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Effects of additive noise on vibrational resonance in a bistable system
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We study the overdamped motion of a particle in a bistable potential subject to the action of a bichromatic
force and additive noise, within the context of the vibrational resonance phenomenon. Under appropriate
conditions, we obtain analytical expressions for the relevant observables which quantifies this phenomenon.
The theoretical results are compared with those obtained by the numerical solution of the stochastic differential
equation which describes the dynamics of the system. The limits of validity of the theoretical approach are also
discussed.
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I. INTRODUCTION of two time scales: the Kramers time, characterizing the
Durina the | hree decad | ¢ Kh noise-induced interwell transitions, and the time scale asso-
uring the last three decades, a large amount of work hagj;ieq 1o the external driving. Roughly speaking, when

been de\éo'yed tg the stud); of norl1l|nﬁar systemsf iUbJeCt ®Rramers’ time matches half the period of the external driving
hoise and time-dependent forces. In the course of these StU, 5 given noise strengt, the amplification of the weak

ies it has become clear that, in contrast to the role played b¥ignaIF(t) is optimal
stochastic forces in linear systems, noise can drastically alter Recently, an ana.logous phenomenon named vibrational
the response of nonlinear dynamical systems to the extern sonaan\}R) has been shown to occur when the noise is

forcing under some particular circumstances. A particularly, -~ - . °
interesting example of the effects of noise within the frame'reli?llj?jceedokr)iéiﬁakl]llgZefrs?:?i%izr(]jcgypfgr?g:;r%ca:él\i/r?tgcljrl;sg]] am
work of signal processing by_ .nonllinear systems Is sto_chasti S study has also been addressed by other authors an’d from
resonanc¢SR), i.e., the amplification of a weak input signal different points of view, in excitablgl7], spatially extended

by the concerted actions of noise and the nonlinearity of th : ;
) o e 18], and bistable systemgl9,2Q. The interplay of two
system. Although discussed initially within the context Of?nch]nochromatic drivir):g for([is h%s been alsg c%nsidered in

dynamical systems with bistable potentigl3, the phenom- the context of controlling stochastic resonariéd,22. In

eznon .Of lSRd_has alfo beerf1 g.oulnd. n lqtr:er dynamical ;ysftem\?ery many physical situations, noise is present and its effects
[2,3], including systems of biological intere@tee, e.g., Ref. cannot be avoidefor instance, thermal noise or noise aris-

[4] and references thereinMgny authors haye studied the. ing from the environment The interplay between noise and

occurrence of SR not only in the processing of harmonlcnonIinearity can give rise to new aspects of the VR phenom-

signals but also_of aperiodic 5|gna[_5—9], and in the pres- enon, absent in a purely deterministic dynamics. In R,

e.nc.? of ?fOﬂ: V\;]h'te %nd COIFre? no'dsmﬁla‘ Fur:thet_rmo_re, | .a brief numerical study of the effects of additive noise on VR

S|m|dar etecds fave_ ejriaso ound when a chaolic signal I, ¢ peen presented, but a more detailed investigation of this

usc—%‘_hms ead.o nc;_lski ,da'l in the studv of SR is th topic is still lacking. In this paper, we undertake an analytical
€ paradigmatic model in the study o IS the Over'study of the problem that will provide explicit expressions

damped motion of a particle in a symmetric double-well POfor the relevant observables. Our analytical results are com-

tential driven by a periodic signal and noise. Its dynamics i : : : :
described by the stochastic differential equatiSIDE) Sg:;i?ibvgghinngrg%lg]al simulations performed on the model

X(t) == U'Ix®]+F(1) + £O), ()

whereU’(x) is the derivative with respect t of the sym-
metric double-well potentialU(x), F(t) represents the peri-
odic forcing, andi(t) is a zero-average Gaussian white noise We consider a system described by the SQE with
with autocorrelation function(&(t)&(s))=2D48(t—s). SR in  U(x) being the symmetric quartic potential in dimensionless
this model can be understood in terms of the synchronizatioform,

