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We study the overdamped motion of a particle in a bistable potential subject to the action of a bichromatic
force and additive noise, within the context of the vibrational resonance phenomenon. Under appropriate
conditions, we obtain analytical expressions for the relevant observables which quantifies this phenomenon.
The theoretical results are compared with those obtained by the numerical solution of the stochastic differential
equation which describes the dynamics of the system. The limits of validity of the theoretical approach are also
discussed.
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I. INTRODUCTION

During the last three decades, a large amount of work has
been devoted to the study of nonlinear systems subject to
noise and time-dependent forces. In the course of these stud-
ies it has become clear that, in contrast to the role played by
stochastic forces in linear systems, noise can drastically alter
the response of nonlinear dynamical systems to the external
forcing under some particular circumstances. A particularly
interesting example of the effects of noise within the frame-
work of signal processing by nonlinear systems is stochastic
resonance(SR), i.e., the amplification of a weak input signal
by the concerted actions of noise and the nonlinearity of the
system. Although discussed initially within the context of
dynamical systems with bistable potentials[1], the phenom-
enon of SR has also been found in other dynamical systems
[2,3], including systems of biological interest(see, e.g., Ref.
[4] and references therein). Many authors have studied the
occurrence of SR not only in the processing of harmonic
signals but also of aperiodic signals[5–9], and in the pres-
ence of both white and colored noise[10–13]. Furthermore,
similar effects have been also found when a chaotic signal is
used instead of noise[14,15].

The paradigmatic model in the study of SR is the over-
damped motion of a particle in a symmetric double-well po-
tential driven by a periodic signal and noise. Its dynamics is
described by the stochastic differential equation(SDE)

ẋstd = − U8fxstdg + Fstd + jstd, s1d

whereU8sxd is the derivative with respect tox of the sym-
metric double-well potentialUsxd, Fstd represents the peri-
odic forcing, andjstd is a zero-average Gaussian white noise
with autocorrelation functionkjstdjssdl=2Ddst−sd. SR in
this model can be understood in terms of the synchronization

of two time scales: the Kramers time, characterizing the
noise-induced interwell transitions, and the time scale asso-
ciated to the external driving. Roughly speaking, when
Kramers’ time matches half the period of the external driving
for a given noise strengthD, the amplification of the weak
signalFstd is optimal.

Recently, an analogous phenomenon named vibrational
resonance(VR) has been shown to occur when the noise is
replaced by a high-frequency periodic force of varying am-
plitude. Originally described by Landa and McClintock[16],
its study has also been addressed by other authors and from
different points of view, in excitable[17], spatially extended
[18], and bistable systems[19,20]. The interplay of two
monochromatic driving forces has been also considered in
the context of controlling stochastic resonance[21,22]. In
very many physical situations, noise is present and its effects
cannot be avoided(for instance, thermal noise or noise aris-
ing from the environment). The interplay between noise and
nonlinearity can give rise to new aspects of the VR phenom-
enon, absent in a purely deterministic dynamics. In Ref.[20],
a brief numerical study of the effects of additive noise on VR
has been presented, but a more detailed investigation of this
topic is still lacking. In this paper, we undertake an analytical
study of the problem that will provide explicit expressions
for the relevant observables. Our analytical results are com-
pared with numerical simulations performed on the model
described in Ref.[20].

II. DESCRIPTION OF THE MODEL AND
CHARACTERIZATION OF VR

We consider a system described by the SDE(1), with
Usxd being the symmetric quartic potential in dimensionless
form,

Usxd =
x4

4
−

x2

2
, s2d

andFstd the bichromatic force
*Electronic address: jcasado@us.es
†Electronic address: baltanas@escet.urjc.es

PHYSICAL REVIEW E 69, 046108(2004)

1539-3755/2004/69(4)/046108(7)/$22.50 ©2004 The American Physical Society69 046108-1



Fstd = A cossVtd + NVr cossNVt + wd. s3d

Here, for reasons that will become clear in the following
section, we have introduced in the second monochromatic
force an arbitrary initial dephasingw. The parameterN is
chosen to be a positive integer, so thatFstd is periodic with
the same periodT=2p /V as the first monochromatic force.
By r we have denoted the ratio of the amplitude of the sec-
ond force to its frequency. This ratior is assumed to be of
the same order as the parameters characterizing the potential
Usxd. We are interested in situations in which the parameters
N V r and N V appearing in the second monochromatic
force are much larger than the rest of the parameters in the
problem. In this sense, we will say thatNVr cossNVt+wd is
a strong, high-frequency monochromatic force. This situ-
ation can be formally achieved by taking the limitN→`,
with the ratior kept fixed.

