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Lattice theory of trapping reactions with mobile species
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We present a stochastic lattice theory describing the kinetic behavior of trapping reattidds: B, in
which both theA and B particles perform an independent stochastic motion on a regular hypercubic lattice.
Upon an encounter of af\ particle with any of theB particles,A is annihilated with a finite probability; finite
reaction rate is taken into account by introducing a set of two-state random variables—“gates,” imposed on
eachB particle, such that an opeilosed gate corresponds to a reactif@assive state. We evaluate here a
formal expression describing the time evolution of the@article survival probability, which generalizes our
previous results. We prove that for quite a general class of random motion of the species involved in the
reaction process, for infinite or finite number of traps, and for any tirtlee A particle survival probability is
always larger in the case whénstays immobile, than in situations when it moves.
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[. INTRODUCTION where D=Dg and Kg(7) is the d-dimensional
Smoluchowski-type “constant,” defined as the flux of diffu-
Kinetics of chemical reactions involving diffusive species sive particles through the surface of an immobile sphere of
have attracted a great deal of scientific interest since the pigadiusb. Decay forms in systems with hard-core interactions
neering work by Smoluchowskil]. Since then, many con- betweenBs [22] or with fluctuating chemical activity23]
ceptually important results have been obtaifigd6]. In par-  have also been discussed.
ticular, it has been proved in specific cases that the classical, On contrary, the physically most important case of TR
mean-field chemical kinetics does not apply, at least in lowwhen bothAs andBs diffuse was not solved exactly. It has

dimensional systemigt—11]. been proven9] that hereP,(t) obeys
Trapping A+B—B reactions(TR), involving randomly
moving A andB particles which react “when they meet” at a t2, d=1
certain distancé, provide an example of chemical reactions t
showing a pronounced deviation from the textbook predic- INPA(t)=—Ag(Da,Dp) D)’ d=2 (4)
tions.
For the TR two situations were most thoroughly studied: t, d=3,

the case wher\s diffuse whileBs are static, and the situa-

tion in which theAs are immobile whileBs diffuse—the Which equation defines its time dependence exactly. On the
so-called target annihilation probleffAP). In the case of other hand, the factoky(DA,Dg) remained as yet an un-
StatiC, random|y p|ace(ﬂvv|th mean densityp) traps theA known function of the partides, diffusivities ardl Since the
partide survival probab””:y PA(t) shows a nontriviaL time dependence of the function on the right-hand side of Eq

fluctuation-induced behavids,9,12—17 (4) follows precisely the behavior of'd7Kg(7), one might
expect that the SA provides quite an accurate description for
InPA(t)~—p2/@+2)(D 1) I(@+2) -t o0, (1)  this situation and following its spirit to s&,=0 supposing

that traps diffuse with the diffusion coefficied =Dg
which is intimately related to many fundamental problems of+ D, . As a matter of fact, it has been often tacitly assumed
statistical physic$8,9,12-18. that when both of species diffug®,(t) obeys Eq.(2) with
Survival probabilityP,ge{t) of an immobile targeA of ¢éd)(t) defined by Eq(3) andD=D,+Dg. On the other
radiusb in presence of pointlike diffusive tra(TAP) can  hand, it has been shown that(D,,Dg) is less than the
be calculated exactly for anyd (see Refs.[21] and  cqrresponding prefactor iKKs(t) [31] and that it may be
[4,8,19,20), bounded by a nonanalytic function &, and Dg [24]. A
erturbative approach for calculationf(D,,Dg), as well
Ptarget(t):exr’(_f’%d)(t))’ 2 gs correctionspi'zo the SA in one-dim?rgsignalBgystems were
presented?20]. It has been also noted thag(D A ,Dg) is not
a function of the sunb =D 4+ Dg only, since the diffusion-
—_— reaction equation are not separaf8]. This lack of knowl-
4VDt/, d=1 edge of the precise form of4(D,Dg), of course, consti-
47Dt tutes an annoying gap in the general understanding of the
—, (3)  fluctuation phenomena in chemical kinetics.
In(4Dt/b%) Recently, some very interesting and unexpected results
47Dbt, d=3, have been established for trappiAg- B—B reactions in-

where {9 (t) obeys
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volving randomly moving specieg25,26, which have re- proof of the Pascal-principle-like inequality between the sur-
solved, at least in part, this problem. It has been shown thatival probabilities of the diffusive and immobil& particles

in one or two dimensiong25], or more generally in systems, and to extend it in several directions. In particular, we pro-
in which the fractal dimension of tH® particle trajectories is ceed to show that the Pascal-principle-like inequality holds
greater than the dimensiahof the embedding spadg6, at any finite timet, as well as for both infinite and finite
i.e., in case of the so-called “compact exploratid7], the number of traps_. Moreqv_er, we shall cqnsider here the_case
leading at long times kinetic behavior of perfect trapping iswhen the chemical activity of the& particles fluctuates in
essentially independent of tieparticle diffusion coefficient. time between active and inactive states. We set out to show
In other words, it has been show@5] that in such low that the Pascal prinuple also ap_phes for thls much more
dimensions, the leading long-time decay of tAeparticle ~ complex and realistic situation. As in our previous w{2Rl,
survival probability in systems in which the particle dif- ~ we will focus here solely on the lattice formulation of the
fuses and the decay in systems in which it is fixed at thénodel. The continuous-space case, which requires much
origin are exactly the same. more dellcate. analysis, will be studied elsewhere.

