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Lattice theory of trapping reactions with mobile species
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We present a stochastic lattice theory describing the kinetic behavior of trapping reactionsA1B→B, in
which both theA and B particles perform an independent stochastic motion on a regular hypercubic lattice.
Upon an encounter of anA particle with any of theB particles,A is annihilated with a finite probability; finite
reaction rate is taken into account by introducing a set of two-state random variables—‘‘gates,’’ imposed on
eachB particle, such that an open~closed! gate corresponds to a reactive~passive! state. We evaluate here a
formal expression describing the time evolution of theA particle survival probability, which generalizes our
previous results. We prove that for quite a general class of random motion of the species involved in the
reaction process, for infinite or finite number of traps, and for any timet, theA particle survival probability is
always larger in the case whenA stays immobile, than in situations when it moves.
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I. INTRODUCTION

Kinetics of chemical reactions involving diffusive speci
have attracted a great deal of scientific interest since the
neering work by Smoluchowski@1#. Since then, many con
ceptually important results have been obtained@2–6#. In par-
ticular, it has been proved in specific cases that the class
mean-field chemical kinetics does not apply, at least in lo
dimensional systems@4–11#.

Trapping A1B→B reactions~TR!, involving randomly
movingA andB particles which react ‘‘when they meet’’ at
certain distanceb, provide an example of chemical reactio
showing a pronounced deviation from the textbook pred
tions.

For the TR two situations were most thoroughly studie
the case whenAs diffuse whileBs are static, and the situa
tion in which theAs are immobile whileBs diffuse—the
so-called target annihilation problem~TAP!. In the case of
static, randomly placed~with mean densityr) traps theA
particle survival probability PA(t) shows a nontrivial,
fluctuation-induced behavior@8,9,12–17#

ln PA~ t !;2r2/(d12)~DAt !d/(d12), t→`, ~1!

which is intimately related to many fundamental problems
statistical physics@8,9,12–18#.

Survival probabilityPtarget(t) of an immobile targetA of
radiusb in presence of pointlike diffusive trapsB ~TAP! can
be calculated exactly for anyd ~see Refs. @21# and
@4,8,19,20#!,

Ptarget~ t !5exp„2rfb
(d)~ t !…, ~2!

wherefb
(d)(t) obeys

fb
(d)~ t !5E

0

t

dtKS~t!;5
4ADt/p, d51

4pDt

ln~4Dt/b2!
, d52

4pDbt, d53,

~3!
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where D5DB and KS(t) is the d-dimensional
Smoluchowski-type ‘‘constant,’’ defined as the flux of diffu
sive particles through the surface of an immobile sphere
radiusb. Decay forms in systems with hard-core interactio
betweenBs @22# or with fluctuating chemical activity@23#
have also been discussed.

On contrary, the physically most important case of T
when bothAs andBs diffuse was not solved exactly. It ha
been proven@9# that herePA(t) obeys

ln PA~ t !52ld~DA ,DB!H t1/2, d51

t

ln~ t !
, d52

t, d53,

~4!

which equation defines its time dependence exactly. On
other hand, the factorld(DA ,DB) remained as yet an un
known function of the particles’ diffusivities andd. Since the
time dependence of the function on the right-hand side of
~4! follows precisely the behavior of* tdtKS(t), one might
expect that the SA provides quite an accurate description
this situation and following its spirit to setDA50 supposing
that traps diffuse with the diffusion coefficientD5DB
1DA . As a matter of fact, it has been often tacitly assum
that when both of species diffusePA(t) obeys Eq.~2! with
fb

(d)(t) defined by Eq.~3! and D5DA1DB . On the other
hand, it has been shown thatld(DA ,DB) is less than the
corresponding prefactor inKS(t) @31# and that it may be
bounded by a nonanalytic function ofDA and DB @24#. A
perturbative approach for calculation ofld(DA ,DB), as well
as corrections to the SA in one-dimensional systems w
presented@20#. It has been also noted thatld(DA ,DB) is not
a function of the sumD5DA1DB only, since the diffusion-
reaction equation are not separable@20#. This lack of knowl-
edge of the precise form ofld(DA ,DB), of course, consti-
tutes an annoying gap in the general understanding of
fluctuation phenomena in chemical kinetics.

Recently, some very interesting and unexpected res
have been established for trappingA1B→B reactions in-
©2004 The American Physical Society01-1
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volving randomly moving species@25,26#, which have re-
solved, at least in part, this problem. It has been shown
in one or two dimensions@25#, or more generally in systems
in which the fractal dimension of theB particle trajectories is
greater than the dimensiond of the embedding space@26#,
i.e., in case of the so-called ‘‘compact exploration’’@27#, the
leading at long times kinetic behavior of perfect trapping
essentially independent of theA particle diffusion coefficient.
In other words, it has been shown@25# that in such low
dimensions, the leading long-time decay of theA particle
survival probability in systems in which theA particle dif-
fuses and the decay in systems in which it is fixed at
origin are exactly the same.

The derivation of this rather surprising result reli
heavily on the assumption that theA particle has a large
probability to survive until a given timet ~at least whent
→`) if it stays immobile rather than when it moves ra
domly. In Ref.@25# some arguments have been proposed
favor of this conjecture, based on the analysis of the de
exponents in systems with a finite number ofBs. Subse-
quently, it was shown rigorously in Ref.@28# that it is indeed
the case in a one-dimensional continuum; on the other h
the claim that Ref.@28# presents a rigorous proof of thi
conjecture ford52 does not seem to be justified; as a mat
of fact, Eq. ~2! of Ref. @28# does not make sense ford52
and the logarithmic correction does not follow from it, sin
particle’s radius is not taken explicitly into account with
the approach of Ref.@28#.