The corresponding Fokker-Planck equation(FPE) for the
probability densityPsx,td reads

]

] t
Psx,td =

]

] x
FD

]

] x
+ U8sxd − FstdGPsx,td. s4d

The analysis of this equation is simplified by making use of
two important theorems: theH theorem, which ensures the
existence of a unique long time distribution functionP`sx,td
f23,24g, and the Floquet theorem, which guarantees that
P`sx,td is periodic in time with the same periodT, as the
external forcef25g. Henceforth, we will assume that the re-
laxation transient stage has ended and, consequently, the
long time distributionP`sx,td has been reached.

The first moment of the probability distribution can be
used to characterize the system response to the external driv-
ing. As a consequence of the above mentioned theorems, its
long time limit kxstdl` is a periodic function of time with
periodT and, therefore, it can be expanded in Fourier series
as follows:

kxstdl` = o
n=−`

`

Xne
inVt = X0 + 2o

n=1

`

uXnucossnVt − fnd, s5d

where

Xn =
1

T
E

0

T

dtkxstdl`e−inVt, s6d

and the phasesfn have been chosen so that

cosfn = ReS Xn

uXnuD , s7d

sinfn = − ImS Xn

uXnuD . s8d

The observable that has been usually considered to quan-
tify the VR phenomenon is the parameter

Q = 2
uX1u
A

. s9d

This parameter represents the ratio of the amplitude associ-
ated to the first harmonic toA, and it is directly related to the
spectral amplificationh through the expressionQ=Îh ssee
Ref. f2gd. Notice that the above definition of the parameter
Q differs by a factor of 2 from the definition used in the
theoretical approach in Ref.f20g, and by a factorA−1 from
the one used in the numerical results appearing in the
same reference. In the deterministic case,D=0, it has
been shown thatQ goes through a maximum as the inten-
sity of the high-frequency force is increased. This maxi-
mum is approximately localized around the valuer
=Î2/3 of the ratio of the amplitude of the second force to
its frequencyf19,20g. This behavior resembles that of SR,
with the noise strengthD playing the role of the intensity
of the high-frequency force.

When white noise is added, the situation is different.
More precisely, the two main effects of increasing the value
of the noise strengthD are that the value at the maximum of
the resonance curve decreases and, at the same time, its lo-
cation is shifted towards lower values of the high-frequency
amplitude. Even more, for large enough values ofD, the VR
phenomenon completely disappears[20]. These effects can
be qualitatively understood as a consequence of the fact that
the white noise provides an input to the system with contri-
butions to all the frequencies. On the one hand, the fraction
corresponding to the high-frequency region advances the ap-
pearance of the maximum. On the other hand, the remaining
contribution masks the high-frequency force, decreasing its
relative importance[20]. To shed some more light on this
question, an extension of the theoretical approach put for-
ward in Ref.[20] to the case in which white noise is present
would be desirable. This is the main aim of the following
section.

III. THEORETICAL APPROACH

In this section, we will obtain analytical expressions for
the parameterQ based on three approximations of different
nature. The first two ones are simply generalizations to the
noisy problem of those carried out in the theoretical ap-
proach developed in the absence of noise[20]. The third
approximation is specific to the noisy problem. For clarity in
the exposition, as well as in the discussion of their validity
conditions, we will present them separately.

