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We show that the dynamical and entropic properties at the chaos threshold of the logistic map are naturally
linked through the nonextensive expressions for the sensitivity to initial conditions and for the entropy. We
corroborate analytically, with the use of the Feigenbaum renormalization group transformation, the equality
between the generalized Lyapunov coefficientlq and the rate of entropy production,Kq, given by the nonex-
tensive statistical mechanics. Our results advocate the validity of theq-generalized Pesin identity at critical
points of one-dimensional nonlinear dissipative maps.
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The nonextensive generalization of the Boltzmann-Gibbs
(BG) statistical mechanics[1,2] has recently raised much
interest and provoked considerable debate[3] as to whether
there is firm evidence for its applicability in circumstances
where a system is out of the range of validity of the canoni-
cal BG theory. Recognition and understanding of the exis-
tence of such a limit of validity is a major concern in the
development of present-day statistical physics. So, increased
attention has been drawn to the examination of physical situ-
ations that do not satisfy the customary BG equilibrium con-
ditions, e.g., insufficient randomness and limited or nonuni-
form motion over pertinent phase space, that result in
anomalous dynamical properties[4,5]. Within these several
types of physical phenomena and connected model system
properties[2], the critical states of one-dimensional nonlin-
ear dissipative maps stand out. It has become apparent[2]
that they arebona fideexamples where the predictions of the
nonextensive generalization of the BG statistical mechanics
are appropriate. Here we give analytical proof and numerical
corroboration of the until now only conjectured[6] q gener-
alization of the Pesin identity between entropy production
rate and Lyapunov exponent at the onset of chaos of unimo-
dal maps. Beyond its intrinsic value as a means to study the
dynamics of incipient chaotic states, this result has important
implications regarding the suitability of the Tsallis entropy in
describing a specific physical situation unreachable by BG
statistics.

Recently, the predictions of the nonextensive theory have
been rigorously proved for the pitchfork and tangent bifur-
cations and for the edge of chaos of logistic-type maps by
means of the analytic renormalization group(RG) derivation
[7] of the q-exponential expression,

jt = expqslqtd ; f1 − sq − 1dlqtg−1/sq−1d s1d

for the sensitivity to initial conditions,jt, containing the en-
tropic index q and theq-generalized Lyapunov coefficient
lq. Equations1d has been proposedf6g as the nonextensive

counterpart to the usual exponential sensitivityjt=expsl1td
to initial conditions which prevails when the ordinary
Lyapunov coefficientl1 is nonvanishing.sThe BG expo-
nential form is recovered whenq→1.d

Pioneering work[8,9] on the dynamics at the edge of
chaos of the logistic map was directed at the determination
of the fluctuation spectrum of the algebraic Lyapunov coef-
ficientslq. Here we focus on the entropic properties of tra-
jectories at this state with the idea of investigating the exis-
tence of a generalized Pesin identity.

As a significant windfall of our renormalization group
(RG) calculations we now know the expressions forlq at the
mentioned critical states of logisticlike maps[7]. These ex-
pressions have been interpreted in terms of the fixed-point
map parameters and corroborated numerically viaa priori
calculations[7]. Specifically, for the edge of chaosm` of the
logistic maplq (and q) are simply given bylq=ln a / ln 2
(andq=1−ln 2/ ln a), wherea is the Feigenbaum’s univer-
sal constant that measures the power-law period-doubling
spreading of iterate positions. Having reached this level of
knowledge onjt andlq it is only natural to enquire about its
relationship with the entropic properties of trajectories atm`.
The Pesin formula that relates the Kolmogorov-Sinai(KS)
entropyK1 (described below) and the Lyapunov coefficients
of nonlinear maps has become an extremely useful tool for
the quantitative analysis of the dynamics of chaotic states.
This formula embodies the all-important connection between
the loss of information measured byK1 and the Lyapunov
coefficientsl1

sld for chaotic states[10,11]. The general in-
equalityK1øol1

sld where the sum is over thel1
sld.0 reduces

for one-dimensional systems to the Pesin identityK1=l1,
l1.0.

