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We study the phenomenon of spatiotemporal stochastic reso@m&&® in a chain of diffusively coupled
bistable oscillators. In particular, we examine the situation in whiclgtbleal STSR response is controlled by
a locally applied signaland reveal a wave-front propagation. In order to deepen the understanding of the
system dynamics, we introduce, on the time scale of STSR, the study of the effective statistical renormalization
of a generic lattice system. Using this technique we provide a criterion for STSR, and predict and observe
numerically a bifurcationlike behavior that reflects the difference between the most probable value of the local
quasiequilibrium density and its mean value. Our results, tested with a chain of nonlinear oscillators, appear to
possess some universal qualities and may stimulate a deeper search for more generic phenomena.
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Since the appearance [df] the phenomenon of stochastic ~ Consider a chain of overdamped oscillators with diffusive
resonancgSR) has become a popular field of research. Acoupling of constank >0 and a bistable on-site potential
great deal of experimental as well as theoretical and mathy(y)=-my?/2+y*/4. We assume that the system is influ-
ematical work has been devoted to the study of the phenomenced both by external random noise of intengtywhich
enon in different systemsfor reviews, see Refs|2-5]).  jnvolves a set of independent generalized Gaussian random
There has been a particular emphasis of its relevance angocesseq, ()} with two characteristic cumulantsg,(t))
importance in biology and mediciri€] where noise in gen- =0 and(& (1) &,(t))=8,,8(t-t"), and a deterministic signal

eral, and SR in particular, play a surprisingly constructive ' MY
role [7]. The ability of SR to generate order from disorder X} applied locally to a part of the chaing ™ ()

[2-7] is especially of relevance in the context of pattern for-=[S() if neMy, and 0 otherwisk In what follows
mation mechanisms that are enhanced by n@eThe dis-  We fix the particular and simplest form of the external signal,
covery of an enhancement of the effect by the coupling of(t)=A cogwt), together with dimensionless amplitude
nonlinear oscillators into an arrai@,10 has brought new =0.025, and frequency=>5m X 10°° that actually set one of
insight to studies of SR. This effect in a wide sense is knowrthe time scalesT,=2mw 1=4x 10*. The other characteristic
as spatiotemporal SESTSR [4]. An explanation of this ef- time scales are: the relaxation time of the chain to Gaussian
fect has previously been described as “collective spatiotemfiuctuations in the vicinity of one of its stable steady states,
poral motion” and “optimal spatiotemporal synchronization.” T, [in our caseT,~ (2m) 1~ 1]; the waiting time of the ini-
In spite of much progress, the precise kinetic details of suclja| pirth of an “instanton, Tx (Kramers’ time [9] — here
a synchronization remain without an appropriate study. e do not explicitly consider this time scale but, fortunately,
We conjecture th_at among the k!net|c details of STSRyhere are in-depth studies of the problght, 16,17 (a pos-
wave front propagation plays a prominent rRefs.[11,12 yo1jori one can say thafy is considerably shorter than the

are g(;]od biack%roungl referfencc?s in this (;egamb Iilr_west:- b Pincipal time scale hejeand also the time scale related to
gate the related problem of inducing and controlling globaly uaye front propagation in the chaff,

spatlotempqral order in a chal_n Of. diffusively .poupled The corresponding chain stochastic differential equation
blstable oscillators by bocally appllled signal '_I'he ability tq ?SDE) in dimensionless variables has the form,

induce STSR throughout the chain by applying a local signal

to a small part of the chain is precisely shown. This can be . , ==

regarded as an element of a spatial signal transmission, and Y= KAyn = V' (y) + V2DE(0) + (D), @)
possibly gives a new design freedom to modeling biological . ) ) ) o .