On the other hand, in a recent article@29#, this conjecture
has been examined rigorously within the context of reacti
between the particles executing random walks
d-dimensional lattices; here, such a conjecture has been
ferred to as the ‘‘Pascal principle,’’ since it is reminiscent
a famous philosophical assertion of Blaise Pascal, w
claimed that ‘‘all misfortune of man comes from the fact th
he does not stay peacefully in his room’’@30#. In Ref. @29#,
we showed that ast→` the Pascal-principle-like inequalit
between the survival probabilities of a diffusive and of
immobileA particles is valid in any dimension, provided th
the A particle performs some rather general continuous-t
jump process on a hypercubic lattice, while theB particles
perform independently a discrete time lattice jump proce
which also satisfies some rather natural assumptions.
same conclusion was also obtained in Ref.@29# for a much
more general case of stochastically gated reactions, w
mimic situations with finite elementary reaction act co
stants.

We also emphasize that very similar Pascal-principle-l
inequality has been proven earlier for the process of hopp
transport of an excitation on a disordered array of immob
donor centers in presence of randomly placed, immo
quenchers@31#. We note, as well, that recent results obtain
for the ballisticA1A→0 annihilation process@32# are com-
patible with such a principle.

On the other hand, the analysis in Ref.@29# is rather con-
densed and moreover, some of the assumptions invoke
well as some of the constraints imposed on particles’ rand
walks, seem to be unnecessary and thus can be safel
laxed. Consequently, our purpose here is to complete
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proof of the Pascal-principle-like inequality between the s
vival probabilities of the diffusive and immobileA particles
and to extend it in several directions. In particular, we p
ceed to show that the Pascal-principle-like inequality ho
at any finite timet, as well as for both infinite and finite
number of traps. Moreover, we shall consider here the c
when the chemical activity of theB particles fluctuates in
time between active and inactive states. We set out to s
that the Pascal principle also applies for this much m
complex and realistic situation. As in our previous work@29#,
we will focus here solely on the lattice formulation of th
model. The continuous-space case, which requires m
more delicate analysis, will be studied elsewhere.

The paper is structured as follows. In Sec. II we formula
the model, introduce basic notations, and define the pro
ties of reaction and random walks executed by the spe
involved. In Sec. III we will focus on the reaction kinetics
case of perfect trapping; that is, on the case when thA
particle gets annihilated with probability 1 upon the first e
counter with any of the trapsB. Further on, in Sec. IV, the
Pascal-principle-like inequality between the survival pro
abilities of a diffusive and immobileA particles will be ex-
tended to the case when the chemical activity of theB par-
ticle fluctuates randomly between active and inactive sta
which mimics more realistic situations in which an annihil
tion of an A particle upon its encounter with any of theBs
takes place with a finite probability. We consider here
rather general case when such activity fluctuations can
correlated in time. Some intermediate calculations, as we
analysis of the behavior in some special cases are releg
to the Appendixes A and B, in which, in particular, the sp
cial case of Polya random walks is considered.

II. LATTICE MODEL OF TRAPPING REACTIONS
BETWEEN MOBILE SPECIES

It is well known that lattice models of diffusion-controlle
reactions yield, at least for sufficiently large times, the
netic laws that are essentially the same as those obta
within the continuous-space descriptions. Thus in the pres
work we shall consider alattice modelof trapping reactions,
which will simplify significantly our analysis. One of the
advantages of such a consideration, apart of the fact th
allows for much more lucid analysis than in the continuou
space limit, is that we are not forced to attribute to partic
a finite, nonzero radius, which allows to consider the beh
ior in systems ofanyspatial dimension. Finally, for the sak
of simplicity, we will restrict our analysis here to hypercub
lattices; most of the results, of course, could be readily
tended to other types of embedding lattices.

ConsiderNA particles of typeA andNB particles of type
B, which are initially placed at random at the sites of
d-dimensional hypercubic lattice, containingM sites. All par-
ticles perform independent jump processes on the node
the lattice. EachA particle can be destroyed~in the general
case with a finite probability! as soon as thisA particle ap-
pears on the same lattice site simultaneously with any of
B particles. TheB particle remains unchanged after the rea
tion event, which corresponds to the annihilation mechan
1-2
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LATTICE THEORY OF TRAPPING REACTIONS WITH . . . PHYSICAL REVIEW E69, 046101 ~2004!
A1B→B, ~5!

and represents the customary trappinglike reaction. One
also envisage a more general catalytic reaction process o
form:

A1B→C1B ~58!

where the catalystB promotes the transformation of anA
into some product moleculeC, the product moleculeC being
immediately extracted from the system.

In regard to the reaction probability, we will distinguis
between two situations: the one of perfect trapping or pur
diffusion-controlled trapping, in which case anyA gets anni-
hilated with probability 1 upon the first encounter with a
of Bs, and that of imperfect trapping for which the annihil
tion of the A by any B takes place with a finite probability
,1. To mimic this condition, we will introduce a set o
additional random variables, attached to eachB particle,
which will describe their instantaneous reactive activity.
nally, we will assume in what follows that collisions~simul-
taneous encounters! between two~or more! A particles are
possible and do not affect theseA particles or their random
walks, and similarly, that collisions between theB particles
are possible and do not lead to any reactions. In other wo
neitherA nor B particles have hard-core interactions and
single-species reactions may take place.

Now, as far as particle motions are concerned, we f
here the following problem: on one hand, in regard to d
namics ofA andB particles, we have to define two differen
random processes with different characteristics, e.g., di
sion coefficients, which may be used afterwards as tuna
parameters. On the other hand, these random processes
allow a rigorous analysis, which is not always the case. If
choose, for example, that both species perform random h
ping motion in discrete time, then it will be quite difficult t
work out a rigorous formalism in which two random pr
cesses have different ‘‘waiting’’ times at lattice sites. If, o
contrary, we choose that both processes evolve in continu
time, then we will face purely mathematical difficulties
treatment of the events in which the particles of differe
species appear simultaneously at the same lattice site.
forsaking the generality, we thus choose here the ‘‘mixe
case, which seems to us most suitable for the rigorous
scription.