So, as a starting point we consider theq-generalized rate
of entropy productionKq, defined viaKqt=Sqstd−Sqs0d, t
large, where

Sq ; o
i

pi lnqS 1

pi
D =

1 − o
i

W

pi
q

q − 1
s2d

is the Tsallis entropy and where lnqy;sy1−q−1d / s1−qd is
the inverse of expqsyd. In the limit q→1 Kq becomesK1
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; t−1fS1std−S1s0dg where S1std=−oi=1
W pistdln pistd. In Eq.

s2d pistd is the probability distribution obtained from the
relative frequencies with which the positions of an en-
semble of trajectories occur within cellsi =1, ... ,W at it-
eration timet. The initial conditions for these trajectories
have a prescribed distributionpis0d and the phase space
into which the map is defined is partitioned into a large
numberW of disjoint cells of sizesl i. As a difference from
K1 the KS entropy has a more elaborate definition since it
considers the entire trajectories from their initial positions
to the time limit t→` f11g. The relationship betweenK1
andK1 has been investigated for several chaotic mapsf12g
and it has been established that the equalityK1=K1 occurs
during an intermediate stage in the evolution of the en-
tropy S1std, after an initial transient dependent on the ini-
tial distribution and before an asymptotic approach to a
constant equilibrium value. Theq-generalized KS entropy
Kq is defined in the same manner asK1 but with the use of
Eq. s2d. Here we look into the analogous intermediate
regime in whichKq=Kq. As we shall see below it turns
out to be sufficient to evaluate the rateKq for uniform
initial distributions defined in a partition of equal-sized
cells to establish the validity of the conjecturedf6g form
Kq=lq of the Pesin identity.

Next we recall that the logistic mapfmsxd=1−mx2, −1
øxø1, exhibits several types of infinite sequences of criti-
cal points (with l1=0) as the control parameterm varies
across the interval 0ømø2. One such important sequence
corresponds to the pitchfork bifurcations[10]. The accumu-
lation point of the pitchfork bifurcations is the Feigenbaum
attractor that marks the dividing state between periodic and
chaotic orbits, atm`=1.401 15. . .. A measure of the ampli-
tudes of the periodic orbits is defined by the diameters
dn sn=0,1, . . .d of the “bifurcation forks” at the “superstable”
periodic orbits of lengths 2n that contain the pointx=0.
These superstable orbits occur atm̄n,m` and approachm`

as m̄n−m`,d−n (n large) whered=0.466 92. . . is one of the
two Feigenbaum’s universal constants. The diameterdn

; f m̄n

s2n−1ds0d is the iterate position closest tox=0 in such 2n

cycle. For largen these distances have constant ratios
dn/dn+1=−a, where a=2.502 90. . . is the second of the
Feigenbaum’s constants[10]. For clarity we use only the
absolute values of positions, so belowdn meansudnu.

The main points in the following analysis are as follows.
(1) We determine the evolution ofall orbits atm`, i.e.,

those with initial conditionsxin belonging to the attractor, to
the repeller, and to all other positions.

(2) We obtainjt for anyxin and find the remarkable prop-
erty that Eq.(1) holds in general with the same fixed values
for q andlq up to a timeT=2N whereN.−ln xin / ln a.

(3) We observe that the position-independent form found
for lq implies that ensembles of trajectories expand in such a
way that a uniform distribution of initial conditions remains
uniform for all later timestøT, whereT marks the crossover
to an asymptotic regime.

(4) As a consequence of this we establish the identity of
the rate of entropy productionKq with lq. We corroborate
numerically all our findings.

In Fig. 1 we show the absolute values of the positions
xt;ufm`

std sxindu of two trajectories of the logistic map atm` in

logarithmic scales. One corresponds toxin=0, and the other
one toxin.0.560 23. . ., close to a repeller, the unstable so-
lution of x=1−m`x2. The first trajectory maps out the attrac-
tor while the second exhibits a long-lived transient stretch as
it falls into it. In Ref. [7] it was shown that a distinct fraction
of the positions of the trajectory withxin=0 consists of sub-
sequences generated by the time subsequencestk=2n+2n−k,
with k=0,1, ... andnùk, and each of these exhibits the same
power-law decay. The main subsequencesk=0d can be ex-
pressed (via a time variable shift t0=t0−1) as the
q-exponential xt0

=expQsLQt0d with Q=1+ln 2/ ln a and
LQ=−ln a / ln 2. The positions in the subsequences can be
obtained from those belonging to the supercycles atm̄n,m`.
In particular, the subsequence fork=0 was identified as the
diameter sequencex2n=dn=a−n. This property was shown to
imply Eq. (1) with q=1−ln 2/ ln a and lq=ln a / ln 2. No-
tice thatq=2−Q as expqsyd=1/expQs−yd.