A. Derivation of the Effective Dynamics

As a consequence of Eqs.(3) and(4), the time derivative
of the probability densityPsx,td diverges asN in the limit
N→`. To avoid this divergence, it is convenient to extract
the fast dependence fromxstd, and define the new stochastic
process

ystd = xstd − r sinsNVt + wd. s10d

The Fourier components ofkxstdl` and kystdl` are related
according to
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Yn = Xn +
ir

2
seiwdn,N − e−iwdn,−Nd, s11d

where Yn is defined from Eq.s6d, by replacingkxstdl` by
kystdl`. Therefore, asNÞ ±1, we can substitute the coeffi-
cient X1 by Y1 in the definition of the parameterQ fsee Eq.
s9dg.

The advantage of using the processystd instead ofxstd
becomes clear after writing the FPE for its probability den-
sity, which reads

]

] t
Psy,t,wd =

]

] y
FD

]

] y
+ U8sy,t,wd − A cossVtdGPsy,t,wd.

s12d

Here, we have introduced the new potentialUsy,t ,wd
ªUfy+r sinsNVt+wdg, and the dependence of the func-
tions on the phasew has been written explicitly. From Eq.
s12d and the definition ofUsy,t ,wd it follows that the time
derivative of Psy,t ,wd is at most of order 1 asN→`.
Therefore, a large number of oscillations of the function
r sinsNVt+wd appearing in the definition ofUsy,t ,wd
takes place before a significant change inPsy,t ,wd occurs.
As a consequence, it is to be expected that, forN@1,
Psy,t ,wd is almost independent of the phasew. If we de-
fine the phase average of an arbitrary functionfsy,t ,wd as

f̄sy,td = fsy,t,wd: =
1

2p
E

0

2p

dw fsy,t,wd, s13d

then, for N@1 and any value ofwP f0,2pg, one can ap-

proximate Psy,t ,wd< P̄sy,td. Furthermore, the decoupling

approximation fsy,t ,wdPsy,t ,wd< f̄sy,tdP̄sy,td also holds.
Carrying out the phase average in Eq.s12d and using the
decoupling approximation, one obtains

]

] t
P̄sy,td =

]

] y
FD

]

] y
+ Uef f8 syd − A cossVtdGP̄sy,td,

s14d

where we have introduced the effective potentialUef fsyd
ªUsy,t ,wd, which is clearly time independent. This averag-
ing procedure has been previously used in the study of ther-
mal activation in bistable systems under the influence of a
periodic force with moderate to large frequencyf26g. It has
also been used in the explanation of the enhancement ob-
served in the tunnel splitting of a quantum bistable system
when a very high frequency driving is appliedf27g.

It also follows from the above considerations that, forN

@1, kystdl`<kystdl`
sef fd : =e−`

` dyyP̄`sy,td, where P̄`sy,td is
the long time distribution corresponding to the FPE(14). In
particular, within this approximation, the parameterQ is
given by

Q = 2
uY1

sef fdu
A

, s15d

whereY1
sef fd is obtained from Eq.s6d with n=1, by replacing

kxstdl` by kystdl`
sef fd.

The explicit calculation ofUef fsyd for the potential in Eq.
(2) leads to

Uef fsyd =
y4

4
− asrd

y2

2
, s16d

where we have dropped an irrelevant constant and have in-
troduced the quantityasrd=1−3r2/2. From this result, it is
clear that the stability of this effective potential depends on
the ratio r. More precisely, if r ,Î2/3 the potential is
bistable, whereas ifr ùÎ2/3 it is monostable. Thus, an
increase inr leads to a decrease in the effective barrier
height and, eventually, to its disappearance.

In summary, we have shown that, forN@1, the time evo-
lution of the original stochastic processxstd can be approxi-
mately described in terms of the dynamics of a Brownian
particle moving in the effective potentialUef fsyd and in the
presence of noise and the monochromatic forceA cossVtd.