We thus assume that allA particles perform identical and
independent continuous-time jump processes, so that
can jump at any time moment from one lattice site to a
other site. No other hypothesis or additional constraints
their motions are required.

Further on, we suppose that allBs perform identical and
independent discrete-time random walks; that is, at any i
ger timen>0, anyB particle can jump from a lattice sitey
to sitey8 with a given probabilityp(y8uy), wherey8 can be
identical toy, i.e.,B can remain at the site which it occupie
at time momentn. Let Yn denote the position of a givenB
particle at time momentn>0. We assume that this rando
walk satisfies the following conditions.
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~i! The random walk is homogeneous in space and
time: the probabilityp(y8uy) is independent of time and o
the initial position, such that

p~y8uy!5p~y82y!. ~6!

~ii ! The uniform distributionp(y)51/M is stationary for
theB particles. We assume that it holds at time 0, and hen
it is realized at all times. This condition implies the bilater
normalization relation

(
y

p~y8uy!51. ~7!

We remark that a stronger condition would be to assume
the probabilityp(y8uy) satisfies the detailed balance, i.e.,

p~y8uy!5p~yuy8!,

which, together with the condition in Eq.~6!, implies that

p~y2y8!5p~y82y!. ~8!

However, the condition in Eq.~8!, which clearly follows
from Eq. ~9!, is sufficient for obtaining our main results.

~iii ! At any time n, the conditional probabilityP(Yn
5yuY050) of finding a givenB particle at an arbitrary po-
sition y at time momentn, provided that it started its random
walk at the origin, does not exceed the return probabi
P(Yn50uY050). That is,

P~Yn5yuY050!<P~Yn50uY050![Rn . ~9!

This condition seems to be quite plausible for any sy
metric random motion in a uniform medium if Eq.~8! holds,
since hereP(Yn5yuy050) is invariant upon reversaly into
2y. Hence, this probability should always have an ext
mum for y50, which is likely to be a maximum. It should
be noted, however, that inequality in Eq.~9! does not hold
exactly for the usual Polya random walk, when the parti
jumps at one of the neighboring sites at each integer t
moment. For instance, on a one-dimensional lattice of u
spacing, the inequality in Eq.~9! is not satisfied ifn andy are
odd, since in this case the return probabilityRn[0. Never-
theless, one easily obtains~without any significant lack of
generality! random walks satisfying condition~iii !: for in-
stance, one may consider a modified Polya random walk o
d-dimensional hypercubic lattice, such that at each inte
time moment a walker has a probabilityp0 to remain at the
site it occupies, and a probability (12p0)/2d to jump at one
of the neighboring sites. In this case, it can be shown that
inequality in Eq.~9! is verified if p0>1/2. More generally,
Eq. ~9! holds for any homogeneous and symmetric proba
ity p(xuy) if p(xux)[p(0)>1/2 ~see Appendix A!. Further-
more, our conclusions can be extended to cover the cas
the Polya random walks, as shown in Appendix B, where t
special question is discussed in detail.

We finally remark that in the continuous-space case,
which the random walk is replaced by a Brownian motio
such a question does not arise at all, since here the prob
ity density is always maximal and centered around the ini
1-3
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position. Thus the inequality in Eq.~9! appears very natu
rally in unbiased diffusion problems, but it can also be ve
fied for nonsymmetric jump probabilities.

We close this section by adopting some conventions
how to introduce reaction events into the model. We assu
that a givenB particle can only annihilateA at integer times
n.0. If at a noninteger timeA jumps on a site which is
occupied by a particleB, it will be only annihilated at the
next integer timen. Finally, we remark that the probabilit
that anA particle performs a jump exactly at an integer tim
is 0, which allows to neglect consideration of such even
Note also that all these assumptions would not change
global behavior of the system. They thus merely serve
convenience of exposition.

III. PERFECT TRAPPING ON A LATTICE

We consider first the case of perfect trapping in wh
case an annihilation of anA particle takes place at the firs
encounter with any ofB particles. Our aim here is to dem
onstrate, in a rigorous way, the Pascal-principle-like as
tion that the survival probability of anA particle which
moves randomly on a lattice is less or equal to the surv
probability of an immobileA particle.

A. Mean-field kinetics of the trapping reaction

We start with a reminder on the predictions of a conve
tional mean-field approach@2#. One notices first that, clearly
the average number^NA(n)& of A particles surviving up to
an integer timen is the sum of probabilities that a givenA
particle survives up to this time momentn. Since all of them
have identical evolution laws, one has

^NA~n!&5NA~0!C~n!,

whereC(n) denotes the survival probability of a single pa
ticle A. Since the particlesB are completely insensitive~as
far as their motions are concerned! to particlesA, C(n) can
be evaluated independently for each particleA. Thus, it is
legitimate to consider only the survival of a singleA particle
in presence ofN particlesB.

In terms of the conventional mean-field kinetics@2#, one
obtains then an exponential decay form forC(n),

C~n!5exp~2krn!, ~10!

which should hold in any dimensiond. In the preceding
equationk is the reaction constant andr stands for the mean
density of theB particles.

Note that in case of perfect trapping Eq.~10! becomes
senseless, since herek5`. Indeed, it has been well know
for a long time, both for the continuous space and latt
models, that the decay law in Eq.~10! does not hold, at leas
for d51 andd52 @1,4,7–11#, so that mean-field approac
fails and a detailed stochastic theory is needed. Instead o
one has either Eq.~1! or ~4!, depending on whetherDB
50, DA50 or not.