The derivation of this rather surprising result relies ~The paper is structured as follows. In Sec. Il we formulate
heavily on the assumption that thee particle has a larger the model, introduce basic notations, and define the proper-
probability to survive until a given time (at least whert ~ ties of reaction and random walks executed by the species
— ) if it stays immobile rather than when it moves ran- involved. In Sec. I we will focu; on the reaction kinetics in
domly. In Ref.[25] some arguments have been proposed irfaseé of perfect trapping; that is, on the case whenAhe
favor of this conjecture, based on the analysis of the decaparticle gets annihilated with probability 1 upon the first en-
exponents in systems with a finite number B$. Subse- counter with any of the trapB. Further on, in Sec. IV, the
quently, it was shown rigorously in Re28] that it is indeed ~ Pascal-principle-like inequality between the survival prob-
the case in a one-dimensional continuum; on the other han@bilities of a diffusive and immobilé particles will be ex-
the claim that Ref[28] presents a rigorous proof of this tended to the case when the chemical activity of Ehpar-
conjecture ford= 2 does not seem to be justified; as a matterticle fluctuates randomly between active and inactive states,
of fact, Eq.(2) of Ref.[28] does not make sense fde=2  Which mimics more realistic situations in which an annihila-
and the logarithmic correction does not follow from it, since tion of anA particle upon its encounter with any of tigs

particle’s radius is not taken explicitly into account within takes place with a finite probability. We consider here a
the approach of Ref28]. rather general case when such activity fluctuations can be

On the other hand, in a recent arti§29], this conjecture ~correlated in time. Some intermediate calculations, as well as

has been examined rigorously within the context of reactiongnalysis of the behavior in some special cases are relegated
between the particles executing random walks orf© the Appendixes A and B, in wh_|ch, in parucular, the spe-
d-dimensional lattices; here, such a conjecture has been rélal case of Polya random walks is considered.
ferred to as the “Pascal principle,” since it is reminiscent of
a famous philosophical assertion of Blaise Pascal, who
claimed that “all misfortune of man comes from the fact that
he does not stay peacefully in his roorf80]. In Ref.[29],
we showed that as—o0 the Pascal-principle-like inequality It is well known that lattice models of diffusion-controlled
between the survival probabilities of a diffusive and of anreactions yield, at least for sufficiently large times, the ki-
immobile A particles is valid in any dimension, provided that netic laws that are essentially the same as those obtained
the A particle performs some rather general continuous-timeavithin the continuous-space descriptions. Thus in the present
jump process on a hypercubic lattice, while tBeparticles  work we shall consider kttice modelof trapping reactions,
perform independently a discrete time lattice jump processwhich will simplify significantly our analysis. One of the
which also satisfies some rather natural assumptions. Thedvantages of such a consideration, apart of the fact that it
same conclusion was also obtained in R&8] for a much  allows for much more lucid analysis than in the continuous-
more general case of stochastically gated reactions, whickpace limit, is that we are not forced to attribute to particles
mimic situations with finite elementary reaction act con-a finite, nonzero radius, which allows to consider the behav-
stants. ior in systems ofiny spatial dimension. Finally, for the sake
We also emphasize that very similar Pascal-principle-likeof simplicity, we will restrict our analysis here to hypercubic
inequality has been proven earlier for the process of hoppintattices; most of the results, of course, could be readily ex-
transport of an excitation on a disordered array of immobiletended to other types of embedding lattices.
donor centers in presence of randomly placed, immobile ConsiderN, particles of typeA andNg particles of type
quencher$31]. We note, as well, that recent results obtainedB, which are initially placed at random at the sites of a
for the ballisticA+A— 0 annihilation procesg32] are com-  d-dimensional hypercubic lattice, containihsites. All par-
patible with such a principle. ticles perform independent jump processes on the nodes of
On the other hand, the analysis in Rgg9] is rather con-  the lattice. EachA particle can be destroygih the general
densed and moreover, some of the assumptions invoked, aase with a finite probabililyas soon as thig particle ap-
well as some of the constraints imposed on particles’ randomears on the same lattice site simultaneously with any of the
walks, seem to be unnecessary and thus can be safely rB-particles. TheB particle remains unchanged after the reac-
laxed. Consequently, our purpose here is to complete théon event, which corresponds to the annihilation mechanism

II. LATTICE MODEL OF TRAPPING REACTIONS
BETWEEN MOBILE SPECIES
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A+B—B, (5) (i) The random walk is homogeneous in space and in
time: the probabilityp(y’|y) is independent of time and of

and represents the customary trappinglike reaction. One catHe initial position, such that

%Ifr%'enwsage a more general catalytic reaction process of the p(y'ly)=p(y’ —y). (6)
(ii) The uniform distributionp(y)=1/M is stationary for
A+B_-C+B 5y  theB particles. We assume that it holds at time 0, and hence,
it is realized at all times. This condition implies the bilateral

