

where for small noise the partition function is given by

Zstd =Î2p

b
Hexph− bV1stdj

v1
+

exph− bV2stdj
v2

J . s48d

Here algebraic correction terms of the orderO(1/fbDVastdg)
were neglected. The domains of attraction of the instanta-
neous locally stable statesxastd, a=1,2, extend from minus
infinity to the instantaneous barrier and from there to infin-
ity: D1std=(−` ,xbstd), andD2std=(xbstd ,`), respectively.

The corresponding localizing functionsxasx,td are the so-
lutions of the backward equation

Hvbstd2fx − xbstdg
]

] x
+ b−1 ]2

] x2Jxasx,td = 0 s49d

with the boundary conditions

x1sx,td = H1 for x → − `

0 for x → `,

x2sx,td = H0 for x → − `

1 for x → `.
s50d

The solutions readily are found:

x1sx,td = 1
2 erfchvbstdÎb/2fx − xbstdgj,

x2sx,td = 1 −x1sx,td, s51d

where erfcszd is the complementary error function. In the
present model there is only a single variable, the coordinatex
which transforms evenly under time reversal, hence,
x̃asx,td=xasx,td. Using Eq. (51), the scalar products
(xastd ,LSstdxa8stdr0std), a ,a8=1,2 can beexpressed by a
single one that we denote byqstd:

„x1std,LSstdx2stdr0std…

= „x2std,LSstdx1stdr0std… = − „x1std,LSstdx1stdr0std…

= − „x2std,LSstdx2stdr0std… = qstd, s52d

whereqstd takes the form

qstd = b−1E dxS ] x1sx,td
] x

D2

r0sx,td. s53d

Using Eq.s51d for weak noise one can further simplify it as

qstd =
vbstde−bVbstd

ZstdÎ2pb
. s54d

The populationsnastd of the metastable statesa=1,2 in
the frozen equilibrium distribution become at weak noise

nastd =Î2p

b

e−Vastdb

vastdZstd
. s55d

With Eq. s27d this gives for the rates the instantaneous ex-
pressionsf3g

r2,1std = − r1,1std =
v1stdvbstd

2p
e−bDV1std,

r1,2std = − r2,2std =
v2stdvbstd

2p
e−bDV2std. s56d

A. The geometric correction to the rate

Now we come to the discussion of the corrections of these
frozen rates that are determined by the geometric contribu-
tions (]xastd /]t ,xa8stdr0std), a ,a8=1,2. For the relative
magnitudehstd of the geometric correction to the frozen rate
r2,1std one finds after some algebra

hstd ;
g2,1std
r2,1std

=
„] x2std/] t,x1stdr0std…
„x2std,LSstdx1stdr0std…

= −
b

2
ẋbstdE

−`

`

dyS3xbstd
vb

2std
y + 1D

3 erfcfvbstdÎb/2ygexp h− bfy4/4 + xbstdy3gj.

s57d

As expected, the error is proportional to the driving fre-
quencyV via the time derivativeẋbstd. The remainingV
dependence may be absorbed in a rescaled timet=Vt. An
analytic solution of the integral in Eq.s57d is not known. In
Fig. 2 the error divided by the driving frequency is shown as
it results from a numerical evaluation for different values of
the driving strengthA and inverse temperature as a function
of time. Both, increasing driving strengthA and inverse tem-
peratureb, lead to an increase of the extrema of the relative
error hstd that must be compensated by a smaller driving
frequency in order that the master equation with the frozen
rates provides a valid description. Further we note that the
geometric correction to the rate is negative during half the
driving period. At too low noise strengths or too high driving
frequencies this may lead to a negative total rate indicating a
breakdown of the present theory and the crossover to the
weak noise, finite frequency theory of Reimann and co-
workersf9g. Note that by now no uniform theory exists that
would bridge this theory and the one presented here.

As an average measure we introduce the root mean square
errorE=fe0

Tdth2std /Tg1/2 which is strictly proportional to the
driving frequencyV. The proportionality factorE/V in-
creases as a function of the inverse temperature first as a
power law and changes to an exponential growth for large
values ofb, see Fig. 3.