To illustrate the deviations from the mean-field behav
in Eq. ~10! and the actual decay forms, let us consider
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case when one of the species only is moving@7,8#. In this
illustration, we follow closely the methods outlined in Re
@33#.

B. Survival probability of an A particle

Let us callGA the A particle trajectory, and first suppos
that it is given. Then, we denote asx050,x1 , . . . ,xn the
successive positions of theA particle at the integer timest0
50,t1 , . . . ,tn .

We suppose next that the waiting time ofA at each lattice
site, i.e., the time which anA particle spends on this sit
between successive hops, is a stochastic variable, so tha
successive positions are not necessarily different, and
necessarily nearest neighbors.

Further on, we denote thei th B particle, i 51, . . . ,N, as
Bi and asGBi

—the stochastic trajectory of this particle. Nex

let Qi(nuGA) be the conditional probability thatBi does not
destroyA up to time momentn, for a given trajectoryGA of
A. Because allBis move and act independently of each oth
the conditional probabilityC(nuGA) that the particleA sur-
vives up to time momentn for a givenGA , factorizes

C~nuGA!5)
i 51

N

Qi~nuGA! ~11!

and hence, the overallA particle survival probability obeys

C~n!5^C~nuGA!&GA
, ~12!

the average being taken over all possible trajectories oA
from t50 to t5n. Furthermore, since allB particles are
identical, one has thatQi(nuGA)5Q(nuGA) for all i, and
hence

C~n!5^Q~nuGA!N&GA
, ~13!

where, once again, the average is being taken over all
sible trajectoriesGA of the A particle.

C. The survival probability in the thermodynamic limit

Let us denoteY0 ,Y1 , . . . ,Yn the successive positions o
a givenB particle at time moments 0,1, . . . ,n and Gy0

—a

trajectory starting fromY05y0 at time 0. One can write then

Q~nuGA!5^Q~nuGA ,y0!&y0
, ~14!

whereQ(nuGA ,y0) stands for the conditional probability tha
a givenB particle, starting its random walk from positiony0
at time moment 0, does not destroyA until time momentn
for a given trajectoryGA . The bracketŝ •••&y0

in Eq. ~14!

denote averaging with respect to all possible initial positio
y0 of a givenB particle.

We now assume that the probability of the initial positio
Y0 is uniformly distributed among theM available sites.
Then we have
1-4
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^Q~nuGA ,y0!&y0
5

1

M (
y0

Q~nuGA ,y0!

and Eq.~14! can be written as

C~n!5K H 12
1

M (
y0

@12Q~nuGA ,y0!#J NL
GA

. ~15!

Turning next to the thermodynamic limit, i.e., settingN
→` andM→`, while keeping their ratio fixed,N/M→r, r
being the concentration of theB particles, one obtains for th
A particle survival probability at timen the following expres-
sion:

C~n!5K expH 2r(
y0

@12Q~nuGA ,y0!#J L
GA

. ~16!

Hence, the survival probabilityC(n) is simply related to the
probability that a givenB, starting fromy0, destroysA at
some timet<n, for a given trajectory ofA, which is

P~nuGA ,y0!512Q~nuGA ,y0!. ~17!

Similar results were obtained@4,7–11,26,33# in the particular
case when theA particle is immobile, i.e., for the so-calle
target annihilation problem. In this particular case there is
averaging overGA as in the previous formulas, and the int
gral reaction rate is thus defined by

K~nuGA![(
y0

P~nuGA ,y0!, ~18!

which replaces in this case the term ‘‘kn’’ of the conven-
tional kinetic law in Eq.~10!. On contrary, in more realistic
situations whenA also moves, the average over the trajec
ries GA makes the explicit calculation of the survival pro
ability impossible in most cases.

D. A basic inequality

Let us defineP1(kuGA ,y0) as the conditional probability
that B, starting fromy0 at time 0, meetsA for the first time
at time k, given the trajectoryGA . Then, the conditiona
probability P(nuGA ,y0) that B, starting fromy0, destroysA
at or before time momentn is given by

P~nuGA ,y0!5 (
0,k<n

P1~kuGA ,y0!. ~19!

The conditional probability that the trajectory ofB ~extended
after the possible annihilation ofA) meetsGA at timen ~not
necessarily for the first time! satisfies the equation

P~Yn5xnuY05y0!5 (
0<k,n

P~Yn5xnuYk5xk!

3P1~kuGA ,y0!, ~20!

whereP(Yn5xnuYk5xk)5dxn ,xk
andP1(0uGA ,y0)50.
04610
o
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Summing both sides of the preceding equation over
initial positionsy0 and using the relation in Eq.~7!, which
applies toP(Yn5xnuY05y0), we obtain

15 (
0<k,n

P~Yn5xnuYk5xk!S~kuGA!, ~21!

where we have used the notation

S~nuGA!5(
y0

P1~nuGA ,y0!. ~22!

Next, using the inequality in Eq.~9! we obtain from Eq.~21!,
the following basic inequality

1< (
0<k,n

Rn2kS~kuGA!, ~23!

whereRn2k is the probability of return to the starting poin
in n2k steps, which is a well-known quantity for all class
cal random walks.

We note that if theA particle stays immobile, the inequa
ity in Eq. ~23! becomes theequality, since herexk50 for all
timesk.

Now, let F̂(s) denote the generating function of som
function F(n),

F̂~s!5 (
n.0

F~n!sn. ~24!

Multiplying both sides of the inequality in Eq.~23! by sn and
performing summations, we have then

S 1

12sD<R̂~s!Ŝ~suGA!, ~25!

whereR̂(s) is the generating function of the return probab
ity Rn , while

Ŝ~suGA!5 (
n.0

S (
y0

P1~nuGA ,y0! D sn. ~26!

