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We study the phenomenon of spatiotemporal stochastic resonance(STSR) in a chain of diffusively coupled
bistable oscillators. In particular, we examine the situation in which theglobal STSR response is controlled by
a locally applied signaland reveal a wave-front propagation. In order to deepen the understanding of the
system dynamics, we introduce, on the time scale of STSR, the study of the effective statistical renormalization
of a generic lattice system. Using this technique we provide a criterion for STSR, and predict and observe
numerically a bifurcationlike behavior that reflects the difference between the most probable value of the local
quasiequilibrium density and its mean value. Our results, tested with a chain of nonlinear oscillators, appear to
possess some universal qualities and may stimulate a deeper search for more generic phenomena.
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Since the appearance of[1] the phenomenon of stochastic
resonance(SR) has become a popular field of research. A
great deal of experimental as well as theoretical and math-
ematical work has been devoted to the study of the phenom-
enon in different systems(for reviews, see Refs.[2–5]).
There has been a particular emphasis of its relevance and
importance in biology and medicine[6] where noise in gen-
eral, and SR in particular, play a surprisingly constructive
role [7]. The ability of SR to generate order from disorder
[2–7] is especially of relevance in the context of pattern for-
mation mechanisms that are enhanced by noise[8]. The dis-
covery of an enhancement of the effect by the coupling of
nonlinear oscillators into an array[9,10] has brought new
insight to studies of SR. This effect in a wide sense is known
as spatiotemporal SR(STSR) [4]. An explanation of this ef-
fect has previously been described as “collective spatiotem-
poral motion” and “optimal spatiotemporal synchronization.”
In spite of much progress, the precise kinetic details of such
a synchronization remain without an appropriate study.

We conjecture that among the kinetic details of STSR,
wave front propagation plays a prominent role(Refs.[11,12]
are good background references in this regard). We investi-
gate the related problem of inducing and controlling global
spatiotemporal order in a chain of diffusively coupled
bistable oscillators by alocally applied signal. The ability to
induce STSR throughout the chain by applying a local signal
to a small part of the chain is precisely shown. This can be
regarded as an element of a spatial signal transmission, and
possibly gives a new design freedom to modeling biological
and biomedical problems. We also investigate the effective
statistical renormalization of the steady states of a generic
lattice system[24]. This renormalization reflects the differ-
ence between the most probable and mean values of the local
quasiequilibrium density which is a result of time averaging
[25]. This leads to a new observation that the system, on the
time scale of STSR, exhibits a bifurcationlike behavior. It
also gives a criterion for the noise intensity depending on the
coupling in the chain. Both our results appear to have a cer-
tain universal quality and may stimulate a deeper search for
generic phenomena, e.g., in a chain of FitzHugh-Nagumo
equations[15].

Consider a chain of overdamped oscillators with diffusive
coupling of constantK.0 and a bistable on-site potential
Vsyd=−my2/2+y4/4. We assume that the system is influ-
enced both by external random noise of intensityD, which
involves a set of independent generalized Gaussian random
processeshjnstdj with two characteristic cumulants,kjnstdl
=0 andkjmstdjnst8dl=dmndst− t8d, and a deterministic signal
Sstd applied locally to a part of the chain,Sn

sMkdstd
=fsstd if nPMk, and 0 otherwiseg. In what follows
we fix the particular and simplest form of the external signal,
sstd=A cossvtd, together with dimensionless amplitudeA
=0.025, and frequencyv=5p310−5 that actually set one of
the time scales,Ts=2pv−1=43104. The other characteristic
time scales are: the relaxation time of the chain to Gaussian
fluctuations in the vicinity of one of its stable steady states,
Tr [in our caseTr,s2md−1,1]; the waiting time of the ini-
tial birth of an “instanton,”TK (Kramers’ time) [9] — here
we do not explicitly consider this time scale but, fortunately,
there are in-depth studies of the problem[11,16,17] (a pos-
teriori one can say thatTK is considerably shorter than the
principal time scale here) and also the time scale related to
any wave-front propagation in the chain,Tw.

