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Model for cascading failures in complex networks
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Large but rare cascades triggered by small initial shocks are present in most of the infrastructure networks.
Here we present a simple model for cascading failures based on the dynamical redistribution of the flow on the
network. We show that the breakdown of a single node is sufficient to collapse the efficiency of the entire
system if the node is among the ones with largest load. This is particularly important for real-world networks
with a highly hetereogeneous distribution of loads as the Internet and electrical power grids.
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Cascading failures are common in most of the comp
communication and/or transportation networks@1,2# that are
the basic components of our lives and industry. In fact,
though most failures emerge and dissolve locally, largely
noticed by the rest of the world, a few trigger avalanc
mechanisms that can have large effects over the entire
works.

Cascading failures take place on the Internet, where tra
is rerouted to bypass malfunctioning routers, eventually le
ing to an avalanche of overloads on other routers that are
equipped to handle extra traffic. The redistribution of t
traffic can result in a congestion regime with a large drop
the performance. For instance in October 1986, during
first documented Internet congestion collapse, the spee
the connection between the Lawrence Berkeley Labora
and the University of California at Berkeley, two plac
separated only by 200 m, dropped by a factor 100@3,4#.

Cascading failures also take place in electrical pow
grids. In fact, when for any reason a line goes down,
power is automatically shifted to the neighboring line
which in most of the cases are able to handle the extra lo
Sometimes, however, these lines are also overloaded
must redistribute their increased load to their neighbors. T
eventually leads to a cascade of failures: a large numbe
transmission lines are overloaded and malfunction at
same time. This is exactly what happened on 10 August 1
@5,6# when a 1300-mw electrical line in southern Oreg
sagged in the summer heat, initiating a chain reaction tha
power to more than 4 million people in 11 Western Stat
And probably this is also what happened on 14 August 2
when an initial disturbance in Ohio@7# triggered the larges
blackout in the U.S.’s history in which millions of peop
remained without electricity for as long as 15 h.

Large cascading failures are also present in social
economic systems@8#.

How is it possible that a small initial shock, such as t
breakdown of an Internet router~or of an electrical substa
tion or line!, can trigger avalanches mechanisms affectin
considerable fraction of the network and collapsing a sys
that in the past was proven to be stable with respect to s
lar shocks? In this paper we propose a simple model
cascading failures in complex networks. Resistance of
works to the removal of nodes or arcs, due either to rand
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breakdowns or to intentional attacks, has been studied
Refs. @9–13#. Such studies have focused only on thestatic
properties of the network showing that the removal of
group of nodes altogether can have important consequen
Here we show how the breakdown of asingle nodeis suffi-
cient to collapse the entire system simply because of
dynamics of redistribution of flowson the network. In our
model each node is characterized by a givencapacity to
handle the traffic. Initially the network is in a stationary sta
in which the load at each node is smaller than its capaci
The breakdown~removal! of a node changes the balance
flows and leads to a redistribution of loads over other nod
If the capacity of these nodes cannot handle the extra l
this will be redistributed in turn, triggering a cascade of ov
load failures and eventually a large drop in the network p
formance such as those observed in real systems, like
Internet or the electrical power grids. The main differenc
with respect to previous models@14–16# are as follows.

~1! Overloaded nodes are not removed from the netwo
It is the communication passing through overloaded~con-
gested! nodes that will get worse, so that eventually t
information/energy will avoid congested nodes.

~2! The damage caused by a cascade is quantified in te
of the decrease in the networkefficiency, a variable defined
in Ref. @17#.

First we introduce the model and then we show so
applications to artificially created topologies, to the Intern
and to the electrical power grid of the western United Sta

We represent a generic communication and/or transpo
tion network as a valued~weighted! @18# undirected@19#
graphG, with N nodes~the Internet routers or the substatio
of an electrical power grid! and K arcs ~the transmission
lines!. G is described by theN3N adjacency matrix$ei j %. If
there is an arc between nodei and nodej, the entryei j is the
value, a number in the range~0,1# attached to the arc; other
wise ei j 50 @20#. Such a number is a measure of the ef
ciency in the communication along the arc. For instance
the Internet, the smallerei j is, the longer it takes to exchang
a unitary packet of information along the arc betweeni andj.
Initially, at time t50, we setei j 51 for all the existing arcs,
meaning that all the transmission lines work perfectly a
are equivalent. The model we will propose consists of a r
for the time evolution of$ei j % that mimics the dynamics o
©2004 The American Physical Society04-1
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flow redistribution following the breakdown of a node. T
define the network efficiency@17# we assume that the com
munication between a generic couple of nodes takes the m
efficient path connecting them. The efficiency of a path is
so-called harmonic composition@21–23# of the efficiencies
of the component arcs. Bye i j we indicate the efficiency o
the most efficient path betweeni and j. Matrix $e i j % is cal-
culated by means of the algorithms used in Ref.@17#. Then
the average efficiency of the network is

E~G!5
1

N~N21! (
iÞ j PG

e i j ~1!

and is used as a measure of the performance ofG at a given
time.