. normalization relation
where the catalysB promotes the transformation of ah

into some product moleculg, the product molecul€ being
immediately extracted from the system. > p(y'ly)=1. )
In regard to the reaction probability, we will distinguish Y
between two situations: the one of perfect trapping or purelyye remark that a stronger condition would be to assume that

diffusion-controlled trapping, in which case aAygets anni-  the probabilityp(y'|y) satisfies the detailed balance, i.e.,
hilated with probability 1 upon the first encounter with any

of Bs, and that of imperfect trapping for which the annihila- p(y'ly)=p(yly"),

tion of the A by anyB takes place with a finite probability ) . . o

<1. To mimic this condition, we will introduce a set of Which, together with the condition in E¢6), implies that
additional random variables, attached to ed&lparticle, N ,

which will describe their instantaneous reactivergctivity. Fi- Ply=y)=p(y’=y). ®
nally, we will assume in what follows that collisiotsimul-  oyever, the condition in Eq(8), which clearly follows
taneous encounterbetween twolor more A particles are  from Eq. (9), is sufficient for obtaining our main results.
possible and do not affect thegeparticles or their random (i) At any time n, the conditional probabilityP(Y,
walks, and similarly, that collisions between tBeparticles —y|Y,=0) of finding a givenB particle at an arbitrary po-
are possible and do not lead to any reactions. In other wordgiion y at time moment, provided that it started its random
neitherA nor B particles have hard-core interactions and noy 51k at the origin, does not exceed the return probability

single-species reactions may take place. P(Y,=0|Y,=0). That is
Now, as far as particle motions are concerned, we face = " 0 '
here the following problem: on one hand, in regard to dy- P(Y,=Y|Yo=0)<P(Y,=0|Y,=0)=R,. 9)

namics ofA andB particles, we have to define two different
random processes with different characteristics, e.g., diffu- This condition seems to be quite plausible for any sym-
sion coefficients, which may be used afterwards as tunableetric random motion in a uniform medium if E®) holds,
parameters. On the other hand, these random processes msigice hereP(Y,=y|y,=0) is invariant upon reversglinto
allow a rigorous analysis, which is not always the case. If we—y. Hence, this probability should always have an extre-
choose, for example, that both species perform random hopaum fory=0, which is likely to be a maximum. It should
ping motion in discrete time, then it will be quite difficult to be noted, however, that inequality in E®) does not hold
work out a rigorous formalism in which two random pro- exactly for the usual Polya random walk, when the particle
cesses have different “waiting” times at lattice sites. If, onjumps at one of the neighboring sites at each integer time
contrary, we choose that both processes evolve in continuousoment. For instance, on a one-dimensional lattice of unit
time, then we will face purely mathematical difficulties in spacing, the inequality in EQ9) is not satisfied ifh andy are
treatment of the events in which the particles of differentodd, since in this case the return probabiRy=0. Never-
species appear simultaneously at the same lattice site. Ntieless, one easily obtairfithout any significant lack of
forsaking the generality, we thus choose here the “mixed’generality random walks satisfying conditiofiii): for in-
case, which seems to us most suitable for the rigorous destance, one may consider a modified Polya random walk on a
scription. d-dimensional hypercubic lattice, such that at each integer
We thus assume that & particles perform identical and time moment a walker has a probabilipy to remain at the
independent continuous-time jump processes, so that thesite it occupies, and a probability {1p,)/2d to jump at one
can jump at any time moment from one lattice site to anyof the neighboring sites. In this case, it can be shown that the
other site. No other hypothesis or additional constraints orinequality in Eq.(9) is verified if p,=1/2. More generally,
their motions are required. Eg. (9) holds for any homogeneous and symmetric probabil-
Further on, we suppose that &k perform identical and ity p(x|y) if p(x|x)=p(0)=1/2 (see Appendix A Further-
independent discrete-time random walks; that is, at any intemore, our conclusions can be extended to cover the case of
ger timen=0, anyB particle can jump from a lattice site  the Polya random walks, as shown in Appendix B, where this
to sitey’ with a given probabilityp(y’|y), wherey’ can be  special question is discussed in detail.
identical toy, i.e., B can remain at the site which it occupies  We finally remark that in the continuous-space case, in
at time momenn. Let Y, denote the position of a giveB  which the random walk is replaced by a Brownian motion,
particle at time momem=0. We assume that this random such a question does not arise at all, since here the probabil-
walk satisfies the following conditions. ity density is always maximal and centered around the initial
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position. Thus the inequality in Eq9) appears very natu- case when one of the species only is movjidg8]. In this

rally in unbiased diffusion problems, but it can also be veri-illustration, we follow closely the methods outlined in Ref.

fied for nonsymmetric jump probabilities. [33].
We close this section by adopting some conventions on

how to introduce reaction events into the model. We assume

that a givenB particle can only annihilaté at integer times

n>0. If at a noninteger timeA jumps on a site which is Let us calll'y the A particle trajectory, and first suppose

occupied by a particl®, it will be only annihilated at the that it is given. Then, we denote ag=0x,, ... X, the

next integer timen. Finally, we remark that the probability successive positions of the particle at the integer timety

that anA particle performs a jump exactly at an integer time =0.ts, ... ty.

is 0, which allows to neglect consideration of such events. We suppose next that the waiting timeAt each lattice

Note also that all these assumptions would not change thgite, i.e., the time which a particle spends on this site

global behavior of the system. They thus merely serve foPetween successive hops, is a stochastic variable, so that two

B. Survival probability of an A particle

convenience of exposition. successive positions are not necessarily different, and not
necessarily nearest neighbors.
Further on, we denote thi¢h B particle,i=1,... N, as

Il. PERFECT TRAPPING ON A LATTICE . . . .
B; and asl“Bi—the stochastic trajectory of this particle. Next,

We consider first the case of perfect trapping in whichjet Q,(n|T",) be the conditional probability tha; does not
case an annihilation of aA particle takes place at the first gestroyA up to time momenn, for a given trajectory of
encounter with any oB particles. Our aim here is to dem- A Because alB;s move and act independently of each other,
onstrate, in a rigorous way, the Pascal-principle-like assefthe conditional probability (n|T ) that the particleA sur-

tion that the survival probability of am\ particle which  iyes up to time moment for a givenT ,, factorizes
moves randomly on a lattice is less or equal to the survival

probability of an immobileA particle. N
w(nla) =11 Qi(nllw) (1)