II. DESCRIPTION OF THE MODEL AND
CHARACTERIZATION OF VR

N
U(x) = 277 (2
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F(t) = A coqdQt) + NOQr codNQt + ¢). 3 X
t) LOt) g ®) () 0= 2%_ )

Here, for reasons that will become clear in the following
section, we have introduced in the second monochromati€his parameter represents the ratio of the amplitude associ-
force an arbitrary initial dephasing. The parameteN is ated to the first harmonic t4, and it is directly relate_d to the
chosen to be a positive integer, so tR4t) is periodic with ~ spectral amplificationy through the expressioQ@=v7 (see
the same period=27/Q as the first monochromatic force. Ref.[2]). Notice that the above definition of the parameter
By r we have denoted the ratio of the amplitude of the secQ differs by a factor of 2 from the definition used in the
ond force to its frequency. This ratiois assumed to be of theoretical approach in Reff20], and by a factoA™ from
the same order as the parameters characterizing the potenttfe one used in the numerical results appearing in the
U(x). We are interested in situations in which the parametersame reference. In the deterministic ca8ss0, it has
NQr and N Q appearing in the second monochromaticPeen shown tha® goes through a maximum as the inten-
force are much larger than the rest of the parameters in th@ity of the high-frequency force is increased. This maxi-
problem. In this sense, we will say thef)r cogNQt+¢) is ~ Mum_is approximately localized around the value
a strong, high-frequency monochromatic force. This situ-=\2/3 of the ratio of the amplitude of the second force to
ation can be formally achieved by taking the linNt—o, its frequency{19,20]. This behavior resembles that of SR,

with the ratior kept fixed. with the noise strengt® playing the role of the intensity
The corresponding Fokker-Planck equati&E) for the  Of the high-frequency force. S
probability densityP(x,t) reads When white noise is added, the situation is different.

More precisely, the two main effects of increasing the value
P P { P } of the noise strengtb are that the value at the maximum of
—P(x,t)=—| D— +U’(x) = F(t) | P(x,t). (4)  the resonance curve decreases and, at the same time, its lo-
gt IXL IX cation is shifted towards lower values of the high-frequency
_ . L . amplitude. Even more, for large enough value®othe VR
The _anaIyS|s of this equation is simplified t_)y making use Ofphenomenon completely disappe&2§]. These effects can
two important theorems: thel theorem, which ensures the o o 5iitatively understood as a consequence of the fact that
existence of a unique long time distribution functiBn(x,t)  the white noise provides an input to the system with contri-
[23,24, and the Floquet theorem, which guarantees thafions 1o all the frequencies. On the one hand, the fraction
P..(x,1) is periodic in time with the same periol as the  corresponding to the high-frequency region advances the ap-
laxation transient stage has ended and, consequently, th@ntribution masks the high-frequency force, decreasing its
long time distributionP..(x,t) has been reached. relative importancg20]. To shed some more light on this
The first moment of the probability distribution can be question, an extension of the theoretical approach put for-
used to characterize the system response to the external drifard in Ref.[20] to the case in which white noise is present
ing. As a consequence of the above mentioned theorems, i{ould be desirable. This is the main aim of the following
long time limit (x(t)).. is a periodic function of time with gsection.
period T and, therefore, it can be expanded in Fourier series
as follows: lll. THEORETICAL APPROACH
* , il In this section, we will obtain analytical expressions for
XO)e= 2 XM =Xo+ 22 [XycosnQt - ¢), (5)  the paramete® based on three approximations of different
n=-e n=1 nature. The first two ones are simply generalizations to the
noisy problem of those carried out in the theoretical ap-
where proach developed in the absence of ndj26]. The third
approximation is specific to the noisy problem. For clarity in

21 T inOt the exposition, as well as in the discussion of their validity
Xo== | dt(x(t))..e™™*, (6) " .
TJo conditions, we will present them separately.
and the phase#&, have been chosen so that A. Derivation of the Effective Dynamics