The load Li(t) on nodei at time t is the total number of
most efficient paths passing throughi at time t @24#. Each
node is characterized by acapacitydefined as the maximum
load that node can handle. Following Ref.@14# we assume
the capacityCi of nodei to be proportional to its initial load
Li(0):

Ci5aLi~0!, i 51,2, . . . ,N, ~2!

wherea>1 is the tolerance parameter of the network@25#.
This is a realistic assumption in the design of an infrastr
ture network, since the capacity cannot be infinitely la
because it is limited by the cost. With such a definition
capacity, the network we have created is in a stationary s
in which it operates with a certain efficiencyE. The initial
removal of a node@26#, simulating the breakdown of an In
ternet router or of an electrical substation, starts the dyn
ics of redistribution of flows on the network. In fact th
removal of a node changes the most efficient paths betw
nodes and consequently the distribution of the loads, crea
overloads on some nodes. At each timet we adopt the fol-
lowing iterative rule:

ei j ~ t11!5H ei j ~0!
Ci

Li~ t !
if Li~ t !.Ci

ei j ~0! if Li~ t !<Ci ,

~3!

wherej extends to all the first neighbors ofi. In this way if at
time t a nodei is congested, we reduce the efficiency of
the arcs passing through it, so that eventually
information/energy will take alternative paths~the new most
efficient paths!. This is a softer and, for some applications
more realistic situation than the one considered in Ref.@14#,
in which the overloaded nodes are removed from the n
work. Rule ~3! produces a decrease of the efficiency of t
network E and, as we will show in the following, in som
cases it can trigger an avalanche mechanism collapsing
whole system.

We illustrate how our model works in practice by cons
ering two artificially created network topologies:~1! Erdös-
Rényi ~ER! random graphs@27#; ~2! scale-free networks, i.e.
graphs with an algebraic distribution of degreeP(k);k2g

with g53 generated according to the Baraba´si-Albert ~BA!
model @28#.
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In both cases we have constructed networks withN
52000 andK510 000. In Fig. 1 we report the typical tim
evolution of the network efficiency for the BA scale-fre
network. The dynamics of redistribution of flows is triggere
by the removal at timet50 of a node chosen at random. W
show the results for three values of the tolerance param
namely,a51.3, 1.05, 1.01. In the first case the efficiency
the network is completely unaffected by the failure of t
node. In the second case the network reaches a statio
state with an efficiency lower than the initial one. In the thi
case, because of the lower tolerance parameter, the casc
failures collapse the system: the network has lost 40% of
initial efficiency.

In Fig. 2 we report the final value of the efficiency, i.e
the efficiency after the system has relaxed to a station
state, as a function of the tolerance parametera. We con-
sider both the ER random graph and the BA scale-free gra
Moreover, we adopt two different triggering strategies:ran-
dom removalsand load-based removals. In the first case
~squares! the node removed initially is chosen at random:
this way we simulate the breakdown of the average node
the network. In the second case~full circles! the removed
node is a very special one because it is the one with
largest load. Both for the random and for the scale-free n
work we observe a decrease of the efficiency for small val
of the tolerance parametera, and the collapse of the system
for values smaller than a critical valueac . ER random
graphs appear to be more resistant to cascading failures
BA scale-free graphs~as also found in the model of Re
@14#!. In both cases the collapse transition is always shar
for load-based removals than for random removals, altho
the values ofac can fluctuate for different realizations. Fo
the ER random graphs considered we have obtainedac
51.0260.002 for random removals, andac51.0660.005
for load-based removals. For BA scale-free graphsac51.1
60.004 for random removals, andac51.360.05 for load-
based removals@29#. The heterogeneity of the network play
an important role in the network stability. ER random grap