Note that again, the inequality in Eq.~25! becomes the
equality in the particular case whenA is immobile, so that

Ŝ~su0!<Ŝ~suGA!, ~27!

where S(nu0) denotes theS(nuGA) in the case whenA is
immobile.

On the other hand, one readily notices from Eqs.~16! to
~18! and~22!, that theA survival probability at timen is just

C~n!5^exp„2rK~nuGA!…&GA
, ~28!

where

K~nuGA!5 (
0<k<n

S~kuGA!. ~29!
1-5
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In the limit n→` this expression coincides formally with th
generating function ofS(kuGA), if s→1, which suggests tha
inequality ~27! corresponds, at least asymptotically, to t
similar inequality

K~nu0!<K~nuGA!. ~30!

In this inequality the right-hand side corresponds to the c
of an immobile particleA. Consequently, the inequality i
Eq. ~30! implies that the annihilation is faster ifA moves
than if it is immobile, in agreement with the Pascal princip

However, the generating functionsŜ(su0) and Ŝ(suGA)
tend to` whens→1, and the derivation of Eq.~30! requires
a more careful analysis, which is the purpose of the follo
ing paragraph.

E. General form of the Pascal principle

Let us turn back to the inequality in Eq.~23! and recall
that it becomes an equality in the case when theA particle
does not move. Then, we may formally rewrite the inequa
in Eq. ~23! in the following form:

0< (
0<k<n

Rn2k@S~kuGA!2S~ku0!#. ~31!

Next, let us introduce two auxiliary functionsLn and Mn ,
such that

Ln5S~kuGA!2S~ku0! ~32!

and

Mn5 (
0<k<n

Lk5K~nuGA!2K~nu0!. ~33!

By definition, we haveR051 andL050. Then, the inequal-
ity in Eq. ~31! can be straightforwardly written as

Mn> (
1<k<n21

~Rn212k2Rn2k!Mk . ~34!

Now, it can be shown~see Appendix A! thatRk is a decreas-
ing function of k. Assuming that it has been proved th
Mk>0 for all 0<k<n21, it follows from Eq. ~34! that
Mn>0, and inequality in Eq.~31! is proved by induction,
sinceM050.

Consequently, for any timen, theA particle survival prob-
ability C(n), defined by Eq.~28!, in case when theA par-
ticle does not move is less than or equal to the surv
probability in case whenA is mobile. This result is much
stronger than the asymptotic form of the Pascal princi
obtained in Ref.@29#.

We note also that this result holds for any finite syst
with a finite number of traps~i.e., not necessarily in the
thermodynamic limit!. Here, the survival probability is given
by Eq. ~13!, in which equationQ(nuGA) denotes the prob
ability that a givenB particle does not meetA before or at
04610
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time momentn. In fact, the probabilityP1(nuGA) that a
given B particle meetsA for the first time at time momentn
obeys

P1~nuGA!5Q~n21uGA!2Q~nuGA! ~35!

and we have

Q~nuGA!512 (
0<k<n

P1~kuGA!. ~36!

In Sec. III C we introducedP1(kuGA) as the conditional
probability thatB, starting fromy0 at time 0, meetsA for the
first time at timek. ParticlesB are uniformly distributed
among theM lattice sites at time 0~and at all time as well!,
so that, with the notations used in Eq.~22!, we find that

P1~kuGA!5
1

M (
y0

P1~kuGA ,y0!5
1

M
S~nuGA!, ~37!

while Eq. ~36! reads

Q~nuGA!512
1

M
K~nuGA!. ~38!

Thus, the inequality in Eq.~30! implies that, whatever may
be the number ofB particles, particleA has a higher prob-
ability to escape if it stays immobile, than if it moves. No
that this conclusion had been drawn previously by Bray a
Blythe @25# for systems with a finite number of traps withi
the context of survival of a mobile prayA in presence of a
finite number of predatorsB. Within this context, the Pascal
principle-like inequality in Eq.~30! appears to be even mor
sound.

To close this section we note that the inequality in E
~31! may be questioned for usual Polya random walks@34#,
since the condition in Eq.~10! is not strictly fulfilled. It is
shown in Appendix B how our results can be extended to
case.

IV. IMPERFECT TRAPPING

A. Time-correlated chemical reactivity fluctuations

We now modify the model presented in Sec. II, assum
that theA particle has a finite probability~which may depend
on time! to survive when encountered by aB particle. This
case occurs if the reaction is not purely controlled by dif
sion: at each encounter, another stochastic process arise
allows the reaction to be eventually completed, or to fa
This process is an elementary reaction act.

If there is a singleA particle, it is physically plausible to
assume that at each of its encounters with any of theBs, the
latter can be either in a passive internal state with a~possibly
time-dependent! probability p(t) „(0,p(t),1)…, or in an
active state with probability 12p(t). In the latter case, theA
is destroyed, whereas it remains intact ifB is passive and
they may harmlessly coexist until theB changes its reactive
state. In Ref.@29# we have already addressed this proble
assuming that this reaction probability was constant and
dependent of all prior events. In many circumstances, h
1-6



th
r
of
in
e
to

de
n

t i

t
n-
w

’’

tio
st
o
ll
e

s-

l-

e
fo

fir

q

ue

he

in

of

LATTICE THEORY OF TRAPPING REACTIONS WITH . . . PHYSICAL REVIEW E69, 046101 ~2004!
ever, this assumption is not justified, and, in particular,
survival probability of theA particle during its encounte
with any of theBs may itself depend on the trajectory
these particles. We will not treat this difficult problem
general, but only consider a special situation, in which thA
particle survival probability depends on some internal, s
chastic property of particleB. Then it is possible to take into
account the time correlations of its fluctuations. This mo
can be justified as an approximation of certain phenome
such as possible fluctuations in the activity of the catalys
a chemical reaction@36#.