X As a consequence of Eg8) and(4), the time derivative
cosp, = Re(—”) (7)  of the probability densityP(x,t) diverges aN in the limit
Xl N—-co, To avoid this divergence, it is convenient to extract
the fastdependence from(t), and define the new stochastic

X process
= | 2
Singn = 'm< X, ) ' ® y() =x(0) SNt + ). (10)
The observable that has been usually considered to quaihe Fourier components di(t)).. and (y(t)).. are related
tify the VR phenomenon is the parameter according to
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e

Vo= X+ (€28, - 1%, ), (1) 0
n n 2 n, n, A

(15

(eff) : . . _ .
whereY,, is defined from Eq.(6), by replacing(x(t)).. by whereY; " is obtained from Eq(6) with n=1, by replacing

(eff)
(y(t))... Therefore, adN# +£1, we can substitute the coeffi- {x())- by <y(t)>w : ) o
cientX, by Y, in the definition of the paramete [see Eq. The explicit calculation ofJ.(y) for the potential in Eq.

9)]. (2) leads to
The advantage of using the proceg$) instead ofx(t) v 5
becomes clear after writing the FPE for its probability den- Uerdy) = e a(r)yE, (16)

sity, which reads

where we have dropped an irrelevant constant and have in-
J _9 (9 B troduced the quantita(r)=1-3r?/2. From this result, it is
atp(y’t"’u) - ay Day U (Y.L e) = Acod) | P.Lg). clear that the stability of this effective potential depends on
(12) the ratior. More precisely, ifr<y2/3 the potential is
bistable, whereas if =12/3 it is monostable. Thus, an

) increase inr leads to a decrease in the effective barrier
Here, we have introduced the new potentidly,t,¢)  height and, eventually, to its disappearance.

:=U[y+r sin(NQt+¢)], and the dependence of the func- |y summary, we have shown that, fd&> 1, the time evo-
tions on the phase has been written explicitly. From Eq. |ution of the original stochastic procez&) can be approxi-
(12) and the definition ofA(y,t, ¢) it follows that the time  mately described in terms of the dynamics of a Brownian
derivative of P(y,t,¢) is at most of order 1 adl—.  particle moving in the effective potentiélo(y) and in the

Therefore, a large number of oscillations of the functionpresence of noise and the monochromatic fokangQt).
r sin(NQt+¢) appearing in the definition ofA(y,t,¢)

takes place before a significant changefity,t, ¢) occurs.

As a consequence, it is to be expected that, Nor 1,

P(y,t,¢) is almost independent of the phagelf we de- Henceforth, following the approach in R¢20], we will

fine the phase average of an arbitrary functigp,t,) as  assume that the amplitudeis small enough, so that linear
response theoryLRT) provides a good description of the
effective dynamics obtained in the preceding section. An ex-

B. Linear response theory

2
f(y,t) =f(y,t,0): = if de f(y,t,0), (13)  tensive study of the validity conditions of LRT can be found
2mJo in Refs.[28-3(. Within LRT the paramete® in Eq. (15) is
given[2] by
then, forN>1 and any value o 0,2m], one can ap- ~
. kg o< [0, 2n] p Q=[Xerd( V)], (17)
proximate P(y,t,¢) ~P(y,t). Furthermore, the decoupling
approximationf(y,t, ¢)P(y,t, ) ~f(y,t)P(y,t) also holds. Where
Carrying out the phase average in E42) and using the -
decoupling approximation, one obtains Xerd( Q) :J diyes(t)e (18)
0
iﬁ(y t) = 9 Di + U {y) - A cod Q1) 77(y t) is the value atw={) of the Fourier transform of the response
ot d d eff Y function, ye¢(t), corresponding to an overdamped Brownian