A. Mean-field kinetics of the trapping reaction

We start with a reminder on the predictions of a conven-and hence, the overall particle survival probability obeys
tional mean-field approadi2]. One notices first that, clearly,
the average numbéiN,(n)) of A particles surviving up to W(n)=(¥(n|Ta))r., (12)
an integer timen is the sum of probabilities that a givekx A
particle survives up to this time momemtSince all of them

have identical evolution laws, one has the average being taken over all possible trajectories of

from t=0 to t=n. Furthermore, since alB particles are

(NA(N))=NA(0)¥(n), identical, one has tha®;(n|',)=Q(n|",) for all i, and
hence
whereW (n) denotes the survival probability of a single par-
ticle A. Since the particle8 are completely insensitivéas \p(n)=<Q(n|FA)N)FA, (13

far as their motions are concerned particlesA, ¥(n) can
be evaluated independently for each partidleThus, it is
legitimate to consider only the survival of a sindigarticle
in presence oN particlesB.

In terms of the conventional mean-field kinet{&, one
obtains then an exponential decay form (n), C. The survival probability in the thermodynamic limit

where, once again, the average is being taken over all pos-
sible trajectoried”, of the A particle.

Let us denotery,Yq, .. .,Y, the successive positions of
a givenB particle at time moments Q,1..,n and Fyo—a

trajectory starting fron¥ =y, at time 0. One can write then

W (n)=exp(—kpn), (10

which should hold in any dimensiod. In the preceding

equationk is the reaction constant apdstands for the mean _

density of theB particles. QT2 =(Q(n[T'a,y0)y,, 14
Note that in case of perfect trapping Ed.0) becomes

senseless, since heke=. Indeed, it has been well known WhereQ(n|T"4,y,) stands for the conditional probability that

for a long time, both for the continuous space and lattice? givenB particle, starting its random walk from positigg

models, that the decay law in E@LO) does not hold, at least at time moment O, does not destréyuntil time momentn

for d=1 andd=2 [1,4,7-11, so that mean-field approach for a given trajectoryl’s. The bracketg- - -), "in Eq. (14)

fails and a detailed stochastic theory is needed. Instead of itlenote averaging with respect to all possible initial positions

one has either Eq(l) or (4), depending on whethebg vy, of a givenB patrticle.

=0, Do=0 or not. We now assume that the probability of the initial position
To illustrate the deviations from the mean-field behaviorY, is uniformly distributed among th& available sites.

in Eq. (10) and the actual decay forms, let us consider theThen we have
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1 Summing both sides of the preceding equation over all
<Q(n|FAay0)>y0:M > Q(n|T'a.yo) initial positionsy, and using the relation in Eq7), which
Yo applies toP(Y,=x,|Yo=Yo), we obtain

and Eqg.(14) can be written as
1= P(Yn=%n|Yi=X) S(K[T'n), (21)

0<k<n

1 N
\I’(n):<{1_mg [1_Q(n|FA!yO)]] > . (19
0 r

A where we have used the notation

Turning next to the thermodynamic limit, i.e., settihg L
—o andM — o, while keeping their ratio fixedy/M —p, p S(|Ta) =2 PXN[Ta,Yo). (22)
being the concentration of thparticles, one obtains for the Yo

A particle survival probability at tima the following expres- Next, using the inequality in E9) we obtain from Eq(21),

sion: the following basic inequality
\I’(n)=<exp{—Pyzo [1_Q(n|FAyyo)]}>rA- (16) 1$Os§k:<n Ry« S(K[T ), (23

Hence, the survival probability’ (n) is simply related to the whereR,,_ is the probability of return to the starting point
probability that a giverB, starting fromy,, destroysA at  in n—k steps, which is a well-known quantity for all classi-

some timet<n, for a given trajectory ofA, which is cal random walks.
We note that if theA particle stays immobile, the inequal-
P(n|Ta,Y0)=1—-Q(n[T'4,Y0)- (17 ity in Eq. (23) becomes thequality, since herex=0 for all
timesk.

Similar results were obtaindd,7—11,26,33in the particular . . .
case when thé particle is immobile, i.e., for the so-called = NOW. let F(s) denote the generating function of some

target annihilation problem. In this particular case there is ndunction F(n),
averaging ovel , as in the previous formulas, and the inte-

gral reaction rate is thus defined by ,‘:(S): 2 F(n)s". (24)
n>0
K(n|FA)Ey20 P(n[Ta.Yo), (18 Multiplying both sides of the inequality in E¢23) by s" and

performing summations, we have then
which replaces in this case the ternkri” of the conven-

ti.onal'kinetic law in Eq.(10). On contrary, in more realigtic ( - sﬁ(s)é(s|FA), (25)
situations wherA also moves, the average over the trajecto- 1-s

ries 'y, makes the explicit calculation of the survival prob- .

ability impossible in most cases. whereR(s) is the generating function of the return probabil-

ity R,, while
D. A basic inequality

Let us definePY(k|T »,Yo) as the conditional probability S(s|Tp)=> (2 Pl(n|rA,yo))s”. (26)
that B, starting fromy, at time 0, meets for the first time n=01 Yo

at time k, given the trajectoryl’5. Then, the conditional
probability P(n|T ,Yo) thatB, starting fromy,, destroysA
at or before time moment is given by

Note that again, the inequality in Eq25 becomes the
equality in the particular case wheis immobile, so that

S(s|0)<S(s|T'n), (27)

where S(n|0) denotes thes(n|T",) in the case whem is
immobile.