More precisely, we assume@33,37# that each particleB
can be in a passive state 0 or in an activated state 1,
waiting timeTi in statei being a stochastic variable indepe
dent of prior events, distributed following an exponential la

P~Ti.t !5exp~2l i t !~ i 50 or 1!, ~39!

wherel0 andl1 are given positive constants.
Now, the transition probability for the internal stateI (t)

of B is then given by the well-known ‘‘random telegraph
law @35#

P~ I ~ t !5 i uI ~0!5 j !5a i1~d i j 2a i !e
2lt ~40!

with

l5l01l1 anda05l1 /l, a15l0 /l. ~41!

Thus,a0[p is the asymptotic probability thatA survives
a collision with B, whereasa1512p is the asymptotic re-
action probability at each encounter. The elementary reac
act constantk, mentioned in the beginning of Sec. II, is ju
k;(12p)/p. We logically assume that the internal state
B is initially in its stationary probability distribution, as we
as at the first encounter withA, but at the next encounter th
law given by Eq.~40! should be used.

Extending Eq.~20! to the present situation with a stocha
tic elementary reaction act, we find

a1P~Yn5xnuY05y0!

5PI 1~nuGA ,yo!1 (
0<k<n21

~a11a0e2l(n2k)!

3P~Yn5xnuYk5xk!PI
1~kuGA ,yo!. ~42!

In fact, a1P(Yn5xnuY05y0) is the probability thatB
meetsA at timen, while it is in its active state: the probabi
ity for B to be in its active state at timen is independent of
the trajectories ofB or A, and is given by the stationary valu
a1, since no value of the internal state is assigned be
time n. Furthermore,PI 1(kuGA ,yo) is the probability thatB
meetsA in its active state at timek for the first time after 0,
with PI 1(0uGA ,yo)50. If B meetsA in its active state at time
n, then necessarily the same situation occurred for the
time at some timek, 0,k<n. If k,n, then the probability
for B to be again in its active state is given by Eq.~40!,
which gives rise to the last term in the right-hand side of E
~42!. Equation~42! can be written in a more compact form
04610
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a1P~Yn5xnuY05y0!5 (
0<k<n

~a11a0e2l(n2k)!

3P~Yn5xnuYk5xk!PI
1~kuGA ,yo!.

~43!

Summing both sides of it over the initial positiony0, we then
obtain

a15 (
0<k<n

~a11a0e2l(n2k)!

P~Yn5xnuYk5xk!SI ~kuGA!, ~44!

whereSI (kuGA) is the probability that the annihilation ofA
occurs at timek, for a given trajectory ofA.

Using next the inequality in Eq.~9!, we find the following
relation:

1< (
0<k<n

S 11
a0

a1
e2l(n2k)DRn2kSI ~kuGA!. ~45!

We now make use of the generating functions techniq
and obtain, returning to the notationp[a0, that

1

12s
<F R̂~s!1

p

12p
R̂~se2l!GSÎ ~suGA!, ~46!

which becomes the equality in caseA is immobile. The con-
clusions follow as previously: the generating function of t
conditional reaction probability at timen is minimal if A is
immobile, i.e.,

SÎ ~su0!<SÎ ~suGA!. ~47!

Consequently, the integral reaction rateKI (nuGA) is minimal
if A stays immobile

KI ~nu0!<KI ~nuGA!, ~48!

the left-hand sides of Eqs.~47! and ~48! denoting the quan-
tities corresponding to an immobileA, respectively.

The fact that Eq.~48! holds at any timen can be proved
directly by using the inequality in Eq.~46! exactly in the
same fashion as it has been done in Sec. III C@when all
collisions are reactive (p50)].

B. Asymptotic reaction kinetics

Let us first consider the special case whenA is immobile.
Then, the asymptotic kinetic behavior follows from Eq.~46!,

~12s!SÎ ~su0!5F R̂~s!1
p

12p
R̂~se2l!G21

. ~49!

In one and two dimensions,R̂(s) tends to infinity when
s→1, so that the terms due to the reactivity fluctuations
the right-hand side of Eq.~49! do not affect the kinetics,
which proceeds exactly in the same way as in the case
perfect trapping reactions.
1-7
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In three dimensionsR̂(s) tends to a finite limit 1/S when
s→1, whereS is the probability that a givenB particle never
returns to its initial position~see Appendix A!. Then, the
left-hand side of Eq.~49! tends to an effective, apparent r
action constantkI , which satisfies the inverse addition rel
tion

1

kI
5

1

S
1

p

12p
R̂~e2l!, ~50!

if A is immobile @33,37#.
Equation~50! shows that ifA is immobile, the reaction

ratekI is an increasing function of the relaxation frequencyl
of the activity fluctuations, so that the survival probabili
decreases withl, if p is maintained constant. It can b
shown that this remarkable property is more general an
also valid if both particles are mobile@37#. In the case of an
infinite relaxation frequency or uncorrelated fluctuations E
~50! becomes

1

KI
5

1

S
1

p

12p
. ~51!

Equations~50! and ~51! are particular cases of the ‘‘in
verse addition law’’ which is well known in chemistr
@11,36,38#. In fact, such a law is valid if the reaction can b
considered as a succession of independent steps, which
case for uncorrelated fluctuations. It was discussed in
context in our previous works@36#.

We shall now partially extend these results for a mob
particle A. In fact, in one or two dimensions it has bee
shown@25,26# that whenA is annihilated as soon as it mee
any of B particles (p50), the survival probability does no
depend on the motion ofA in the limit n→`,

C~n;p50!'C0~n;p50!,

whereC0 is the survival probability in case of an immobi
A.