(14) particle moving in the effective potentid.(y). This re-
sponse function obeys the well-known fluctuation-

where we have introduced the effective potentifli(y) dissipation theoreri31-33,

=U(y,t, ), which is clearly time independent. This averag- 7(t) d
ing procedure has been previously used in the study of ther- Xefi(t) = — D dt
mal activation in bistable systems under the influence of a
periodic force with moderate to large frequeri@p]. It has  \yhere 7(t) is the Heaviside step function anK(t)

also been used in the explanation of the enhancement OQ'(y(t)y(O))ész) is the equilibrium autocorrelation function of
served in the tunnel splitting of a quantum bistable systerrghe effective system described by the F@8) in the absence

when a very high frequency driving is appli . 7 .
It also fo)I/Iovvg']s, frorr? the gbove c%nsi dzea'[éigrl that. For of external driving. Thus, the stochastic procg&s appear-
’ ing in the definition ofK.(t) is a solution of the SDE

> 1, (Y(0) = (Y1) = [ dyyP..(y,1), where P.(y,t) is

Keff(t) ) (19)

the long time distribution corresponding to the FE®). In y(t) == UL Ly(D)] + &1). (20)
particular, within this approximation, the parame@r is
given by Use of Eq.(19) in Eq. (18) yields
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. Q| (7 , Ket(0) two-mode approximatioi34]. This approximation is based
RE Xert(2)] = - D f dtKeri(t)sin(Qt) — —a | on the existence of a clear-cut separation between the time
0 scales associated to interwell and intrawell motions, and it is
(21 expected to be valid for small values of the noise streifyth
Q Within this approximationK(f,D) and [x({2,D)| are given
Im[xes()] =~ Bf dtKer(t)cod Q). (22 by
0
These two equations, together with Ed7), allow us to K(¥,D) = g1(D)exf ~ A1(DJt] + gy(D)exf - at], (27)

expressQRD in terms of the equilibrium autocorrelation
function Kg¢(t).

For the nonlinear potential in Eq16), explicit expres- —~,
sions forKe(t) are unknown, so that this correlation func- 755 - 1 1) 2a0;(D)g,(D)\4(D)[aA4(D) + 0]

and

tion must be evaluated either numerically or by resorting to D D\ (D) +QZ](a +QZ)
suitable approximations. Before applying to our problem ap- . "
proximate techniques discussed in the literature, it is conve- N gi(D))\f(D) . gg(D)a2 28

nient to reduce the SDIE20) to a more standard form. In
order to do so, let us rescale the coordinate and time, and
define the new stochastic procég)=la(r)|4y[|a(r)| ]

(for r#2/3). Then, from Eq(20), it is easy to verify that

N(D)+02 a2+ 02

In the above expressions, the paramatelfJ”(il):Z is the

V(D) fulfills the SDE curvature at the minima of the potenfﬁ[’?), and )\1(5) is
. the smallest nonvanishing eigenvalue of the Fokker-Planck
“y(f):—D'[y(f)]+E(f), (23 operator corresponding to the SDE3). In the steepest-
. . descent approximation, this eigenvalue is given to leading
where we have introduced the rescaled potential order inD by
y“ Vi _
U@) = +sgra( r)]— (24) V2 1
M(D) = —ex . (29
4D

and the rescaled Gaussian white nc~ﬁ€e with zero average

and autocorrelation functiofé®&T))y=2/a(r)|2DsE-T).  The weightsg,; (D) andg,(D) read
From these considerations, it is straightforward to prove that

the equilibrium autocorrelation function of the original pro- . [M(D) + 1]mz(D) m4(D)
cess,Kei(t,D), and that of the rescaled onK(t,D), are 9,(D) = (30)
related by 1(D) a
~ D — — —
Ker(t,D) =[a(r)[K Ia(r)lt,w : (25 91(D) = my(D) - go(D), (31

Analogously, Eqs(21), (22), and(25) lead to the following where
relation between the Fourier transform of the response func- "
tion of the original processy.{({2,D)|, and that of the res- f dyy2"e “U®)D

caled one[x(Q,D)|,

m2n(D) -
~ 1 |~ Q D dv UG/)/D
|Xeff(‘Q:D)| = X( |a(r)| ’ a(r)|2> . (26) f ¥e
_ (o101
_ (Z'B)n/zr(n + 12Dyl ,..(,ZD) %] 32)
C. Weak noise approximation I'(1/2D_y/1- (2D)™*2]

