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Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at
the edge of chaos of the logistic map
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We show that the dynamical and entropic properties at the chaos threshold of the logistic map are naturally
linked through the nonextensive expressions for the sensitivity to initial conditions and for the entropy. We
corroborate analytically, with the use of the Feigenbaum renormalization group transformation, the equality
between the generalized Lyapunov coefficiepiand the rate of entropy productioky, given by the nonex-
tensive statistical mechanics. Our results advocate the validity of-theneralized Pesin identity at critical
points of one-dimensional nonlinear dissipative maps.
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The nonextensive generalization of the Boltzmann-Gibbsounterpart to the usual exponential sensitiVjty exp(\1t)
(BG) statistical mechanic$1,2] has recently raised much to initial conditions which prevails when the ordinary
interest and provoked considerable delj&feas to whether Lyapunov coefficient\; is nonvanishing(The BG expo-
there is firm evidence for its applicability in circumstancesnential form is recovered whegq—1.)
where a system is out of the range of validity of the canoni- Pioneering work[8,9] on the dynamics at the edge of
cal BG theory. Recognition and understanding of the exischaos of the ngistic map was directed at the determination
tence of such a limit of validity is a major concern in the Of the fluctuation spectrum of the algebraic Lyapunov coef-
development of present-day statistical physics. So, increasdt§ients\q. Here we focus on the entropic properties of tra-
attention has been drawn to the examination of physical sit€ctories at this state with the idea of investigating the exis-
ations that do not satisfy the customary BG equilibrium con-tence of a generalized Pesin identity. o
ditions, e.g., insufficient randomness and limited or nonuni- _AS @ significant windfall of our renormalization group
form motion over pertinent phase space, that result if <o) calculations we now know the expressions fgrat the
anomalous dynamical propertig4,5). Within these several mentioned critical states of logisticlike mapg. These ex-

: ressions have been interpreted in terms of the fixed-point
types of physical phenomena and connected model syste . L
. " . . -~ “map parameters and corroborated numerically avipriori
properties[2], the critical states of one-dimensional nonlin-

ear dissipative maps stand out. It has become app&@ent calculationg7]. Specifically, for the edge of chags, of the

. gy logistic map\, (and q) are simply given byr,=In a/In 2
Lhoar;[etgteeﬁgir\;déon:nﬂecigﬁ)z(gtrir:)ﬂe;V'Elr?ee rlg(;hgtg{iigl:ca?lorgsegggrfc andg=1-In 2/In ), wherea is the Feigenbaum's univer-
€9 ) . ._Sal constant that measures the power-law period-doubling
are appropriate. Here we give analytical proof and numerica . . " ) .
. . . spreading of iterate positions. Having reached this level of
corroboration of the until now only conjectur¢@] q gener-

o — ) ._knowledge ong; and\ it is only natural to enquire about its
alization of the Pesin identity between entropy prOdUCt.'onrelationship with the entropic properties of trajectorieg.at
rate and Lyapunov exponent at the onset of chaos of unim

%he Pesin formula that relates the Kolmogorov-Sies)

dal maps. Beyond its intrinsic value as a means to study th . -
dynamics of incipient chaotic states, this result has importan%mr()py’Cl (described beloyand the Lyapunov coefficients

implications regarding the suitability of the Tsallis entropy in Of nonlinear maps has become an extremely useful tool for

describing a specific phvsical situation unreachable by B he quantitative analysis of the dynamics of chaotic states.
statisticsg P phy y his formula embodies the all-important connection between

Recently, the predictions of the nonextensive theory haV(tahe loss of information measured By, and the Lyapunov

.. 0 . o
been rigorously proved for the pitchfork and tangent bifur-Coeﬁ'(_:'enti)‘l f(ﬁr chaotic states{_lO,l]]. Thﬁ general in
cations and for the edge of chaos of logistic-type maps byfdualityi<2\;" where the sum is over thél >0 reduces
means of the analytic renormalization gra@®G) derivation  [of one-dimensional systems to the Pesin idenkiy=\,,

7] of the g-exponential expression, A >0.
71 aexp P So, as a starting point we consider tipgeneralized rate
L=exp\t) =[1-(q- 1))\qt]‘1/(q‘1) (1)  of entropy productionk,, defined viaKqt=;(t)-$(0), t
large, where

for the sensitivity to initial conditionsg;, containing the en- W
tropic indexqg and theg-generalized Lyapunov coefficient 1-3 o
i

i

\q- Equation(1) has been proposdé] as the nonextensive S ( 1) -
= pilngl —|=—
= T\ p q-1
*Email address: baldovin@cbpf.br is the Tsallis entropy and where = (y*9-1)/(1-q) is
"Email address: robledo@fisica.unam.mx the inverse of exgly). In the limit q—1 K, becomesK;
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=t7[Sy(t) -$,(0)] where Sy(t)=-3, pi(t)In pi(t). In Eq. o ' oo
(2) pi(t) is the probability distribution obtained from the 10
relative frequencies with which the positions of an en-
semble of trajectories occur within celis1,... W at it- T
eration timet. The initial conditions for these trajectories

have a prescribed distributiop(0) and the phase space

into which the map is defined is partitioned into a large ¢!
numberW of disjoint cells of sizes;. As a difference from