If A has a finite probability to survive at each encount
the overall survival probabilityC(n;p,l) is obviously larger
than if p50. However, we have shown in Eq.~47! that
C(n;p,l) is smaller than the survival probabilit
C0(n;p,l) in the case of an immobile particle, and the lat
is asymptotically independent ofp. Thus, we can write

C0~n;p50!'C~n;p50!<C~n;p,l!<C0~n;p,l!

'C0~n;p50! ~52!

so that for largen

C~n;p,l!'C0~n;p,l!'C0~n;p50!, ~53!

which shows that in one and two dimensions the reactiv
fluctuations ofB as well as the motion ofA do not affect the
survival probability ofA in the asymptotic limitn→`, ex-
cept if B is immobile, in which case the survival probabilit
has a very different and unusual behavior@13#.

In three dimensions, on the contrary, the fluctuations
tually change the reaction kinetics. The survival probabi
04610
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decreases exponentially and the overall reaction ratekI is
given by the inverse addition law in Eq.~50!. However, it is
unclear if such a law still holds when both particles mov
since then we have only proved inequality in Eq.~53!. Thus,
the first and the last approximate equalities in Eq.~51! do not
hold in three dimensions, whereas the relations in Eq.~51!
are valid. It is known@9# that for largen, C(n;p50) de-
creases exponentially, as well as the survival probability
an immobile particleA, C0(n;p,l), so that it may be as-
sumed thatC(n;p,l) also decreases exponentially with
constant larger thankI given by Eq.~50!, but it is difficult to
estimate this constant precisely.

V. CONCLUSION

We have developed the stochastic lattice theory of
annihilation kinetics of a speciesA by another speciesB, in
systems in which theA andB particles perform independen
stochastic motions which can be rather general. We obta
formal expressions for the survival probability ofA. This
probability cannot be evaluated exactly ifA is actually mo-
bile. However, we proved that theA particle survival prob-
ability is always larger in the case whenA is immobile than
when it moves. We have shown that this so-called Pas
principle holds for a large class of stochastic motions, p
videdB executes a random walk satisfying certain reasona
assumptions. This conclusion is of a special importance
view of its implications on chemical reactions or populati
dynamics. It also allows to demonstrate that in low dime
sions the survival probability of theA particle is essentially
insensitive to its motion and fluctuations of the reactivi
and does not obey the conventional mean-field laws
chemical kinetics. This result is extended to the case of
chastically gated reactions, including the case when the fl
tuations of reactivity are time correlated. Furthermore,
method used here allows to obtain the chemical constant
stochastically gated annihilation of immobileA particles in a
straightforward manner.

The stochastic analysis of chemical reactions should
developed in different directions, in order to consider mo
realistic models. In particular, it would be interesting to a
dress the case when the activity ofA can also fluctuate. How-
ever, the most necessary improvement of the theory wo
be to extend it to the analysis of analogous reaction kine
in continuous space and time.

APPENDIX A: PROPERTIES OF THE RANDOM
WALK OF PARTICLES B

Stochastic motion of B particles.The constraints imposed
on this stochastic process are described in Sec. II A.
show here that the main condition in Eq.~9!,

P~Yn5yuY050!<P~Yn50uY050![Rn , ~A1!

is satisfied, if the elementary transition probability is sym
metric and obeys
1-8
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p~xuy!5p~x2y!5p~y2x! andp~0!>1/2.

To show this, it is expedient to use first the well-know
formula for the propagator of a random walk on
d-dimensional regular lattice~see, e.g., Ref.@34#!:

P~Yn5yuY050!5
1

~2p!dEB
e2 iz•y

„f~z!…ndz, ~A2!

whereB is the first Brillouin zone of the lattice, whilef(z)
is the so-called structure function

f~z!5(
y

eiz•yp~y! ~A3!

in which equationz•y stands for the scalar product of tw
d-dimensional vectorsz and y, while dz represents the dif-
ferential element in ad-dimensional space.

Now, according to our assumption,p(y)5p(2y), which
implies that

f~z!5(
y

cos~zy!p~y!

5p~0!1@12p~0!# (
yÞ0

cos~zy!p~y!/„12p~0!…. ~A4!

Evidently, the second term in Eq.~A4! is bounded from
above by unity ifp(0)>12p(0) or p(0)>1/2. In this case,
P(Yn5yuY050)5(2p)d*Bcos(zy)„f(z)…ndz is maximal
for y50, which proves the inequality in Eq.~A1!.

Furthermore, one readily notices that if this condition
fulfilled, Rn is a decreasing function ofn.

Relation with the first return time.The probabilityRn
1 that

the first return ofB to its initial position occurs at time mo
mentn is classically obtained from the relation

P~Yn50uY050![Rn5Rn
11 (

1<k<n21
Rn2kRk

1

5 (
0<k<n21

Rn2kRk
1 for n>1, ~A5!

whereR0[1 andR0
1[0. Then, the generating functions o

Rn andRn
1 satisfy

R̂~s!215R̂~s!R̂1~s!, ~A6!

which yields

R̂~s!5@12R̂1~s!#21→1/S if s→1, ~A7!

S being the probability that theB particle never returns to its
initial position.

APPENDIX B: THE CASE OF POLYA RANDOM WALKS

The assumptions of Sec. II exclude the Polya rand
walks, or any random walk such that there is a zero pr
ability to stay immobile at each integer time:p(0)50, i.e., a
04610
-

random walk in which a particle is forced to make a move
each integer time moment. In this case, the probability
return to the initial position is obviously zero at any odd tim
moment, and the inequality in Eq.~10!, which plays a basic
role in our reasonings, holds only at even moments of tim
More precisely, possible displacements of the random wa
in this case can be divided into two complementary subs
E0 and E1, such that the total displacement during timen
necessarily belongs toE0 if n is even, and toE1 if n is odd.
Thus the Pascal principle cannot apply in a strict sense.