FIG. 1. Cascading failure in a BA scale-free network as tr
gered by the initial removal of a single node chosen at random.
plot the efficiencyE of the network as a function of the time fo
three values of the tolerance parametera. The curves correspond to
an average over ten triggers.
4-2
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have an exponential load distribution while BA networks e
hibit a power-law distribution in the node load@24#. This
makes a large difference between random removals and l
based removals in BA scale-free networks. In fact there
few nodes, the ones with extremely high initial load, that
far more likely than the other nodes~the most part of the
nodes of network! to trigger cascades. Figure 2~b! shows the
existence of a large region in the tolerance parame
1.1<a<1.3, where scale-free networks are stable with
spect to random removals and are unstable with respe
load-based removals. If, for instance the nodes work wit
tolerance of 30% above the standard load (a51.3), the net-
work is in general very stable to an initial shock consisting
the breakdown of a node. This means that in most of
cases the failure is perfectly tolerated and reabsorbed by
system. However, there is always a finite, although v
small, probability that the failure triggers an avalanc
mechanism, collapsing the whole network.

As examples from the real world we study a network
the Internet~at the autonomous system level@1,30#! with N
56474 nodes andK512567 arcs taken from Ref.@31#, and
the electrical power grid of the western United States fr
Ref. @32# havingN54941 andK56592. Although the Inter-
net exhibits a power law degree distribution~as for BA scale-
free networks! while the electrical power grid has an exp
nential degree distribution~as for ER random graphs!, we
have checked that both the networks considered are
hetereogeneous from the point of view of the loads on nod
In the insets of Fig. 3 and Fig. 4 we reportN( l ), the number
of nodes with a load larger thanl, as a function ofl: the
straight lines indicate that the load distribution is consist
with a power-law with exponents, respectively, of 1.80 a
1.75. In the same figures we report the value of the efficie

FIG. 2. Cascading failure in~a! ER random graphs and~b! BA
scale-free networks as triggered by the removal of a node chos
random~squares!, or by the removal of the node with largest loa
~full circles!. We report the final~after the cascade! efficiencyE of
the network as a function of the tolerance parametera. Both the
networks considered haveN52000 andK510 000. In the case
triggered by the removal of a node chosen at random, the c
corresponds to an average over ten triggers.
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after the cascade triggered by random failures and load-b
failures. Due to the presence of a few nodes with an
tremely high initial load, the figures show a large range oa
where the network is stable against random failures an
vulnerable with respect to the breakdown of the most loa
nodes. Although the latter events have a very low probabi
their occurrence may collapse the entire systems with a la
effect on our life. These results are a possible explanatio
the mechanism producing the experimentally observed In
net congestion collapses and the power blackouts. A sm
initial shock, such as the breakdown of an Internet router
of an electrical substation or line, may trigger avalanc
mechanisms affecting a considerable fraction of a netw
that for years was proven to be stable with respect to sim
shocks. As an example, if the electric power grid of the we
ern United States of Fig. 4 works with a tolerancea51.1
~a51.5!, a case in which the system is stable with respec
the failure of most of its nodes, the removal of a spec
node, the one with highest initial load, produces a drop
30% ~15%! of its efficiency.

at

ve

FIG. 3. Cascading failure in the Internet. The network cons
ered is taken from Ref.@31#. For each value ofa we report the
efficiency E after the cascade triggered by the removal of a no
chosen at random~squares!, or by the removal of the node with th
largest load~full circles!. The curve reported for random remova
is an average over ten different nodes. In the inset we plot
cumulative node load distribution.

FIG. 4. Cascading failure in the electrical power grid of t
western United States from Ref.@32#. Same plot as in Fig. 3.
4-3
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Summing up, in this paper we have introduced a sim
model to explain why large but rare cascade triggered
small initial shocks are present in most of the comp
communication/transportation networks that are the ba
components of our lives. The model is based on a dynam
redistribution of the flow triggered by the initial breakdow
of a component of the system. The results show that
breakdown of a single node is sufficient to affect the e
ciency of a network up to the collapse of the entire system
the node is among the ones with the largest load. T
is particularly important for networks with a highly hetere
geneous distribution of node loads such as BA scale-
.
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networks, but also real-world networks such as the Inter
and electrical power grids. Our results show that it is on
the breakdown of a selected minority of the nodes that
trigger the collapse of the system. It is also true that for
majority of the nodes nothing harmful happens, which lea
us to the erroneous belief that our communicatio
transportation networks are safe. Therefore, it should be
visable to take into proper account, in the design of a
complex network, the cascading failures effects analy
here.
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