The expressiong25) and (26) allow us to evaluate

are the nonvanishing moments of the equilibrium distribu-
eff(t D) and |xe:(©2,D)| from the rescaled functions g g

tion. Using the asymptotic expan5|on of the parabolic cylin-
(D) and[¥(Q2,D)|. The asymptotic behaviors of these res- der functions for small values d, these weights can be
caled functions for small values of the noise strergthave approximated by,(D)~1-(a+1)D/a andg,(D) ~D/a to
been widely studied in the literature. To summarize the reflrst order inD.
sults, we will consider separately two cases. — —_ - .

First, if r <y2/3, thenU(y) =¥/ 4-¥2/2 is the archetypal Second, if r>y2/3, then UF)=y'/4+y%/2 is a
symmetric quartic double-well potential expressed in dimenimonostable potential. In this case, for small value®othe
sionless form. For this bistable potential, we can use thautocorrelation funcﬂorh((“ D) is given[35] by
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KED) = Doy — A D sembles, except for a factor of 2, the transcendental equation
K(T,D) = Dexdl - |A, (DT, (33 obtained within the two-state model to determine the noise
with intensity that maximizes the spectral amplificatieee, e.g.,
. . Ref.[2] and references therginThe difference in the factor
Ay(D)=-2+(1-6D)¥2 (34) of 2 is due to the fact that, in that case, only the noise inten-

sity is varied, whereas in our case, by varyingwe are
Qimultaneously modifying the frequency and the noise inten-
sity.

The transcendental equati@87) provides an explanation
— (35  for the numerically observed behavior of the location of the
[A2(D) + Q?]V2 maximum as a function dD (see Sec. )l For a fixed value
R . ) of D, the function\3[D/a%(r)] is a monotonically increasing
To evaluateKey(t, D) and|Ye((2,D)| one simply introduces  fnction ofr in the interval[0,2/3). Also, for fixed values
either the expression®7) and(28) or expression$33) and 4t D and Q, 2[Q/a(r)]a(r)/ (4D)-1] is a monotonically
(39) into Egs.(25) and(26). Finally, within this approxima-  yecreasing function of in the same interval. Thus, the ex-
tion, the paramete® will be evaluated by replacing in EQ. istence of a solution of Eq@37) in the interval (0,72/3)
(17) the result obtained fofy.:(2,D)|. It is important to requires  the inequality A\2[D/a%0)]=A2(D)<2[Q/
emphasize that the approximate expressi@Ts, (28), (33), a(O)]Z[aZ(O)/(4D)—1]:292[1/(4[1))—1]. The?efore, the