We can extend considerably the above results. First, we
note that theentireattractor can be decomposed into position
subsequences associated with the same power-law decay, and
thatall subsequences are generated by the time subsequences
tk=s2k+1d2n−k. (The first position att=2k+1 of each of the
first eight subsequences can be identified among those la-
beled in Fig. 1.) We make use of this time-position classifi-
cation to point out that the positionsxtk

of all trajectories
with xin,a−m, m=n−k, are given by

xtk
; ugstkdsxindu .

gks0d
am +

gk9s0d
2a−mxin

2 , s3d

where we have neglected terms ofOsa3mxin
4 d and wheregk

;gs2k+1dsxd is the s2k+1dth composition of the fixed-point
mapgsxd. Both gsxd andgksxd are solutions of the RG dou-
bling transformation consisting of functional composition

FIG. 1. Absolute value of two trajectories atm` in logarithmic
scales. Empty circles correspond toxin=0 (the numbers label time
t=1, ... ,16). Small dots correspond toxin.0.560 23. . ., close to a
repeller, the unstable solution ofx=1−m`x2.

F. BALDOVIN AND A. ROBLEDO PHYSICAL REVIEW E 69, 045202(R) (2004)

RAPID COMMUNICATIONS

045202-2



and rescaling,Rfsxd;af(fsx/ad). Equations3d is obtained
by keeping the first two terms in the power-series expansion

of gksxd f10g followed by use ofgksxd=amgk
s2mdsx/amd and

the change of variablexin;a−mx. Considering a pair of ini-
tial conditionsyin andxin in Eq. s3d yields

xtk
syind − xtk

sxind = fx2k+1syind − x2k+1sxindgam. s4d

For each subsequencek, the sensitivityjtk
, defined as

jtk
; lim

uyin−xinu→0

uxtk
syind − xtk

sxindu

uxtk=0syind − xtk=0sxindu
, s5d

can be written, with use of the shifted time variabletk;tk
−2k−1 snùkd, and observing that am=f1+tk/ s2k
+1dgln a/ln 2, as theq exponential:

jtk
= expqflq

skdtkg, s6d

where q=1−ln 2/ ln a and lq
skd=ln a / fs2k+1dln 2g. The

crossover timeT=2N is determined from the condition
xin,a−N in Eq. s3d.

Let us consider next an ensemble ofN trajectories with
initial positionsxin uniformly distributed along the interval
f1−l ,1g, for transparency with 1−l øgs3ds0d. An arbitrary
partition of f1−l ,1g is made with a certain numberI of non-
intersecting intervals of lengthsl i, i =1,2, ... ,I, with l =oi l i.
For l sufficiently small, undertk=s2k+1d2n−k iterations the
lengthsl i transform, according to Eq.(4), asl i

stkd=amli. Since
we also havel stkd=aml, we observe that the interval ratios
remain constant, that is,l i / l = l i

stkd / l stkd. Thus, the initial num-
ber of trajectories within each intervalNl i / l remains fixed
for all times t,T, with the consequence that the original
distribution is uniform for all timest,T.

We can now calculate the rate of entropy production. This
is more easily done with the use of a partition ofW equal-
sized cells of lengthl. Figure 2 provides a striking corrobo-
ration of the time constancy of uniformity. This figure shows
in logarithmic scales the evolution of a distributionpistd of
positions of an ensemble of trajectories atm` beginning from
a uniform distributionpis1d of initial positions contained
within a single cell of sizel adjacent tox=1. If we denote by
Wtk

the number of cells that the ensemble occupies at the
shifted time tk and by Dxtk

the total length of the interval
these adjacent cells form, we haveWtk

=Dxtk
/ l and in the

limit l →0 [sinceWtk
=sDxtk

/Dxtk=0dsDxtk=0/ ld] we obtain the
remarkably simple resultWtk

=jtk
. As the distribution is uni-

form, and recalling Eq.(6) for jtk
, the entropy is given by

Sqstkd=lnq Wtk
=lq

skdtk, while

Kq
skd = lq

skd s7d

as Wtk=0=1. Equations7d is our main result. The numerical
results shown in Fig. 3 substantiate and bring to light in a
dramatic manner the validity of theq-generalized Pesin iden-
tity at m`.