The corresponding chain stochastic differential equation
(SDE) in dimensionless variables has the form,

ẏn = KDyn − V8synd + Î2Djnstd + Sn
sMkdstd, s1d

with n on the chainN in the integer latticeZ, nPN
=h1, . . . ,k+1, . . . ,k+M, . . . ,Nj , Mk=hk+1,k+2, . . . ,k+Mj,
0øM øN; and Dyi ;yi+1−2yi +yi−1. Two different topolo-
gies are possible for the chain: either the ends are connected
or not connected. We take the latter case with Neumann
boundary condition.

The corresponding physical context of Eq.(1) is in the
Smoluchowski kinetics of a harmonically coupled chain of
particles with transverse displacementshynj. The underlying
free energy functional and the corresponding deterministic
part of the dynamics, without signal, are:Fsyd=osnd

1
2Ksyn

−yn−1d2+Vsynd , ẏn=−]F /]yn. This interpretation can con-
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siderably facilitate the understanding of the dynamic behav-
ior of Eq. (1). Especially since even diffusively coupled,
chain oscillators appear surprisingly difficult to analyze con-
sistently from a rigorous mathematical perspective[18].

We study a spatially discrete model because chains or
array structures are often of relevance in biology. Besides
biology there are also crystal lattices[17]. Moreover inter-
esting dynamical effects exist in discrete models that are not
present in their continuous analogs, e.g., the propagation fail-
ure of traveling waves[18] and breathers[19]. Even in popu-
lation dynamics it was recently demonstrated that important
effects due to the discrete nature of organisms may be en-
tirely missed by continuous models[20].

To introduce induced STSR phenomena, we first present a
representative numerical simulation of Eq.(1) that is per-
formed longer than all the characteristic time scales. We use
time steps 0.01 and 0.001 that are considerably shorter than
the principal time scale. Further shortening of the step does
not change the result.

As shown in Fig. 1 the system can indeed represent the
well-recognized phenomenon with a local signal applied to
only 1/6 part of the chain. The collective variables,Y
=N−1on=1

N yn and Y8=M−1on=k+1
k+M yn, also adequately and leg-

ibly reflect the key features of the effect as shown in Fig. 2.
The generic features of STSR, i.e., those related to a dif-

fusively coupled chain of bistable oscillators, have reason-
able prototypes going back as far as the pioneering paper[9].
The main result from Ref.[9] is that, for transition times,
only the energy of the unstable instantonlike spatially inho-
mogeneous steady state solutions, and not the total energy
barrier for the chain, is of importance cf. Ref.[21]. However,
in fact, there has been no discussion at all of the transition

kinetics, which appear after the birth of the “instantons.”
The transition kinetics are most likely related to, but dif-

ferent from, another interesting phenomenon — traveling
waves[18]. It is evident from the physical interpretation of
Eq. (1) that a traveling wave solution can appear only if the
symmetry of the bistable potential is broken and there is an
energy gap between the two stable states, and the energy flux
is compensated for by dissipative forces. This is not the case
for the deterministic part of Eq.(1) with A=0. However, if
AÞ0 then the external signal periodically breaks the sym-
metry and creates an absolute minimum at one of the wells
of the underlying potential, and a traveling wave front can
develop on a sufficiently long time scaleTs. The situation
changes favorably in the case of a chain because the transla-
tional symmetry is broken. With the chain, starting from the
physical interpretation above, we can imagine an unstable
instantonlike steady state solution[9]. Its characteristic life-
time introduces a new time scale that is required to be shorter
than Ts for the continued existence of the induced STSR
effect. Our numerical simulations justifya posteriori that
this condition is perfectly realizable.

Once the underlying kinetic mechanisms of STSR are un-
derstood, we can explore other interesting features. Here we
focus on one that has been overlooked in previous studies,
viz. the shift of the stable spatially homogeneous steady
states.