and(35) have been obtained under the assumptionEh&  same inequality is required for the existence of VR. If we
a small parameter. Therefore, the resulting expressions fq{gyy keepr and(} fixed and look at both sides of E(7) as
Kert(t, D), [Xerf(2,D)|, andQ are expected to be valid only 4 function ofD, we notice that P/a(r)]4a2(r)/(4D)-1] is
for small values ofDa(r)|. Taking into account that, for a monotonically decreasing function oD, whereas
D #0, the parameteb|a(r)|  diverges at=y2/3, then itis  \2[D/a2(r)] is a monotonically increasing function B We
clear that, even foD<1, there exists a region aroumd  then conclude that the abscissa at the intersection point be-
=\2/3 in which the resulting expressions féi(t,D),  tween these two functions,,, is shifted towards the left as
|Xert(Q2,D)], and Q are not applicable. In particular, the D increases. This is exactly the behavior observed numeri-
expression forQ is expected to provide a successful ex-cally in Ref.[20]. Obviously, VR disappears for values bBf
planation of the VR phenomenon whenever its maximumgreater than the critical valug,, for which ry,=0. This criti-
takes place at a value of outside the above mentioned cal value fulfills the transcendental equation
region.
From the above considerations, it is also possible to ob- )\%(Dc) - zﬂz[i - 1] (39)
tain an expression for the location of the maximum charac- 4D,
terizing the VR phenomenon in the presence of white noise.
According to the numerical results put forward in REgf0],
this maximum is located at a valug, such thatr,, <2/3. IV. COMPARISON WITH THE NUMERICAL
Then, to evaluate the parame@in the neighborhood afy,, SOLUTION
one has to consider E@28) and follow the procedure de-
scribed in the above paragraph_ As the expression thus ob- In thIS Section, we Compare the reSU|tS Obtained fOI’ the
tained is rather cumbersome, it is convenient to introduce RarameteQ by means of the numerical solution of the SDE
further approximation. More precisely, we will assume that,(1). with the analytical expressions obtained in the preceding
aroundr,, the contribution due to the intrawell motion is Section. In order to evaluate numerically the param€ea
negligible, so that just the second term in E@8) with  large enough number of stochastic trajectorit), has
0,(D)=1 is present Therefore, the paramdgs a function (o SRRl . o, 8 il can
of r obtained from Eqs(17) and(26) is given by dition xo. The numerical solution of the SD&) has been
a(r) N[D/a?(r)] carried out by using the algorithm put forward in RE36]
Q(r) = F{)\Z[D/ 2 21/2 (36) (see also the Appendix in Ref30]). After allowing for a
(D/a’(n ]+ [Q/a(r) %} . . :
relaxation transient stage, we evaluate the long time average
for r <12/3. The location of the maximunm,,, is readily by
determined from the equatid@’(ry;) =0, whereQ’(r) rep- M
resents the derivative o®(r) with respect tor. Conse- (x(t))m:iE XM (t) (39)
quently, from Eq.(36) it follows thatr,, obeys the tran- M1 ’
scendental equation

Consequently, the Fourier transform of the response functio
reads

20D)| = |A1(D)]

whereM is the number of stochastic trajectories considered.
,, D Q |? a(ry) Then, the paramete® is obtained from Eqs(9) and (6),
1| 52 = -1 (37) with n=1, by numerical quadrature
a“(ry) a(ry) 4D s cal g '
In Fig. 1, we depict the dependence @fvs. r. The fol-
After making the replacemenid/a(ry) — D and Q/a(ry,) lowing set of parameter values has been consideMeds0,
—Q in the above equation, the resulting expression re¢=0, 1=3.4xX1072, A=1.1x1072 D=1.34x 1072 in panel
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cal results around the maximum gets worse. This is due to
the proximity of the location of this maximum to the critical

(@)
] valuer=+2/3.