An interesting observation about the structure of the non-
extensive formalism is that the equiprobability entropy ex-
pression lnqWt can be obtained not only fromSq in Eq. (2)
but also from

FIG. 2. Time evolution, in logarithmic scales, of a distribution
pjstd of trajectories atm`. Initial positions are contained within a
cell adjacent tox=1 and j counts the consecutive location of the
occupied cells at timet. Iteration time is shown for the first two
subsequencessk=0,1d.

FIG. 3. Numerical corroboration(full circles) of the generalized
Pesin identityKq

skd=lq
skd at m`. On the vertical axis we plot theq

logarithm ofjtk
(equal tolq

skdt) and in the horizontal axisSq (equal
to Kq

skdt). In both casesq=1−ln 2/ ln a=0.2445. . .. The dashed line
is a linear fit. In the inset the full lines are from the analytical result,
Eq. (6).
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SQ
† ; − o

i=1

W

pilnQspid, s8d

whereSQ
† =S2−Q=Sq. The inverse property of theq exponen-

tial reads lnqy=−ln2−qs1/yd for the q logarithm and as
pointed out introduces a pair of conjugate indicesQ=2
−q with the consequence that while some theoretical fea-
tures are equally expressed by bothSq andSQ

† some others
appear only via the use of eitherSq or SQ

† . For instance, the
canonical ensemble maximization ofSQ

† with the custom-
ary constraintsoi=1

W pi =1 andoi=1
W piei =U, whereei andU

are configurational and average energies, respectively,
leads to aQ-exponential weightswith Q.1 whenq,1d.
On the other hand the partition function is obtained via the
optimization of Sq. The mutual equationss2d and s8d el-
egantly generalize the BG entropy.

We summarize our arguments and findings. Critical states
with vanishingl1 in dissipative one-dimensional nonlinear
maps display power lawjt. It is natural to expect this to
imply a corresponding power-law rate of entropy production
linked to the dynamics of ensembles of trajectories. A con-
nection between these two properties suggests an extension
of the Pesin identityK1=l1, l1.0 that incorporates the case
l1=0. But, interestingly, to study this situation formally one
is required to develop a theory beyond the usual BG scheme
for chaotic states that supplies generalizations for both the
KS entropy and the Lyapunov exponent. One known source
is the nonextensive statistics constructed around the Tsallis
entropySq as this offers specific and practicable expressions
for these quantities. To make a meaningful analysis of this
problem it is indispensable to carry out an explicita priori
determination of all quantities involved and here we have
proved that this is indeed the case for a specific but proto-
typical example, the onset of chaos of the logistic map. We
have shown[7] that the Feigenbaum RG method, from
which the static fixed-point solutiongsxd was originally ob-
tained, is also capable of delivering dynamical properties,

most visibly the sensitivityjt. It is important to stress that the
derivation of jt does not use in any way the nonextensive
formalism and for this reason it constitutes an independent
corroboration of the expression forjt suggested by this
theory. With an analytical expression forlq in hand a parallel
expression for the rate of energy productionKq was here
obtained from two ingredients.(i) a distribution function
pistd of positions for an ensemble of trajectories and(ii ) the
Tsallis entropySq. Our main result, the generalized identity
Kq=lq, necessitates that the equiprobability entropy has the
precise analytical form lnqWt (with q=1−ln 2/ ln a) and to
this extent distinguishes the Tsallis expressionSq from other
alternatives, including the BGS1.

We have shown that the Pesin identity holds rigorously,
albeit in a generalized form, for incipient chaotic states. Be-
cause the entropic indexq (as is the case oflq and its iden-
tity Kq) is obtainable in terms of the Feigenbaum’sa we are
able to address the much-asked question regarding the man-
ner in which the indexq and related quantities are deter-
mined in a physical application. The generic chaotic state is
that associated tol1.0, but it is evident that the critical
state withl1=0 carries with it completely different physics.
The analysis was specifically carried out for the Feigenbaum
attractor of the logistic map but our findings clearly have a
universal validity for the entire class of unimodal maps and
its generalization to other degrees of nonlinearity. In a more
general context our results indicate a limit of validity to the
BG theory based onS1 and the appropriateness of the non-
extensiveSq for this kind of critical dynamic states.
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