On the other hand, one readily notices from Ed%) to
(18) and(22), that theA survival probability at timen is just

P(nITa.Yo)= 2% PHKITA.¥0). (19)

The conditional probability that the trajectory Bf(extended
after the possible annihilation &) meetsl", at timen (not
necessarily for the first timesatisfies the equation

‘I’(n)=<eXD(—PK(n|FA))>rA, (29)
P(Ynzxn|YOZYO)= 2 P(Ynzxn|Yk=Xk)
0<k<n where
X PL(K|T a,Yo), (20
K(n|I'y) = S(k|T»). 29
whereP(Y,=Xq|Yik=Xi) = 8¢ x, andP1(0|T"5,y0)=0. (nT"s) 0<k=n (KITa) @9
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In the limit n— o this expression coincides formally with the time momentn. In fact, the probabilityP!(n|I",) that a
generating function o8(k|T"»), if s—1, which suggests that given B particle meets for the first time at time moment

inequality (27) corresponds, at least asymptotically, to theobeys

similar inequality

K(n|0)<K(n|T »). (30)

PX(nTa)=Q(n—1|T'»)—Q(n|T'4) (39

and we have

In this inequality the right-hand side corresponds to the case

of an immobile particleA. Consequently, the inequality in

Eqg. (30) implies that the annihilation is faster & moves

than if it is immobile, in agreement with the Pascal principle.

However, the generating functior3(s|0) and S(s|T"»)
tend to whens— 1, and the derivation of E¢430) requires

Q(n[Tp)=1— PYKIT4). (36)

O<k=n

In Sec. lllC we introducedP(k|I",) as the conditional
probability thatB, starting fromy,, at time 0, meet#\ for the
first time at timek. ParticlesB are uniformly distributed

a more careful analysis, which is the purpose of the follow-among theM lattice sites at time @and at all time as wel)

ing paragraph.

E. General form of the Pascal principle

Let us turn back to the inequality in ER3) and recall
that it becomes an equality in the case when Ahgarticle

so that, with the notations used in E§2), we find that

1 1
PKITp) = 17 2 PHKITAY0) =37 S(NIT),  (37)
Yo

while Eq. (36) reads

does not move. Then, we may formally rewrite the inequality

in Eqg. (23) in the following form:

o< > R S(KIT4) = S(K|0)]. (31)

O<ks=

Next, let us introduce two auxiliary functioris, and M,,,
such that
Ln=S(K|I'a) = S(k|0) (32

and

M,=

O<k=n

Le=K(n|T'))—K(n|0). (33

By definition, we haveRy=1 andL,=0. Then, the inequal-
ity in Eq. (31) can be straightforwardly written as

M=
1<k=n-

1 (Rnflfk_ Rnfk)Mk- (34)

Now, it can be showiisee Appendix AthatR, is a decreas-

1
Q(n|FA):1_MK(n|FA)- (39

Thus, the inequality in Eq30) implies that, whatever may
be the number oB patrticles, particleA has a higher prob-
ability to escape if it stays immobile, than if it moves. Note
that this conclusion had been drawn previously by Bray and
Blythe [25] for systems with a finite number of traps within
the context of survival of a mobile pra& in presence of a
finite number of predatorB. Within this context, the Pascal-
principle-like inequality in Eq(30) appears to be even more
sound.

To close this section we note that the inequality in Eq.
(31) may be questioned for usual Polya random w4,
since the condition in Eq.10) is not strictly fulfilled. It is
shown in Appendix B how our results can be extended to this
case.

IV. IMPERFECT TRAPPING

A. Time-correlated chemical reactivity fluctuations

We now modify the model presented in Sec. I, assuming
that theA particle has a finite probabilitjwhich may depend

ing function of k. Assuming that it has been proved that on time to survive when encountered byBaparticle. This

M, =0 for all O<k=n-—1, it follows from Eq. (34) that
M,=0, and inequality in Eq(31) is proved by induction,
sinceM,=0.

Consequently, for any time, the A particle survival prob-
ability ¥ (n), defined by Eq(28), in case when thé\ par-

case occurs if the reaction is not purely controlled by diffu-

sion: at each encounter, another stochastic process arises and

allows the reaction to be eventually completed, or to fail.
This process is an elementary reaction act.
If there is a singleA particle, it is physically plausible to

ticle does not move is less than or equal to the survivahssume that at each of its encounters with any oBthethe
probability in case wherA is mobile. This result is much latter can be either in a passive internal state withassibly
stronger than the asymptotic form of the Pascal principlegime-dependentprobability p(t) ((0<p(t)<1)), or in an
obtained in Ref[29]. active state with probability * p(t). In the latter case, tha