Let us consider the specific lattice SDE

ẏi = KDyi − V8syid + Î2Djistd, i P Z, s2d

and evolve the optimal Gaussian representation of this equa-
tion sextendingf22g to the case of a lattice system as a start-
ing point for further analysis; alternatively one can start with
an averaging principlef21gd,

ẏi = KDyi − faistd + bistddyig + Î2Djistd, i P Z, s3d

whereai andbi are obtained by a minimization procedure in
respect of the mean-square error functionalJ=kfV8syid−sai

+bidyidg2l for all i PZ, wheredyi =yi −kyil. The representa-
tion s3d of s2d is especially appropriate since theex ante
fluctuations are almost Gaussian near the stable steady states
and typical exit paths of Eq.s2d. On the time scaleTs the
internal deterministic and random oscillations are very fast
and can be considered adiabatically following with the exter-
nal signal.

To actually obtainai andbi, which is an intractable prob-
lem since it requires the exact solution of Eq.(2), we con-
sider a self-consistent approximation scheme combining the
minimization ofJ together with the solution of Eq.(3). Thus
we replace averaging according to Eq.(2) by its Gaussian
approximation according to Eq.(3), ȳ=kylGaussian=kyl. As a
result, we obtain the self-consistent set

ẏ̄i = KDȳi − aistd, s4d

dẏi = KDdyi − bistddyi + Î2Djistd, s5d

FIG. 1. Locally induced global spatiotemporal pattern in the
chain of bistable oscillators; parameters are specified in Fig. 2.

FIG. 2. (a) Dynamics of the collective variablesY (solid) andY8
(dash) with parametersN=300,M =50, k=125,K=15, D=0.1, and
m=0.25; (b) fine structure of the transition region in(a) reveals a
wave-front propagation.
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aistd = kV8fyistdgl, bistd = kdyiV8fyistdglkdyi
2l−1.

Further, using the Furutsu-Novikov formula(Ref. [23], and
references therein) we explicitly obtain ai =f3K2syid−mgȳi

+ ȳi
3, bi =f3K2syid−mg+3ȳi

2, whereK2syid=kyi
2l− ȳi

2 is the

second cumulant. Thus Eq.(4) takes the formẏ̄i =KDȳi
+fm−3K2syidgȳi − ȳi

3, involving the effective potential func-
tion Veff, Veff8 sȳid=−fm−3K2syidgȳi + ȳi

3. Since K2syidù0,
VeffùV, always.

Finally we consider the principal problem of an explicit
calculation ofK2syid and solve it under certain hypotheses.
Consider the spatial correlations,kmnstd=kdymstddynstdl and
suppose that the fluctuations tend to their steady state via a
stage of spatial homogenization with the ansatzkmnstd
=km−nstd=krstd. The known equilibrium solution of Eq.(2)
with probability densityr`syd~expf−Fsyd /Dg has the prop-
erty of spatial homogeneity, but does the property still per-
sists as time evolves? To facilitate understanding, consider
the process of the formation ofr` as a result of time aver-
aging, and fix two limiting cases related to low and high
levels of the noise intensity. AsD↓0 the system spends most
time in a potential trough, occasionally passing from one to
the other. Being in a trough it has time to form a local
quasiequilibrium density that reflects the local asymmetry of
the underline potential. Ast→ +`, a sum of the local densi-
ties is formed to satisfy the global symmetry condition. Un-
der a high level of noise, the rate of passage from one trough
to the other is frequent enough in order to rapidly form the
mean valuey=0. The qualitative picture described above is
linked to the particular time scale of the problem in question.
Favorably for the ansatz, we are interested in averaging over
a time scale aboutTs that becomes apparent in the local
quasiequilibrium density. Test numerical simulations are also
essential in order to reinforce the ansatz.