We propose the following physical explanation of this ef-
fect: At largeb the noise is very small such that a particle
that has reached at some time the top of the barrier has a very
small chance to be pushed to either side by the noise. During
the time when it resides there, the potential moves such that
the particle no longer will sit on top of the barrier. Depend-
ing on the direction of the motion of the potential the particle
may then be located on the opposite side of the barrier or on
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the original side where it came from. In the former case the
geometric correction leads to an increase of the rate and in
the latter case to a decrease of the transition rate. Because it
then again has to overcome a barrier the increase of the rate
is exponentially large in the inverse temperature.

Finally we note that the deviation from the frozen rate on
the noise strength depends on the particular model. For ex-
ample, in symmetric systems with varying barrier height the
deviation only grows with the square root of the inverse
temperature rather than exponentially as in the above case
where both the location and the height of the barrier change
in time.

B. Average motion

After having projected the continuous dynamics of a
bistable Brownian oscillator onto a discrete two-state process
we consider the same system to illustrate the decoration of

metastable states and study the asymptotic motion of the
average oscillator position as a simple example. From Eq.
(34) it results as

kxstdl = kxstdu1lp1std + kxstdu2lp2std, s58d

wherekxstd ual denotes the conditional average of the posi-
tion in the well corresponding to the metastable statea:

kxstdual =E dx x
xasx,td
nastd

r0sx,td < xastd. s59d

In the last equation we disregarded small contributions of the
orderO(1/svastdÎbd). The probabilitiespastd follow as the
asymptotic solutions of the master equation:

p1std =

E
0

T

dsefKsTd−Kssdgr1,2std

1 − eKsTd e−Kstd +E
0

t

dse−fKstd−Kssdgr1,2ssd,

p2std = 1 − p2std, s60d

where

Kstd =E
0

t

dsfr1,2std + r2,1stdg. s61d

Rather than considering the time dependence, in Fig. 4 we
show the dependence of the position on the driving force
Fstd=A sin sVtd. In general the position lacks behind the
force and therefore the dependence is hysteretic. Only if the
driving is either very slow or very fast compared to the av-
erage rates there is no hysteretic behavior. In the slow case
many transitions occur before a change of the potential be-
comes sensible. The asymptotic probabilitiespastd take the
form of the stationary probabilities for the frozen rates. They
then depend on the force but not on its rate of change. In the

FIG. 2. The relative error of the rate oscillates as a function of
time t=Vt. It vanishes at the extrema of the driving force. Panel(a)
showshstd /V for different inverse temperaturesb=30,60,90 at
the driving strengthA=0.15 and panel(b) for different driving
strengthA=0.1,0.15,0.2 atb=60. The parameter values are indi-
cated close to the respective curves.

FIG. 3. The asymptotic exponential growth of the frequency
independent ratioE/V is shown for the driving strengthA=0.12.
The straight line corresponds to a barrier height 0.97310−3.
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opposite fast limit the asymptotic probabilities see only the
average rates and hence are time independent.

VI. SUMMARY

In this paper we studied the dynamics of externally driven
systems with multiple metastable states in the semiadiabatic
limit. The full dynamics of the system comprising the fast
and the slow time scales of the intrawell relaxations and of
the external driving as well as of the transitions between the
metastable states, respectively, is supposed to be Markovian
and continuous and, hence, described by a Fokker-Planck
equation. We showed that the long-time dynamics of this
Fokker-Planck equation is equivalent to the dynamics of the
master equation for the transitions between the discrete meta-
stable states. The rates that determine this master equation
are time dependent taking values as if the parameters were
frozen at their instantaneous values. This kind of kinetic de-
scription is not new and has long been used in the literature
[13,21]. The present work, however, provides three impor-
tant novel aspects. First the master equation does not result
from an educated guess. It rather is obtained as the result of
the projection of the dynamics onto the slow subspace of the
Fokker-Planck equation. This systematic approach addition-
ally gives a quantitative criterion when deviations from the
master equation with frozen rates must be expected. This
criterion does explicitly take into account the time change of
the parameters and in contrast to other works[12] is not
based on a comparison of time scales of the frozen dynamics
with the rate of change of the parameters. As a particular
result we found for a periodically driven overdamped
bistable Brownian oscillator that its dynamics only can be
reduced to a two-state master equation with frozen rates if