We note also that this result holds for any finite systemis destroyed, whereas it remains intactBifis passive and
with a finite number of trapgi.e., not necessarily in the they may harmlessly coexist until ti&changes its reactive
thermodynamic limit. Here, the survival probability is given state. In Ref[29] we have already addressed this problem,
by Eg. (13), in which equationQ(n|T",) denotes the prob- assuming that this reaction probability was constant and in-
ability that a givenB particle does not meek before or at  dependent of all prior events. In many circumstances, how-
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ever, this assumption is not justified, and, in particular, the

survival probability of theA particle during its encounter alp(Yn:Xn|Y0:y0):O<2k (e + age M"7W)

with any of theBs may itself depend on the trajectory of =en

these particles. We will not treat this difficult problem in XP(Yn:Xn|Yk:Xk)El(k|FAaYO)-
general, but only consider a special situation, in whichAhe

particle survival probability depends on some internal, sto- (43
chastic property of particlB. Then it is possible to take into Summing both sides of it over the initial positigp, we then
account the time correlations of its fluctuations. This model i

can be justified as an approximation of certain phenomena,

such as possible fluctuations in the activity of the catalyst in

a chemical reactiofi36]. “= 2 (a1 + age M"7W)
More precisely, we assuni&3,37] that each particleé3 e
can be in a passive state 0 or in an activated state 1, the
P P(Yn=Xn| Yi=X) S(KIT'a), (44)

waiting timeT; in statei being a stochastic variable indepen-
dent of prior events, distributed following an exponential law\yhere S(k|T'») is the probability that the annihilation
occurs at timek, for a given trajectory of\.

PTi=)=exp(—=\(i=0 or 1), (39) Using next the inequality in Eq9), we find the following
where\y and\ are given positive constants. relation:
Now, the transition probability for the internal stdté) @
of B is then given by the well-known “random telegraph” 1< 1+ —e““”) Rn_S(K|Tx). (45
law [35] 0<k=n ay
PO =il1(0)=1)=a:+ (5 — a:)e M 40 We now make use of the gengrating functions technique
(O=I1O)=]) =i+ (5~ a)e (40 and obtain, returning to the notatigr= «q, that
with 1 D
—<=|R(9)+ 7 —Rse ™) |8, (46
A=No+\;andag=Ni/\, a;=\g/\. (41) 1-s 1-p

which becomes the equality in ca8as immobile. The con-
clusions follow as previously: the generating function of the
ﬁonditional reaction probability at time is minimal if A is
iImmobile, i.e.,

Thus, ag=p is the asymptotic probability tha survives
a collision with B, whereasa;=1—p is the asymptotic re-
action probability at each encounter. The elementary reactio
act constank, mentioned in the beginning of Sec. Il, is just
k~(1—p)/p. We logically assume that the internal state of
B is initially in its stationary probability distribution, as well
as at the first encounter witly, but at the next encounter the Consequently,
law given by Eq.(40) should be used.

Extending Eq(20) to the present situation with a stochas-

S(s|0)<S(s|T'p). (47)

the integral reaction rétén|I",) is minimal
if A stays immobile

tic elementary reaction act, we find K(n|0)<K(n|T,), (48)
a1P(Y, =X, Yo=VYo) the left-hand sides of Eq$47) and (48) denoting the quan-
tities corresponding to an immobike respectively.

=P1(n|Ta.Yo) + gn

0=

(e + age M07K) The fact that Eq(48) holds at any timen can be proved
1 directly by using the inequality in Eq46) exactly in the
same fashion as it has been done in Sec. I[ien all
collisions are reactiveg=0)].

X P(Yn=%q| Yi=%) P(K|T 5,Yo). (42)

In fact, a1P(Y,=X,|Yo=Yo) is the probability thatB
meetsA at timen, while it is in its active state: the probabil-
ity for B to be in its active state at timeis independent of Let us first consider the special case whfeis immobile.
the trajectories oB or A, and is given by the stationary value Then, the asymptotic kinetic behavior follows from E46),
a4, since no value ofl the internal state is assigned before 0 4
time n. Furthermore P*(k|T"4,Y,) is the probability thaB Y- _|p L Y
meetsA in its active state at timk for the first time after 0, (1-5)5(s|0)=| R(s)+ 1- pR(Se )| (49)
with P(0|T"»,y,)=0. If B meetsA in its active state at time A
n, then necessarily the same situation occurred for the first In one and two dimension®(s) tends to infinity when
time at some timé, 0<k=n. If k<n, then the probability s—1, so that the terms due to the reactivity fluctuations in
for B to be again in its active state is given by Hg40), the right-hand side of Eq49) do not affect the kinetics,
which gives rise to the last term in the right-hand side of Eqwhich proceeds exactly in the same way as in the case of
(42). Equation(42) can be written in a more compact form perfect trapping reactions.

B. Asymptotic reaction kinetics
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In three dimension&(s) tends to a finite limit 15 when ~ decreases exponentially and the overall reaction kats
s—1, whereSis the probability that a giveB particle never ~ given by the inverse addition law in E(G0). However, it is
returns to its initial position(see Appendix A Then, the unclear if such a law still holds when both particles move,
left-hand side of Eq(49) tends to an effective, apparent re- Since then we have only proved inequality in E8@). Thus,

action constank, which satisfies the inverse addition rela- the first and the last approximate equalities in &q) do not
tion hold in three dimensions, whereas the relations in (&)

are valid. It is known[9] that for largen, ¥ (n;p=0) de-

1 1 [N creases exponentially, as well as the survival probability of
kK~ §+ER(G ), (50 an immobile particleA, ¥o(n;p,\), so that it may be as-
sumed that¥(n;p,\) also decreases exponentially with a
if Ais immobile[33,37. constant larger thak given by Eq.(50), but it is difficult to

Equation(50) shows that ifA is immobile, the reaction estimate this constant precisely.
ratek is an increasing function of the relaxation frequency
of the activity fluctuations, so that the survival probability
decreases with\, if p is maintained constant. It can be V. CONCLUSION
shown that this remarkable property is more general and is
also valid if both particles are mobi[@7]. In the case of an
infinite relaxation frequency or uncorrelated fluctuations Eq
(50) becomes