B. Linear response theory

Henceforth, following the approach in Ref.[20], we will
assume that the amplitudeA is small enough, so that linear
response theory(LRT) provides a good description of the
effective dynamics obtained in the preceding section. An ex-
tensive study of the validity conditions of LRT can be found
in Refs.[28–30]. Within LRT the parameterQ in Eq. (15) is
given [2] by

Q = ux̂ef fsVdu, s17d

where

x̂ef fsVd =E
0

`

dtxef fstde−iVt s18d

is the value atv=V of the Fourier transform of the response
function,xef fstd, corresponding to an overdamped Brownian
particle moving in the effective potentialUef fsyd. This re-
sponse function obeys the well-known fluctuation-
dissipation theoremf31–33g,

xef fstd = −
hstd
D

d

dt
Kef fstd, s19d

where hstd is the Heaviside step function andKef fstd
=kystdys0dleq

sef fd is the equilibrium autocorrelation function of
the effective system described by the FPEs14d in the absence
of external driving. Thus, the stochastic processystd appear-
ing in the definition ofKef fstd is a solution of the SDE

ẏstd = − Uef f8 fystdg + jstd. s20d

Use of Eq.s19d in Eq. s18d yields
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Refx̂ef fsVdg = −
V

DFE0

`

dtKef fstdsinsVtd −
Kef fs0d

V
G ,

s21d

Imfx̂ef fsVdg = −
V

D
E

0

`

dtKef fstdcossVtd. s22d

These two equations, together with Eq.s17d, allow us to
expressQsLRTd in terms of the equilibrium autocorrelation
function Kef fstd.

For the nonlinear potential in Eq.(16), explicit expres-
sions forKef fstd are unknown, so that this correlation func-
tion must be evaluated either numerically or by resorting to
suitable approximations. Before applying to our problem ap-
proximate techniques discussed in the literature, it is conve-
nient to reduce the SDE(20) to a more standard form. In
order to do so, let us rescale the coordinate and time, and
define the new stochastic processỹst̃d= uasrdu−1/2yfuasrdu−1t̃g
(for r ÞÎ2/3). Then, from Eq.(20), it is easy to verify that
ỹst̃d fulfills the SDE

ẏ̃st̃d = − Ũ8fỹst̃dg + j̃st̃d, s23d

where we have introduced the rescaled potential

Ũsỹd =
ỹ4

4
+ sgnfasrdg

ỹ2

2
, s24d

and the rescaled Gaussian white noisej̃st̃d with zero average

and autocorrelation functionkj̃st̃dj̃st̃8dl=2uasrdu−2Ddst̃− t̃8d.
From these considerations, it is straightforward to prove that
the equilibrium autocorrelation function of the original pro-

cess,Kef fst ,Dd, and that of the rescaled one,K̃st̃ ,D̃d, are
related by

Kef fst,Dd = uasrduK̃Suasrdut,
D

uasrdu2D . s25d

Analogously, Eqs.s21d, s22d, ands25d lead to the following
relation between the Fourier transform of the response func-
tion of the original process,ux̂ef fsV ,Ddu, and that of the res-

caled one,ux̂̃sṼ ,D̃du,

ux̂ef fsV,Ddu =
1

uasrdu
U x̂̃S V

uasrdu
,

D

uasrdu2DU . s26d

C. Weak noise approximation

The expressions(25) and (26) allow us to evaluate
Kef fst ,Dd and ux̂ef fsV ,Ddu from the rescaled functions

K̃st̃ ,D̃d andux̂̃sṼ ,D̃du. The asymptotic behaviors of these res-

caled functions for small values of the noise strengthD̃ have
been widely studied in the literature. To summarize the re-
sults, we will consider separately two cases.

First, if r ,Î2/3, thenŨsỹd= ỹ4/4−ỹ2/2 is the archetypal
symmetric quartic double-well potential expressed in dimen-
sionless form. For this bistable potential, we can use the

two-mode approximation[34]. This approximation is based
on the existence of a clear-cut separation between the time
scales associated to interwell and intrawell motions, and it is

expected to be valid for small values of the noise strengthD̃.