Using Eq.(5) together with the Furutsu-Novikov formula,
we obtain a dynamical equation forkrstd: k̇r =2KDkr

−2bstdkr +2Ddr0, r PZ—and as a result, the equation for
the steady state correlation function,KDkr −bkr +Ddr0
=0, r PZ, with the natural asymptotic conditions
limr→±`kr =0; b is still unknown. Substituting
kr =At−ur u , t.1, we obtain the set of algebraic equations, cor-
responding tor =0 and r ù1 : f2Ks1−t−1d+bgA=D , t2

−2s1+b/2Kdt+1=0. The last equation has two different
roots,t±=s2Kd−1f2K+b±Îbs4K+bdg, connected by the rela-
tion, t+t−=1. Since t; t+.1, this means thatt−= t−1,1.
Therefore finally we obtain

kr =
D

Îbs4K + bd
F2K + b + Îbs4K + bd

2K
G−ur u

.

In particular,k0=D /Îbs4K+bd. Further, we can usek0 in
combination withVeff8 sȳd=0 to characterize the effective
spatially homogeneous steady states. Excludingb s=3k0

−m+3ȳ2d from this set, we arrive at two cases:sad ȳ
=0, s3k0−mds4K+3k0−md= D2/k0

2 , sbd ȳ2=m−3k0, sm
−3k0ds2K+m−3k0d= D2/4k0

2. Observe first that whilesad
always givesȳ=0 and k0ùm/3, the setsbd has no real
roots ȳ sk0.0d for a certain range of values ofD and K

ssee Fig. 3d. In other words, the stable steady states dis-
appear and onlyȳ=0 remains in this range. We could
claim that this occurs with a bifurcationlike behavior. To
identify this observation, we carry out numerical experi-
ments on the systems1d varying the noise intensityD over
a wide range. The response to the external signal provides
evidence of the effect as shown in Fig. 4, which is en-
hanced further with largerN. In the casescd the stochastic
resonance pattern, adjusted for the renormalization, is
recognizable, but in the casesad only simple oscillations
with the frequency of the external signal are visible
aroundȳ=0.

For further understanding of this observation, one can
consider the equilibrium probability density of Eq.(2). As
D↓0, r`syd is concentrated at two spatially homogeneous
absolute minima of the potential and forms the most improb-
able configurations around unstable steady statey=0. The
homogeneous equilibrium mean valuekyl`=0 is fixed by the
invariance ofr`syd under the transformationy→−y, and
eventually coincides with the unstable steady state. By in-
creasingD we can change the sharpness of the equilibrium
density profile, but not the topology. It should be observed
here thatr`syd represents the average over all sample paths
of Eq. (2). If we consider a single sample path then the local
density profile of Eq.(2) is formed by time averaging, ini-
tially in the vicinity of an absolute minimum of the potential

FIG. 3. Spatially homogeneous steady statesȳÞ0 as points of
intersection of a characteristic surfaceȳ= ȳsD ,Kd and two coordi-
nate planes of the control parameters(D=0.1 and K=15 are
marked). Instead of the two original steady states ±0.5 there are
now four for specific values ofD andK, and zero otherwise.

FIG. 4. Three output signals(collective variableY, N=M =500)
with (a) D=0.5; (b) D=0.24; and (c) D=0.1; correspondingly,
above, near, and below the characteristic surfaceȳ= ȳsD ,Kd at K
=15 (see Fig. 3); effective stable steady states:(a) 0 and(c) ±0.43.
The difference appears to be not only quantitative but also, more
importantly, qualitative.
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reflecting the local potential asymmetry. After a sufficiently
long period, the system with probability 1 will pass through
the low-probability range to the vicinity of the other absolute
minimum of the potential, and so on. The rate of this process
rapidly increases withD [21]. The rate of development of a
difference between the most probable and mean values of the
local density is also increasing withD since, within the same
time interval, more different states are realizable. It is re-
markable that the time interval related to the signal as well as
the inherent nature of SR is favorable to observe the mean
values or, in other words, to feel the effective potential. The
collective variableY, which is a sort of site average, allows

us to visualize this effect if the chain is long enough.
Finally, if we set D=0.1 and Îm=0.5, we obtain ȳ

< ±0.43. This is close to the observed value obtained by
direct simulation of Eq.(1) (with N=M =300 and 500). The
agreement improves with larger values ofN. There also ex-
ists a pair of steady states close toȳ=0: ȳ< ±0.1 — but
these are not clearly identified in the simulation of STSR.
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