We have developed the stochastic lattice theory of the
annihilation kinetics of a species by another specieB, in
'systems in which thé andB particles perform independent,
stochastic motions which can be rather general. We obtained
p formal expressions for the survival probability &6 This
==+ 1o (51 probability cannot be evaluated exactlyAfis actually mo-
P bile. However, we proved that th& particle survival prob-

Equations(50) and (51) are particular cases of the “in- ability _is always larger in the case Whénis_ immobile than

verse addition law” which is well known in chemistry when it moves. We have shown that this so-called Pascal

[11,36,38. In fact, such a law is valid if the reaction can be principle holds for a large class of stochastic motions, pro-

considered as a succession of independent steps, which is tfidledB executes a random walk satisfying certain reasonable

case for uncorrelated fluctuations. It was discussed in thi@SSUmPptions. This conclusion is of a special importance in
context in our previous workis6] view of its implications on chemical reactions or population

We shall now partially extend these results for a mobiledynamics. It also allows to demonstrate that in low dimen-

particle A. In fact, in one or two dimensions it has been sions the survival probability of tha particle is essentially
shown[25,26] that whenA is annihilated as soon as it meets

insensitive to its motion and fluctuations of the reactivity,
any of B particles =0), the survival probability does not and does not obey the conventional mean-field laws of
depend on the motion @& in the limit n— oo,

X =
0wl

chemical kinetics. This result is extended to the case of sto-
chastically gated reactions, including the case when the fluc-
¥(n;p=0)~¥y(n;p=0), tuations of reactivity are time correlated. Furthermore, the
method used here allows to obtain the chemical constant of a
where¥, is the survival probability in case of an immobile stochastically gated annihilation of immob#eparticles in a
A straightforward manner.

If A has a finite probability to survive at each encounter, The stochastic analysis of chemical reactions should be
the overall survival probabilit¥’ (n;p,\) is obviously larger  developed in different directions, in order to consider more
than if p=0. However, we have shown in E@47) that realistic models. In particular, it would be interesting to ad-
w(n;p,A) is smaller than the survival probability dressthe case when the activity/otan also fluctuate. How-
¥o(n;p,\) in the case of an immobile particle, and the latterever, the most necessary improvement of the theory would
is asymptotically independent @f Thus, we can write be to extend it to the analysis of analogous reaction kinetics

in continuous space and time.
Wo(n;p=0)~¥(n;p=0)<W¥(n;p,\)<¥o(n;p,\)

~¥o(n;p=0) (52) APPENDIX A: PROPERTIES OF THE RANDOM
s0 that for largen WALK OF PARTICLES B
Stochastic motion of B particle$he constraints imposed
T(n;p,\)~Wo(n;p\)=~Wo(n;p=0), (53 P P

on this stochastic process are described in Sec. IlA. We

which shows that in one and two dimensions the reactivityShOW here that the main condition in E@),
fluctuations ofB as well as the motion oA do not affect the
survival probability ofA in the asymptotic limitn—oo, ex- P(Y,=Y|Yo=0)<P(Y,=0|Y,=0)=R,, (A1)
cept if B is immobile, in which case the survival probability
has a very different and unusual beha\jib8].

In three dimensions, on the contrary, the fluctuations acis satisfied, if the elementary transition probability is sym-
tually change the reaction kinetics. The survival probabilitymetric and obeys
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p(x|y)=p(x—y)=p(y—x) andp(0)=1/2.

PHYSICAL REVIEW B9, 046101 (2004

random walk in which a particle is forced to make a move at
each integer time moment. In this case, the probability to

To show this, it is expedient to use first the well-known return to the initial position is obviously zero at any odd time
formula for the propagator of a random walk on amoment, and the inequality in EGLO), which plays a basic

d-dimensional regular latticésee, e.g., Ref.34]):

P(Y,=y|Yo=0)=

(ZW)dJBeiZ‘y(¢(Z))ndZa (AZ)

where B is the first Brillouin zone of the lattice, whiléy(z)
is the so-called structure function

$(2)=2 *7p(y) (A3)
in which equationz-y stands for the scalar product of two
d-dimensional vectorz andy, while dz represents the dif-
ferential element in a-dimensional space.

Now, according to our assumptiop(y)=p(—Y), which
implies that

¢>(2)=§y) cogzy)p(y)

=p<0>+[1—p<0>]y§O cogzy)p(y)/(1—p(0)). (A4)

Evidently, the second term in EqA4) is bounded from
above by unity ifp(0)=1—p(0) or p(0)=1/2. In this case,
P(Y,=y|Yo=0)=(27)"[ scosky)(¢(z))"dz is maximal
for y=0, which proves the inequality in E¢AL).

Furthermore, one readily notices that if this condition is

fulfilled, R, is a decreasing function of.

Relation with the first return timéhe probabiliterl1 that
the first return ofB to its initial position occurs at time mo-
mentn is classically obtained from the relation

P(Y,=0|Yo=0)=R,=R}+ > R, R}
1=k=n-1
= >  R,_(R for n=1, (A5)

O<ks=n-1

whereRy=1 andR;=0. Then, the generating functions of
R, andR} satisfy
R(s)—1=R(s)RY(s), (A6)
which yields
R(s)=[1-RY(s)] *—1/s

if s—1, (A7)

S being the probability that thB particle never returns to its
initial position.

APPENDIX B: THE CASE OF POLYA RANDOM WALKS

The assumptions of Sec. Il exclude the Polya random

role in our reasonings, holds only at even moments of time.
More precisely, possible displacements of the random walker
in this case can be divided into two complementary subsets
Eo, andE4, such that the total displacement during time
necessarily belongs t, if nis even, and tde, if nis odd.
Thus the Pascal principle cannot apply in a strict sense.