Within this approximation,K̃st̃ ,D̃d and ux̂̃sṼ ,D̃du are given
by

K̃st̃,D̃d = g1sD̃dexpf− l1sD̃dt̃g + g2sD̃dexpf− at̃g, s27d

and

ux̂̃sṼ,D̃du =
1

D̃
H2ag1sD̃dg2sD̃dl1sD̃dfal1sD̃d + Ṽ2g

fl1
2sD̃d + Ṽ2gsa2 + Ṽ2d

+
g1

2sD̃dl1
2sD̃d

l1
2sD̃d + Ṽ2

+
g2

2sD̃da2

a2 + Ṽ2J1/2

. s28d

In the above expressions, the parametera=Ũ9s±1d=2 is the

curvature at the minima of the potentialŨsỹd, andl1sD̃d is
the smallest nonvanishing eigenvalue of the Fokker-Planck
operator corresponding to the SDEs23d. In the steepest-
descent approximation, this eigenvalue is given to leading

order inD̃ by

l1sD̃d <
Î2

p
expS−

1

4D̃
D . s29d

The weightsg1sD̃d andg2sD̃d read

g2sD̃d =
fl1sD̃d + 1gm2sD̃d − m4sD̃d

l1sD̃d − a
, s30d

g1sD̃d = m2sD̃d − g2sD̃d, s31d

where

m2nsD̃d =

E
−`

`

dỹỹ2ne−Ũsỹd/D̃

E
−`

`

dỹe−Ũsỹd/D̃

= s2D̃dn/2Gsn + 1/2dD−n−1/2f− s2D̃d−1/2g

Gs1/2dD−1/2f− s2D̃d−1/2g
s32d

are the nonvanishing moments of the equilibrium distribu-
tion. Using the asymptotic expansion of the parabolic cylin-

der functions for small values ofD̃, these weights can be

approximated byg1sD̃d<1−sa+1dD̃ /a andg2sD̃d< D̃ /a to

first order inD̃.

Second, if r .Î2/3, then Ũsỹd= ỹ4/4+ỹ2/2 is a

monostable potential. In this case, for small values ofD̃, the

autocorrelation functionK̃st̃ ,D̃d is given [35] by
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K̃st̃,D̃d = D̃expf− uL1sD̃dut̃g, s33d

with

L1sD̃d = − 2 + s1 − 6D̃d1/2. s34d

Consequently, the Fourier transform of the response function
reads

ux̂̃sṼ,D̃du =
uL1sD̃du

fL1
2sD̃d + Ṽ2g1/2

. s35d

To evaluateKef fst ,Dd andux̂ef fsV ,Ddu one simply introduces
either the expressionss27d and s28d or expressionss33d and
s35d into Eqs.s25d ands26d. Finally, within this approxima-
tion, the parameterQ will be evaluated by replacing in Eq.
s17d the result obtained forux̂ef fsV ,Ddu. It is important to
emphasize that the approximate expressionss27d, s28d, s33d,
and s35d have been obtained under the assumption thatD̃ is
a small parameter. Therefore, the resulting expressions for
Kef fst ,Dd, ux̂ef fsV ,Ddu, andQ are expected to be valid only
for small values ofDuasrdu−2. Taking into account that, for
DÞ0, the parameterDuasrdu−2 diverges atr =Î2/3, then it is
clear that, even forD!1, there exists a region aroundr
=Î2/3 in which the resulting expressions forKef fst ,Dd,
ux̂ef fsV ,Ddu, and Q are not applicable. In particular, the
expression forQ is expected to provide a successful ex-
planation of the VR phenomenon whenever its maximum
takes place at a value ofr outside the above mentioned
region.

From the above considerations, it is also possible to ob-
tain an expression for the location of the maximum charac-
terizing the VR phenomenon in the presence of white noise.
According to the numerical results put forward in Ref.[20],
this maximum is located at a valuerM such thatrM ,Î2/3.
Then, to evaluate the parameterQ in the neighborhood ofrM,
one has to consider Eq.(28) and follow the procedure de-
scribed in the above paragraph. As the expression thus ob-
tained is rather cumbersome, it is convenient to introduce a
further approximation. More precisely, we will assume that,
aroundrM, the contribution due to the intrawell motion is
negligible, so that just the second term in Eq.(28) with

g1sD̃d=1 is present. Therefore, the parameterQ as a function
of r obtained from Eqs.(17) and (26) is given by