K, the KS entropy has a more elaborate definition since it
considers the entire trajectories from their initial positions

to the time limitt— [11]. The relationship betweeki; -
andK; has been investigated for several chaotic ndy23

and it has been established that the equalify K, occurs 10
during an intermediate stage in the evolution of the en-
tropy S;(t), after an initial transient dependent on the ini-

tial distribution and before an asymptotic approach to a

o——

constant equilibrium value. Thg-generalized KS entropy o e ° g
Kqis defined in the same manner &s but with the use of o bl -"------3
Eq. (2). Here we look into the analogous intermediate 10 10 10 1 10
regime in whichK;=K,. As we shall see below it turns

out to be sufficient to evaluate the ratq1 for uniform FIG. 1. Absolute value of two trajectories at. in logarithmic

initial distributions defined in a partition of equal-sized scales. Empty circles correspondxg=0 (the numbers label time
cells to establish the validity of the conjecturgdl] form 7=1,...,16. Small dots correspond tg,,=0.560 23..., close to a
Kq=\q Of the Pesin identity. repeller, the unstable solution BE 1 - u,X?.

Next we recall that the logistic maf,(x)=1-ux?, -1

=x=1, exhibits several types of infinite sequences of Criti'logarithmic scales. One correspondsxp=0, and the other

cal points (with \;=0) as the control parametei varies  gne tox,,~0.560 23..., close to a repeller, the unstable so-

across the interval € u=2. One such important sequence |ytion of x=1-u..x2 The first trajectory maps out the attrac-

corresponds to the pitchfork bifurcatiofs0]. The accumu- 4 while the second exhibits a long-lived transient stretch as

lation point of the pitchfork bifurcations is the Feigenbaumj )5 into it. In Ref. [7] it was shown that a distinct fraction

attractor that marks the dividing state between periodic and . positions of the trajectory witk,=0 consists of sub-
=

chaotic orbits, afu,,=1.401 15.... A measure of the ampli- ; 0 4 ok
tudes of the periodic orbits is defined by the diameters\?v?&uffgei ger;\er&tidkbgntc?zatlcmheofs%t;sszqgmbitsthze s,ame
d, (n=0,1,..) of the “bifurcation forks” at the “superstable” IS o

periodic orbits of lengths 2that contain the poinx=0. power-law decay. The main subsequerke0) can be ex-

These superstable orbits occurzgt< u.. and approachs, ~ Pressed (via a time variable shiftto=7-1) as the
as iy f.~ 8 (n large) where 5=0.466 92... is one of the d-€xponential x, =expy(Agly) With Q=1+In 2/Ina and
two Feigenbaum’s universal constants. The diamatger Aq=-Ina/ln 2. The positions in the subsequences can be
Ef(—zn_l)(O) is the iterate position closest to=0 in such 2 obtame;d from those belonging to the supercyc!g&,@( Hoo-

Hn ) _In particular, the subsequence for0 was identified as the
cycle. For largen these distances have constant ratioSyiameter sequencen=d,=a™". This property was shown to

dn/_dn+1:—a, where «=2.502 90... is_ the second of the imply Eq. (1) with g=1-In 2/Ina and Aq=In a/In 2. No-
Feigenbaum’s constan{d(]. For clarity we use only the .o thatq=2-Q as exg(y)=1/exp,(-y).

absolute vfalues_ of positions, so.beIchegns|dn|. We can extend considerably the above results. First, we
The main points in the followmg anaIyS|§ are as f_OHOWS' note that theentire attractor can be decomposed into position
(1) We qe.t.ermme t.he evolution qill orbits at u.,, i.e., subsequences associated with the same power-law decay, and

those with initial conditions,, belonging to the attractor, to thatall subsequences are generated by the time subsequences

the repeller, and to all other positions. = n—k ; i _
. . «=(2k+1)2"7%, (The first position atr=2k+1 of each of the
(2) We obtaing; for anyxi, and find the remarkable prop- first eight subsequences can be identified among those la-

erty that Eq(1) holds in general with the same fixed values beled in Fig. 1. We make use of this time-position classifi-

for g and\, up to a timeT=2" whereN=~In x,/In a. : ! " . .
(3) We observe that the position-independent form foundpz.itlon 0 pf),:]nt O_Ut that the .posmonsfk of all trajectories
é{vlth Xin<a ™, m=n-Kk, are given by