We can recover the Pascal principle for Polya rand
walks if we slightly change the rules of our model, imposin
for instance, that theA particle moves only on the latticeE0,
and that theB particles are distributed onE0 only. Thus no
reaction can occur at odd times, and we only consider e
times n52n8. Then, the inequality in Eq.~10! applies, as
well as all previous calculations, and the Pascal princi
holds.

However, it is interesting to discuss the case whenB per-
forms a Polya random walk, if the evolution of particles
not restricted on a sublattice. The Eq.~21!,

P~Yn5xnuY05y0!5 (
0<k,n

P~Yn5xnuYk5xk!

3P1~kuGA ,y0!, ~B1!

is still valid ~with possibly many vanishing terms!, but the
inequality in Eq.~24! cannot be deduced from it.

If, in Eq. ~B1!, n2k is even,xn2xk should belong toE0,
and inequality in Eq.~10! holds

P~Yn5xnuYk5xk!<Rn2k . ~B2!

On the contrary, ifn2k is odd,Rn2k50, but we have

P~Yn5xnuYk5xk!5(
y

p~xnuy!P~Yn215yuYk5xk!

<(
y

p~xnuy!Rn212k5Rn212k . ~B3!

Consequently, from Eq.~B1! we can deduce the inequa
ity

P~Yn5xnuY05y0!< (
0<k,n

Rn2k* P1~kuGA ,y0!, ~B4!

where we have used the notation

Rk* [Rk1Rk21* . ~B5!

Summing both sides of Eq.~B3! over y0 gives, with the
same notations,

1< (
0<k,n

Rn2k* S~kuGA!. ~B6!

Applying the generating functions technique, we find the
1-9
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1

12s
<R̂* ~s!Ŝ~suGA!, ~B7!

where the generating function ofRk* , Eq. ~B5!, is given by

R̂* ~s!5~11s! (
0<n<`

R2ns2n5~11s!R̂~s!. ~B8!

If now the A particle is fixed at the origin, Eq.~B1! be-
comes

P~Yn50uY05y0!5 (
0<k,n

P~Yn50uYk50!P1~ku0,y0!

5 (
0<k,n

Rn2kP
1~ku0,y0!. ~B9!

Summing both sides of this equation overy0 and turning to
the generating functions, we find, instead of Eq.~B7!, the
following equation:

1

12s
5R̂~s!Ŝ~su0!. ~B10!

Now, on comparing it with Eq.~B7!, we infer that

~12s!Ŝ~suGA!>
1

2
~12s!Ŝ~su0!, ~B11!

which implies that, asymptotically, ifA moves, the reaction
integral for a given trajectoryGA is not smaller than half of
the reaction integral whenA is immobile.

This unexpected conclusion requires some comme
First, it can be noted that the equality in Eq.~B11! can be
realized in a particular example. In fact, assume thatB per-
forms a classical Polya random walk on ad-dimensional
lattice: at each step it can jump with an equal probabi
1/(2d) at one of the neighboring sites. Now, we choose
special trajectoryGA for A, consisting of jumps from the
origin zero to one of its nearest neighbors, 1, and retu
thus, at each even timen, A is at 0, whereasA is at 1 at each
odd time.

For such a trajectory Eq.~B1! reads

P~Yn5xnuY05y0!5 (
0<k,n

R°n2kP
1~kuGA ,y0!,

~B12!

where

Rn2k
+ 5Rn2k5P~Yn50uYk50!5P~Yn51uYk51!

if n2k is even

5Rn2k115P~Yn51uYk50!5P~Yn50uYk51!

if n2k is odd,
04610
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since

R2n5P~Y2n50uY050!5~2d!21( 8 P~Y2n215yuY050!

5P~Y2n2151uY050!, ~B13!

where the prime designates that we sum only over the nea
to the origin sites. Consequently, we can write

Rn2k
+ 5Rn2k1Rn2k11 . ~B14!

Summing Eq.~B13! over y0 we obtain for the generating
functions

1

12s
5R̂°~s!Ŝ~suGA! ~B15!

with

R̂°~s!5
11s

s
R̂~s!. ~B16!

Thus, for this special trajectory, we actually obtain

~12s!Ŝ~suGA!5
1

2
~12s!Ŝ~su0! ifs→1, ~B17!

which implies that the reaction is twice slower than that
an immobileA. For instance, in three dimensions, the expr
sion in Eq.~B16! is bounded whens→1, which means that
if A moves according to the previous rules, the reaction c
stant in the case of a mobileA is half of the reaction constan
for an immobileA. If an average is taken over trajectorie
the Pascal principle can be valid or not, depending on
probability weight of the different trajectories.

The physical reason for this conclusion may be und
stood if we consider the relative motion with respect toA. It
is seen that at each integer time the relative displacemen
B in the direction 0–1 can be 0 or 2 at odd times, and 0
22 at even times. On the other hand, the reaction integra
time n is related to the number of distinct sites visited byB
up to timen. This number is clearly lower ifA moves ac-
cording to the foregoing rules, than ifA is immobile, which
explains that the reaction is slower in the first case. The sa
behavior can occur each timeA andB are performing Polya
walks with the same jump times.

However, it should be pointed out that whenA andB both
perform Polya random walks with the same jump times
may well happen that they exchange their positions dur
simultaneous jumps. In this case, they do not react accor
to the rules we used here, but it can be relevant to ad
different rules, depending on the actual phenomenon to
modeled. Then, the results could depend very much on th
rules.
1-10
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