Qsrd =
asrd
D

l1fD/a2srdg
hl1

2fD/a2srdg + fV/asrdg2j1/2 s36d

for r ,Î2/3. The location of the maximum,rM, is readily
determined from the equationQ8srMd=0, whereQ8srd rep-
resents the derivative ofQsrd with respect tor. Conse-
quently, from Eq.s36d it follows that rM obeys the tran-
scendental equation

l1
2F D

a2srMdG = 2F V

asrMdG2Fa2srMd
4D

− 1G . s37d

After making the replacementsD /a2srMd→D andV /asrMd
→V in the above equation, the resulting expression re-

sembles, except for a factor of 2, the transcendental equation
obtained within the two-state model to determine the noise
intensity that maximizes the spectral amplificationssee, e.g.,
Ref. f2g and references thereind. The difference in the factor
of 2 is due to the fact that, in that case, only the noise inten-
sity is varied, whereas in our case, by varyingr, we are
simultaneously modifying the frequency and the noise inten-
sity.

The transcendental equation(37) provides an explanation
for the numerically observed behavior of the location of the
maximum as a function ofD (see Sec. II). For a fixed value
of D, the functionl1

2fD /a2srdg is a monotonically increasing
function of r in the intervalf0,Î2/3d. Also, for fixed values
of D and V, 2fV /asrdg2fa2srd / s4Dd−1g is a monotonically
decreasing function ofr in the same interval. Thus, the ex-
istence of a solution of Eq.(37) in the interval s0,Î2/3d
requires the inequality l1

2fD /a2s0dg=l1
2sDd,2fV /

as0dg2fa2s0d / s4Dd−1g=2V2f1/s4Dd−1g. Therefore, the
same inequality is required for the existence of VR. If we
now keepr andV fixed and look at both sides of Eq.(37) as
a function ofD, we notice that 2fV /asrdg2fa2srd / s4Dd−1g is
a monotonically decreasing function ofD, whereas
l1

2fD /a2srdg is a monotonically increasing function ofD. We
then conclude that the abscissa at the intersection point be-
tween these two functions,rM, is shifted towards the left as
D increases. This is exactly the behavior observed numeri-
cally in Ref. [20]. Obviously, VR disappears for values ofD
greater than the critical valueDc for which rM =0. This criti-
cal value fulfills the transcendental equation

l1
2sDcd = 2V2F 1

4Dc
− 1G . s38d

IV. COMPARISON WITH THE NUMERICAL
SOLUTION

In this section, we compare the results obtained for the
parameterQ by means of the numerical solution of the SDE
(1), with the analytical expressions obtained in the preceding
section. In order to evaluate numerically the parameterQ, a
large enough number of stochastic trajectories,xskdstd, has
been generated by integrating the SDE(1) for every realiza-
tion of the white noisejstd, starting from a given initial con-
dition x0. The numerical solution of the SDE(1) has been
carried out by using the algorithm put forward in Ref.[36]
(see also the Appendix in Ref.[30]). After allowing for a
relaxation transient stage, we evaluate the long time average
by

kxstdl` =
1

M
o
k=1

M

xskdstd, s39d

whereM is the number of stochastic trajectories considered.
Then, the parameterQ is obtained from Eqs.s9d and s6d,
with n=1, by numerical quadrature.

In Fig. 1, we depict the dependence ofQ vs. r. The fol-
lowing set of parameter values has been considered:N=50,
w=0, V=3.4310−2, A=1.1310−2, D=1.34310−2 in panel
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(a), D=6.72310−2 in panel(b), D=1.34310−1 in panel(c),
and D=4.03310−1 in panel (d). They correspond to four
representative cases appearing in Fig. 6 in Ref.[20]. Note
that the parameter values appearing in that reference must be
rescaled in order to reduce the bistable potential used there to
the standard dimesionless form in Eq.(2). With circles we
have plotted the results obtained from the numerical solution
of the SDE(1) together with Eqs.(2) and (3). With solid
lines we have depicted the analytical values ofQ provided
by Eqs. (17) and (26), and either Eqs.(28)–(32), for
r ,Î2/3, or Eqs.(35) and(34), for r .Î2/3. The location of
the critical valuer =Î2/3 is indicated by the vertical dotted
lines. In addition, in panels(a) and (b), we have depicted
with vertical dashed lines the locations of the maxima pre-
dicted by Eq.(37). The critical value of the noise strength at
which the VR phenomenon disappears, obtained from Eq.
(38), is Dc=1.154310−1. The noise strength values in panels
(c) and(d) are greater thanDc, so it is to be expected that the
VR phenomenon is not present in these cases, as it is con-
firmed numerically.