for Aq implies that ensembles of trajectories expand in such
way that a uniform distribution of initial conditions remains .
uniform for all later time4<T, whereT marks the crossover X = |9(W)(Xin)| — M + MXZ ' (3)
to an asymptotic regime. Tk am 2™
(4) As a consequence of this we establish the identity of
the rate of entropy productiol, with . We corroborate Where we have neglected terms ©fax;) and whereg,
numerically all our findings. =g@*D(x) is the (2k+1)th composition of the fixed-point
In Fig. 1 we show the absolute values of the positionsmapg(x). Both g(x) andg,(x) are solutions of the RG dou-
XTE|f52(xin)| of two trajectories of the logistic map at, in bling transformation consisting of functional composition
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and rescalingRf(x) = af(f(x/ «)). Equation(3) is obtained 10" T JAAA PP AL LAY
by keeping the first two terms in the power-series expansion £ mE ! !
@M p(Wpz=2 bi 1
of g«(x) [10] followed by use ofg,(x)=a™g,” "(x/a™) and 7T _4 1o Y
the change of variablg,,= o ™x. Considering a pair of ini- B 1= 3
tial conditionsy,, andx;, in Eq. (3) yields 10°E t=8 0’ E 1=48
C E =963
er(yin) - er(Xin) = [X2k+1(y|n) - X2k+1(x|n)]am- (4) : = }6 10»3 L yond ol IIIIII- :
2L =32 10° 10" 10" ; 10]
For each subsequenkethe sensitivityg; , defined as 10°F E
C =064 ]
X, (Yin) = X, (Xin)| [ _ ]
gtkE im tk n tk n , (5) 3 fc_llzg
‘yin_xinl"0|xtk:0(yin) - th:O(Xin)| 10° =256
can be written, with use of the shifted time varialle= 7 s |r=512:
-2k=1 (n=k), and observing that a™=[1+t,/(2k i | | | i
In a/ln 2 H . -4 R 11 an 11 11
+1)] , as theq exponential: 10 10 10! Iy 10° i 1o

&, = expgtd, (6)

FIG. 2. Time evolution, in logarithmic scales, of a distribution
K pj(7) of trajectories afu... Initial positions are contained within a
where g=1-In 2/Ina and )\;):In al[(2k+1)In 2]. The  cell adjacent tax=1 andj counts the consecutive location of the
crossover timeT=2N is determined from the condition occupied cells at time. Iteration time is shown for the first two
Xn<a™Nin Eq. (3). subsequencek=0, 1).

Let us consider next an ensemble gftrajectories with

initial positionsx;, uniformly distributed along the interval _ . _
[1-1,1], for transparency with 1k<g®(0). An arbitrary An interesting observation about the structure of the non-

partition of[1-I, 1] is made with a certain numbérf non- extengive formalism is “‘?t the equiprobability entropy ex-
intersecting intervals of lengths i=1,2,...), with [=%, |,  Pression IgW, can be obtained not only froi§, in Eq. (2)
For | sufficiently small, undefr=(2k+1)2"* iterations the but also from
lengthsl; transform, according to E@4), asli(’k):amli. Since
we also havd™W=a™, we observe that the interval ratios In [g(to)]

q

remain constant, that i§/I=1"/I(%. Thus, the initial num- 3000 — . . . .
ber of trajectories within each intervall1;/l remains fixed In [&('tk)] ! k—l 0 ! 0= 5047/-
for all times 7<<T, with the consequence that the original - 3000 T 0
distribution is uniform for all timesr<T. 2500 - A
We can now calculate the rate of entropy production. This 2000 ol

is more easily done with the use of a partition\Wfequal- i k=1 //' T
sized cells of length. Figure 2 provides a striking corrobo- 2000 |-1000 P e -
ration of the time constancy of uniformity. This figure shows | k;;’/ |
in logarithmic scales the evolution of a distributipr{7) of 0
positions of an ensemble of trajectorieqatbeginning from 1500 © 1000 L 2000 o —
a uniform distributionp;(1) of initial positions contained i 7 1, =1023 |
within a single cell of sizé adjacent tox=1. If we denote by //’
W, the number of cells that the ensemble occupies at the 10001 4 -
shifted timet, and byAxtk the total length of the interval B / i
these adjacent cells form, we havé =Ax, /I and in the sool- /1y =511 7=099998 x | |
limit | -0 [sinceWtk:(Axtk/Axtkzo)(Axtk:O/I)] we obtain the -,

i = istribution is uni- - P 1, =255 R =0.999998| -
remarkably simple resuwtk—gtk. As the distribution is uni / 0

i is qi P IR T I B R
form,_and rec_aII:Bg Eq(§) for gtk, the entropy is given by od = e
St =Ing Wi =gt While t
g0
Kt(qk) = 7\8() (7) FIG. 3. Numerical corroboratio(full circles) of the generalized