V. CONCLUSIONS

(c) ] (@ | We have studied the motion of a particle in a bistable

|

|

|

|

|

AN

|

|

|

1
o I potential in the presence of white noise and an external

5 —.\\J | _4‘_\‘} ] bichromatic force, within the context of the VR phenom-
. enon. Analytical expressions for the parame€@rwhich
0 : s AR quantifies this phenomenon have been obtained based on
0 05,1 150 05, 1 15 three simplifying approximations of different nature. First,
FIG. 1. Dependence of the parame€@ivs r corresponding to the exac.t dynamlcs of th.e system has peen reduged to that of
the noise strength valueB=1.34x 102 [panel (a)], D=6.72 a Brownllan particle moving in an effective potential and un-
X 1072 [panel(b)], D=1.34x 101 [panel(c)], andD=4.03x 10"t der .the influence of white noise (_emd one Qf th.e monochro-
[panel (d)]. The rest of the parameter values &e50, ¢=0, @ Matic forces. In order to make this approximation, we have
=3.4x 102, and A=1.1x 10°2. With circles we have plotted the assumed that the other monochromatic force is a strong,
results obtained from the numerical solution of the SMEogether  high-frequency field. Second, we have applied LRT to ex-
with Egs. (2) and (3). With solid lines we have depicted the ana- press the paramet€) in terms of the equilibrium autocorre-
lytical values ofQ provided by Eqs(17) and(26), and either Egs. lation function associated to the effective dynamics in the
(28)+32), for r<y2/3, or Egs.(35 and (34), for r>+2/3. The  apsence of the external driving. Finally, we have obtained
dotted lines .indicate the Ipcation of the.critical valge\s“2/3, and analytical expressions fa@ within the weak noise approxi-
the dashed lines the location of the maximum predicted by(E#). mation. To do so, it has been necessary to consider two dis-
(@), D=6.72x 1072 in panel(b), D=1.34x 101 in panel(c),  Joint regions of values of the ratioseparated by the critical
and D=4.03x 107! in panel (d). They correspond to four Valuer=y2/3.We have also obtained a transcendental equa-
representative cases appearing in Fig. 6 in R&@]. Note tion for the location of the maximum d®(r) which charac-
that the parameter values appearing in that reference must lperizes the VR phenomenon, as well as for the condition
rescaled in order to reduce the bistable potential used there tghder which this phenomenon disappears. It is important to
the standard dimesionless form in H@). With circles we  emphasize that our analytical approach allows us to predict
have plotted the results obj[alned from the numepcal splutm@he three main effects of additive noise on the VR phenom-
ﬁ;etzewiai\(/le) é(;ggt?edr tvr;"th Eq|s§2) fmdl(?’)' with ngl'% enon independent of numerical simulations. In particular, we
picted the analytical valuesQoprovide have the following

by Egs. (17) and (26), and either Eqs.(28+32), for Equation(37) predicts that the location of the maximum

r<\2/3, or Eqs(35) and(34), for r >+2/3. The location of . .
the critical valuer=v2/3 is indicated by the vertical dotted chgracterlzmg Fhe VR phenomenon shifts to the left as the
noise strength increases.

lines. In addition, in panelgsa) and (b), we have depicted . . . :
with vertical dashed I?nes 'fhaé Ioca’Eio)ns of the maxipma pre- The gnalytlcal expression f@ predicts the lowering of ,
dicted by Eq(37). The critical value of the noise strength at 1€ maximum value of the resonance curve as the noise
which the VR phenomenon disappears, obtained from E¢Strength increases. _
(39), is D,=1.154x 10°L. The noise strength values in panels Finally, our theoretical results also predict that the VR
(c) and(d) are greater thaB,, so it is to be expected that the Phenomenon disappears for large enough values of the noise
VR phenomenon is not present in these cases, as it is coftrength. Furthermore, we also give an expres$win Eq.
firmed numerically. (38)] for the highest value ob beyond which the VR phe-

A glance at Fig. 1 reveals that the analytical expressiongiomenon disappears.
provide a good description of the main features of the VR Comparison with the numerical solution of the original
phenomenon in the presence of white noise, at least if th€DE shows that these analytical expressions provide a good
ratior is far enough away from the critical value y2/3. In  quantitative description of the VR phenomeﬂl, at least if it
particular, the analytical results describe correctly the shift otakes place outside a critical region arourdy2/3. For suf-
the location of the maximum towards lower valuesrpfais ficiently large D values, this limitation is not important, as
well as the decrease of the value@#ft the maximum, as the the VR maximum is well outside this criticalregion. In the
noise strength increases. It is important to emphasize that, agry small noise limit, the peak iQ appears arouna
we mentioned in Sec. Il C, the analytical results are not=42/3 and our approach becomes problematic. Neverthe-
applicable in a neighborhood of the critical valuey2/3, as  less, in this limit the VR phenomenon is well described by
a consequence of the divergence of the effective noisthe previously known deterministic treatment. With this
strengthD/[a(r)]2. The appearance of the vertical asymptotework, we have attempted to provide a theoretical background
at this critical value makes this failure evident. Note that, into the numerical studies on the influence of additive noise on
panel(a), the agreement between the numerical and analytiVR carried out in Ref[20].
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