the driving frequency is lower than an upper bound that de-
pends on the noise strength. Interestingly, the bound de-
creases with decreasing noise with an Arrhenius-like depen-
dence at very weak noise. Future work still has to show to
which extent an improvement can be achieved if the geomet-
ric corrections to the rates are taken into account and the full
master equation is used. The rates then are no longer strictly
in phase with the driving parameters. The third main out-
come of the present approach is a partial retrieval of the
underlying dynamics of the continuous variables by means
of a proper decoration of the discrete states with time-
dependent random variables.

The different forms of the hysteresis curves found for the
example of the bistable oscillator demonstrate that within the
range of validity of the present theory the whole regime from
linear to fully nonlinear response is covered.

The necessary time-scale separation forced us to exclude
the occurrence of bifurcations of the deterministic dynamics
caused by the change of the parameters. Such bifurcations
are accompanied by a slowing down of the deterministic
dynamics and at the same time by a lowering of a barrier
height and consequently by a decreasing time scale of tran-
sitions. Hence, for time-dependent parameters, the time-scale
separation between interwell and intrawell dynamics is vio-
lated within a time window around the instant of a bifurca-
tion. It seems plausible that it should be possible to cut out
this time window and to bridge it by suitable connection
condition for the probabilities of those states that are in-
volved in the bifurcation.

Apart from the separation of the time scales, another as-
sumption was made in the present work. We assumed that for
fixed values of the parameters the system reaches a state of
thermal equilibrium and hence it obeys detailed balance. We
think that this assumption is not really essential for our re-
sults but it simplifies the analysis considerably. Without de-
tailed balance more general limit sets of the dynamics can
occur apart from limit points such as limit cycles and chaotic
states. In general, the stationary densities are not known in
absence of detailed balance, the weak noise asymptotics is
plagued by notorious nonanalyticities[22], and rather little is
known about transition rates in nonequilibrium systems. On
the other hand there are many important systems that are
driven out of equilibrium by time-dependent parameters.
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APPENDIX: THE CONDITIONAL PROBABILITY AT
LONG TIMES

For a sufficiently long time lagt the conditional probabil-
ity rsx,t+t uy,td of the continuous processxstd can be ex-
pressed in terms of the basis functionsxasy,td and x̃asx,t
+tdr0sx,t+td spanning the slow subspaces of the backward

FIG. 4. The response of the average position on the driving
force for the driving strengthA=0.05 and driving frequencyV
=10−5 strongly depends on the magnitude of the noise. Forb=35
the noise is relatively large such that the average position closely
follows its adiabatic value and therefore shows almost no hyster-
esis; forb=48 it stays behind the force, and forb=75 it is hardly
influenced by the force. The hysteresis curves are traced in the
mathematically positive sense.

RATE DESCRIPTION OF FOKKER-PLANCK PROCESSES… PHYSICAL REVIEW E 69, 046109(2004)

046109-9



operator at timet and the forward operator at timet+t, re-
spectively. One therefore can write

rsx,t + tuy,td = o
a,a8

dsa,a8;t,tdrsx,t + tuadxa8sy,td,

sA1d

where we expressed the basis functionx̃asx,t+tdr0sx,t+td
by rsx,t+t uadnast+td, see Eq.s36d and introduced the yet
undetermined coefficientsdsa ,a8 ; t ,td into which the time-

dependent factornastd is absorbed. We now multiply the
conditional probability of the continuous processrsx,t
+t uy,td with rsy,t ua9d, integratex andy over the domains
of attractionDast+td and Da9std, respectively, and obtain
the conditional probability of the discrete processpsa ,t
+t ua9 ,td. Using the ansatzsA1d for rsx,t+t u td we then
find for the coefficientsdsa ,a8 ; t ,td=psa ,t+t u ,a8 ,td. To-
gether with Eq.sA1d this yields the expression Eq.s38d
for the conditional probability of the continuous process
as claimed in Sec. IV.
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