We can recover the Pascal principle for Polya random
walks if we slightly change the rules of our model, imposing,
for instance, that thé particle moves only on the lattidg,,
and that theB particles are distributed 0B, only. Thus no
reaction can occur at odd times, and we only consider even
timesn=2n’. Then, the inequality in Eq(10) applies, as
well as all previous calculations, and the Pascal principle
holds.

However, it is interesting to discuss the case wBgqper-
forms a Polya random walk, if the evolution of particles is
not restricted on a sublattice. The Eg1),

P(Yo=XoYo=Yo)= 2 P(Yn=%n|Yi=)
0=<k<n
X Pl(k|FA lyO)r (Bl)
is still valid (with possibly many vanishing termsbut the
inequality in Eqg.(24) cannot be deduced from it.
If, in Eq. (B1), n—k is evenx,— X, should belong td&,
and inequality in Eq(10) holds
P(Yn:Xn|Yk:Xk)SRn—k- (B2)

On the contrary, ilh—k is odd,R,,_,=0, but we have
P(Yn=xnlvk=xk>=§ POGIY)P(Yn-1=Y]Yi=x)

gEy: p(xn|y)Rnflfk:Rnfl—k- (B3)

Consequently, from EqB1) we can deduce the inequal-
ity
P(Yn=Xo|Yo=yo)< 2> Ri_(PUKIay0)., (B
where we have used the notation
K =RtR;. (BS5)

Summing both sides of EqB3) overy, gives, with the
same notations,

1< R*_ S(K|T»).

0<k<n

(B6)

walks, or any random walk such that there is a zero prob-

ability to stay immobile at each integer timg(0)=0, i.e., a

Applying the generating functions technique, we find then
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1 A - since
*

—1_SsR (s)S(s|T p), (B7)
= = = = -1 ' = =
where the generating function & , Eq. (B5), is given by Ron=P(Y20=0[Yo=0)=(2d) "2 P(Yz0-1=|Yo=0)
R . =P(Y3,-1=1|Y(=0), (B13

R*(s)=(1+s) >, Rys"=(1+s)R(s). (BY

0sn=w

where the prime designates that we sum only over the nearest

If now the A particle is fixed at the origin, EqB1) be-  (© the origin sites. Consequently, we can write
comes

Ry k= Rn-k+Rn-k+1- (B14)
P(Yn=0|Yo=YO)=O<k P(Y,=0|Y,=0)P*(k|0yo) Summing Eq(B13) overy, we obtain for the generating
=en functions
= Rn_«P1(k[0yo). (B9) 1 . .
0<k<n 1—s- R°(s)S(s|T"p) (B15)
Summing both sides of this equation owgrand turning to _
the generating functions, we find, instead of ER7), the  With
following equation:
~ 1+s.
RO(S)= TR(S) (816)

1 .~ .
EZR(S)S(S“)). (BlO)

o . Thus, for this special trajectory, we actually obtain
Now, on comparing it with Eq(B7), we infer that

. 1 & i
(1—s)é(s|FA)>%(1—s)§(s|0), (1) (1-9)8(8w)=5(1-980) ifs—1,  (BL7)

which implies that the reaction is twice slower than that for
an immobileA. For instance, in three dimensions, the expres-
sion in Eq.(B16) is bounded wheis— 1, which means that

é’f A moves according to the previous rules, the reaction con-
stant in the case of a mobikeis half of the reaction constant
for an immobileA. If an average is taken over trajectories,
the Pascal principle can be valid or not, depending on the

which implies that, asymptotically, A moves, the reaction
integral for a given trajectory  is not smaller than half of
the reaction integral wheA is immobile.

This unexpected conclusion requires some comment
First, it can be noted that the equality in E®11) can be
realized in a particular example. In fact, assume Bater-
forms a classical Polya random walk ondedimensional ” . : : .
lattice: at each step i%/ can jump with an equal probabiIityprObab'I'ty weight of the different trajectories.

1/(2d) at one of the neighboring sies. Now, we choose a0 € RCR (RS0 L 102 PORELSEE R0 S Cher
special trajectonyl’s for A, consisting of jumps from the is seen that at each integer time the relative displacement of
origin zero to one of its nearest neighbors, 1, and returns! 9 P

thus, at each even time A is at 0, whereag is at 1 at each Bin the diregtion 0—1 can be 0 or 2 at odd times, .and 0 or
odd time. .—2 at even times. On the other han.d,_the rgacuo_n_mtegral at
For such a trajectory EqB1) reads timen is related'to the number of distinct s!tes visited By
up to timen. This number is clearly lower iA moves ac-
cording to the foregoing rules, thanAfis immobile, which
P(Ya=XaYo=Yo)= > R_«P*KITa.Yo), explains that the reaction is slower in the first case. The same
0=k=n behavior can occur each tinfeandB are performing Polya
(B12) . . ;
walks with the same jump times.
where However, it should be pointed out that wharandB both
perform Polya random walks with the same jump times, it
Ri_k=Rn_«=P(Y,=0]Y,=0)=P(Y,=1|Y,=1) may well happen that they exchange their positions during
simultaneous jumps. In this case, they do not react according
to the rules we used here, but it can be relevant to adopt
=Ry 11=P(Y,=1|Y,=0)=P(Y,=0|Y,=1) different rules, depending on the actual phenomenon to be
modeled. Then, the results could depend very much on these
if n—k is odd, rules.

if n—k is even
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