A glance at Fig. 1 reveals that the analytical expressions
provide a good description of the main features of the VR
phenomenon in the presence of white noise, at least if the
ratio r is far enough away from the critical valuer =Î2/3. In
particular, the analytical results describe correctly the shift of
the location of the maximum towards lower values ofr, as
well as the decrease of the value ofQ at the maximum, as the
noise strength increases. It is important to emphasize that, as
we mentioned in Sec. III C, the analytical results are not
applicable in a neighborhood of the critical valuer =Î2/3, as
a consequence of the divergence of the effective noise
strengthD / fasrdg2. The appearance of the vertical asymptote
at this critical value makes this failure evident. Note that, in
panel(a), the agreement between the numerical and analyti-

cal results around the maximum gets worse. This is due to
the proximity of the location of this maximum to the critical
value r =Î2/3.

V. CONCLUSIONS

We have studied the motion of a particle in a bistable
potential in the presence of white noise and an external
bichromatic force, within the context of the VR phenom-
enon. Analytical expressions for the parameterQ which
quantifies this phenomenon have been obtained based on
three simplifying approximations of different nature. First,
the exact dynamics of the system has been reduced to that of
a Brownian particle moving in an effective potential and un-
der the influence of white noise and one of the monochro-
matic forces. In order to make this approximation, we have
assumed that the other monochromatic force is a strong,
high-frequency field. Second, we have applied LRT to ex-
press the parameterQ in terms of the equilibrium autocorre-
lation function associated to the effective dynamics in the
absence of the external driving. Finally, we have obtained
analytical expressions forQ within the weak noise approxi-
mation. To do so, it has been necessary to consider two dis-
joint regions of values of the ratior separated by the critical
valuer =Î2/3. We have also obtained a transcendental equa-
tion for the location of the maximum ofQsrd which charac-
terizes the VR phenomenon, as well as for the condition
under which this phenomenon disappears. It is important to
emphasize that our analytical approach allows us to predict
the three main effects of additive noise on the VR phenom-
enon independent of numerical simulations. In particular, we
have the following

Equation(37) predicts that the location of the maximum
characterizing the VR phenomenon shifts to the left as the
noise strength increases.

The analytical expression forQ predicts the lowering of
the maximum value of the resonance curve as the noise
strength increases.

Finally, our theoretical results also predict that the VR
phenomenon disappears for large enough values of the noise
strength. Furthermore, we also give an expression[cf. Eq.
(38)] for the highest value ofD beyond which the VR phe-
nomenon disappears.

Comparison with the numerical solution of the original
SDE shows that these analytical expressions provide a good
quantitative description of the VR phenomenon, at least if it
takes place outside a critical region aroundr =Î2/3. For suf-
ficiently largeD values, this limitation is not important, as
the VR maximum is well outside this criticalr region. In the
very small noise limit, the peak inQ appears aroundr
=Î2/3 and our approach becomes problematic. Neverthe-
less, in this limit the VR phenomenon is well described by
the previously known deterministic treatment. With this
work, we have attempted to provide a theoretical background
to the numerical studies on the influence of additive noise on
VR carried out in Ref.[20].

FIG. 1. Dependence of the parameterQ vs r corresponding to
the noise strength valuesD=1.34310−2 [panel (a)], D=6.72
310−2 [panel(b)], D=1.34310−1 [panel(c)], andD=4.03310−1

[panel (d)]. The rest of the parameter values areN=50, w=0, V
=3.4310−2, and A=1.1310−2. With circles we have plotted the
results obtained from the numerical solution of the SDE(1) together
with Eqs. (2) and (3). With solid lines we have depicted the ana-
lytical values ofQ provided by Eqs.(17) and (26), and either Eqs.
(28)–(32), for r ,Î2/3, or Eqs.(35) and (34), for r .Î2/3. The
dotted lines indicate the location of the critical valuer =Î2/3, and
the dashed lines the location of the maximum predicted by Eq.(37).
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