and biomedical problems. We also investigate the effectivdith n on the chainl\ in the integer latticeZ, ne
statistical renormalization of the steady states of a generigid: -+ K+1, ... K+M, ... ,N}, Mi={k+1 k+2,... k+M},
lattice system[24]. This renormalization reflects the differ- 0=M=N; and Ay;=y;.,-2y;+y;;. Two different topolo-
ence between the most probable and mean values of the loc3S are possible for the chain: either the ends are connected
quasiequilibrium density which is a result of time averaging®" Not connected. We take the latter case with Neumann
[25]. This leads to a new observation that the system, on thBoundary condition. ) o

time scale of STSR, exhibits a bifurcationlike behavior. It  The corresponding physical context of E@) is in the

also gives a criterion for the noise intensity depending on themoluchowski kinetics of a harmonically coupled chain of
coupling in the chain. Both our results appear to have a cefarticles with transverse displacemefig;. The underlying
tain universal quality and may stimulate a deeper search fdfee energy functional and the corresponding de'{erm|n|st|c
generic phenomena, e.g., in a chain of FitzHugh-Nagumd®art of the dynamics, without signal, aré{y)==K(y,
equationg15]. “Yn)2+ VY, Ya=-dFIdy,. This interpretation can con-
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kinetics, which appear after the birth of the “instantons.”
The transition kinetics are most likely related to, but dif-
ferent from, another interesting phenomenon — traveling
waves[18]. It is evident from the physical interpretation of
Eq. (1) that a traveling wave solution can appear only if the
symmetry of the bistable potential is broken and there is an
energy gap between the two stable states, and the energy flux
is compensated for by dissipative forces. This is not the case
for the deterministic part of Eql) with A=0. However, if
A#0 then the external signal periodically breaks the sym-
metry and creates an absolute minimum at one of the wells
of the underlying potential, and a traveling wave front can
develop on a sufficiently long time scale. The situation
changes favorably in the case of a chain because the transla-
siderably facilitate the understanding of the dynamic behavtional symmetry is broken. With the chain, starting from the
ior of Eq. (1). Especially since even diffusively coupled, physical interpretation above, we can imagine an unstable
chain oscillators appear surprisingly difficult to analyze con-nstantonlike steady state solutig#]. Its characteristic life-
sistently from a rigorous mathematical perspecfiv@). time introduces a new time scgle that is reqw_red to be shorter
We study a spatially discrete model because chains dhan Ts for the continued existence of the induced STSR
array structures are often of relevance in biology. Besidegffect. Our numerical simulations justifg posteriori that
biology there are also crystal latticgs7]. Moreover inter- this condition is perfectly_ rea_lllzable_ _
esting dynamical effects exist in discrete models that are not Once the underlying kinetic mechanisms of STSR are un-
present in their continuous analogs, e.g., the propagation faifférstood, we can explore other interesting features. Here we
ure of traveling wavegl8] and breathergl9]. Even in popu-  [OCUS on one that has been overlooked in previous studies,
lation dynamics it was recently demonstrated that importaniZ- the shift of the stable spatially homogeneous steady
effects due to the discrete nature of organisms may be erffates.
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FIG. 1. Locally induced global spatiotemporal pattern in the
chain of bistable oscillators; parameters are specified in Fig. 2.

tirely missed by continuous mode]20]. Let us consider the specific lattice SDE
To introduce induced STSR phenomena, we first present a i
representative numerical simulation of H@,) that is per- Y =KAy, = V'(y) + V2D&(t), ieZ, (2

formed longer than all the characteristic time scales. We use

time steps 0.01 and 0.001 that are considerably shorter thaihd evolve the optimal Gaussian representation of this equa-

the principal time scale. Further shortening of the step doegion (extending22] to the case of a lattice system as a start-

not change the result. ing point for further analysis; alternatively one can start with
As shown in Fig. 1 the system can indeed represent than averaging principl€21]),

well-recognized phenomenon with a local signal applied to

only 1/6 part of the chain. The collective variableg, o= A _ 1+ PP £ P

=N"=N .y, andY'=M~I=KM v also adequately and leg- Y=Kay-[aO) +hOY]+2DEW, TeZ ()

ibly reflect the key features of the effect as shown in Fig. 2, . L .

; ) -wherea, andb; are obtained by a minimization procedure in
The generic features of STSR, i.e., those related to a dif: ' i : o
fusively coupled chain of bistable oscillators, have reason—resPect of the mean-square error functiokak[V'(y)-(a

. A 2 i / . =\/. — . -
able prototypes going back as far as the pioneering &per fb'éy')] ) for aI.I leZ, vvhere M=, .(y|>. T'he representa
The main result from Ref{9] is that, for transition times, tion (3) of (2) is especially appropriate since tiex ante

only the energy of the unstable instantonlike spatially inho_fluctuati_ons are almost Gaussian near th‘? stable sieady states
nd typical exit paths of Eq.2). On the time scald the

mogeneous steady state solutions, and not the total ener L i
ternal deterministic and random oscillations are very fast

barrier for the chain, is of importance cf. RE21]. However, . . . . .
in fact, there has been no discussion at all of the transitiOt"im;j can tl)e considered adiabatically following with the exter-
nal signal.