] . ) ) Pesin identitngk):)\f]k) at u... On the vertical axis we plot the
asW -o=1. Equation(7) is our main result. The numerical |ogarithm of& (equal to)\g‘)t) and in the horizontal axi§, (equal
results shown in Fig. 3 substantiate and bring to light in ao K"%t). In both casegj=1-In 2/In @=0.2445. ... The dashed line
dramatic manner the validity of tteegeneralized Pesin iden- is a linear fit. In the inset the full lines are from the analytical result,
tity at .. Eq. (6).
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W most visibly the sensitivity. It is important to stress that the
ng -> pilng(pi), (8)  derivation of & does not use in any way the nonextensive

i=1 formalism and for this reason it constitutes an independent
corroboration of the expression faf; suggested by this
theory. With an analytical expression fiog in hand a parallel
expression for the rate of energy productisy was here
obtained from two ingredientsi) a distribution function
pi(t) of positions for an ensemble of trajectories giigl the
Tsallis entropyS;. Our main result, the generalized identity
Kq=\q necessitates that the equiprobability entropy has the

whereSTQ:SZ_Q:Sq. The inverse property of thg exponen-
tial reads Igy=-In, (1/y) for the q logarithm and as
pointed out introduces a pair of conjugate indid@s 2

—q with the consequence that while some theoretical fea
tures are equally expressed by bé};‘andsg some others
appear only via the use of eith& or Sg For instance, the

canonical ensemble maximization 6@ with the custom- precise analytical form YW, (with g=1-In 2/In @) and to

H W — w —
ary constraints;z, pi=1 and;z, pig=U, whereg andU  yicoytent distinguishes the Tsallis expressyrirom other
are configurational and average energies, respectively,

. . . alternatives, including the BG;.
leads to aQ-exponential wg!gh(wnh Q>1 whenq<1). We have shown that the Pesin identity holds rigorously,
On the other hand the partition function is obtained via th

S S Th | . 4(8) el €albeit in a generalized form, for incipient chaotic states. Be-
optimization o Sq e mutual equation¢2) and (8) el- cause the entropic index(as is the case of, and its iden-
egantly generalize the BG entropy.

Wi - ; 4 findi Critical stat tity Kg) is obtainable in terms of the Feigenbaura’'sve are

Ve summarize our arguments and findings. Lritica’ Stal€zy, o 1 address the much-asked question regarding the man-
with vanishing), in dissipative one-dimensional nonlinear o, iy \which the indexg and related quantities are deter-
maps display power lavg,. It is natural to expect this tq mined in a physical application. The generic chaotic state is
imply a corresponding power-law rate of entropy production

linked to the d . p bl t traiectories. A that associated ta;>0, but it is evident that the critical
Inked 1o the dynamics ot ensembles of rajeclores. A CoNg;qiq withh;=0 carries with it completely different physics.

nftcg'o?a be_tvv_gen t_tthesi\tw;)\ zoopter:t'te.s sugges’;s atr;] extensigq analysis was specifically carried out for the Feigenbaum
of the Pesin identityC; =)y, Ay atincorporales e Case aractor of the logistic map but our findings clearly have a

A=0. Bu':j mtedrest:ngly, trc]) studg this 3|tl:]at|on folrrgglly cr)]ne universal validity for the entire class of unimodal maps and
IS required to develop a theory beyond the usual BG schemgy ,onarglization to other degrees of nonlinearity. In a more

for chaotic states that supplies generalizations for both th eneral context our results indicate a limit of validity to the

.KS entropy and t_he LyaP“F‘OV exponent. One known sourc G theory based o8, and the appropriateness of the non-
is the nonextensive statistics constructed around the Tsa"@xtensivesq for this kind of critical dynamic states

entropy§, as this offers specific and practicable expressions
for these quantities. To make a meaningful analysis of this We would like to thank C. Tsallis and L. G. Moyano for
problem it is indispensable to carry out an expligipriori  useful discussions and encouragement, as well as the warm
determination of all quantities involved and here we havenospitality of the management of the Dolomites Refuge
proved that this is indeed the case for a specific but proto*Pian de Fontana,” where part of this work was inspired.
typical example, the onset of chaos of the logistic map. WeA R. was partially supported by CONACyT Grant No.
have shown[7] that the Feigenbaum RG method, from P40530-RMexican agency F.B. has benefitted from partial
which the static fixed-point solutiog(x) was originally ob-  support by CAPES, PRONEX, CNPq, and FAPERJjazil-
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