To actually obtairg; andb;, which is an intractable prob-
lem since it requires the exact solution of Eg), we con-
sider a self-consistent approximation scheme combining the
minimization ofJ together with the solution of E¢3). Thus
we replace averaging according to Eg) by its Gaussian
approximation according to E@3), Y=(Y)gaussiar{Y)- AS a
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result, we obtain the self-consistent set
10°t 104t
FIG. 2. (a) Dynamics of the collective variablés(solid) andY’ y: KAy, — a(t), (4)

(dash with parameter&N=300,M =50,k=125,K=15,D=0.1, and
m=0.25; (b) fine structure of the transition region (@) reveals a
wave-front propagation. &, = KASy; — bi(1) dy; + \2D&(1), (5)
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a(®) = (V' Iyi()]),  bi®) =YV [yi(0]y)™ D

Further, using the Furutsu-Novikov formu(Ref. [23], and 0.2

references therejnwe explicitly obtain a;=[38,(y;)—mly; 0.1

+¥;, bi=[3R,(y) ~m]+3y7, where Ry(y)=(y)-y” is the 0

second cumulant. Thus Eq4) takes the formy,=KAy;
+[m-381,(y)Jy;-Y?, involving the effective potential func-
tion Ve, Vig(yD)=-[m-3R,(y)]yi+y>. Since £,(y,)=0,
V=V, always.

Finally we consider the principal problem of an explicit
calculation of,(y;) and solve it under certain hypotheses. FIG. 3. Spatially homogeneous steady statesO as points of
Consider the spatial correlationgy,(t)={dym(t)dy,(t)) and intersection of a characteristic surfagey(D,K) and two coordi-
suppose that the fluctuations tend to their steady state viargte planes of the control parametgi8=0.1 and K=15 are
stage of spatial homogenization with the ansaz.(t) marked. Instead of the two original steady states +0.5 there are
= kmn(t) = &, (t). The known equilibrium solution of Eq2) now four for specific values dd andK, and zero otherwise.
with probability densityp..(y) «cexd —=F(y)/D] has the prop- _ _
erty of spatial homogeneity, but does the property still per{see Fig. 3. In other words, the stable steady states dis-
sists as time evolves? To facilitate understanding, considetPpear and only=0 remains in this range. We could
the process of the formation @f. as a result of time aver- claim that this occurs with a bifurcationlike behavior. To
aging, and fix two limiting cases related to low and highidentify this observation, we carry out numerical experi-
levels of the noise intensity. AB | 0 the system spends most Ments on the systeifl) varying the noise intensit over
time in a potential trough, occasionally passing from one tc® Wide range. The response to the external signal provides
the other. Being in a trough it has time to form a local €vidence of the effect as shown in Fig. 4, which is en-
quasiequilibrium density that reflects the local asymmetry ofianced further with largeN. In the casgc) the stochastic
the underline potential. As— +, a sum of the local densi- feésonance pattern, adjusted for the renormalization, is
ties is formed to satisfy the global symmetry condition. Un-rfécognizable, but in the cage) only simple oscillations
der a high level of noise, the rate of passage from one trougWith the frequency of the external signal are visible
to the other is frequent enough in order to rapidly form thearoundy=0.
mean valuey=0. The qualitative picture described above is For further understanding of this observation, one can
linked to the particular time scale of the problem in question.consider the equilibrium probability density of E(). As
Favorably for the ansatz, we are interested in averaging ovd? | 0. p=(y) is concentrated at two spatially homogeneous
a time scale abouT, that becomes apparent in the local absolute minima of the potential and forms the most improb-
quasiequilibrium density. Test numerical simulations are als@ble configurations around unstable steady syat6. The
essential in order to reinforce the ansatz. homogeneous equilibrium mean valye..=0 is fixed by the

Using Eq.(5) together with the Furutsu-Novikov formula, invariance ofp.(y) under the transformatioy— -y, and
we obtain a dynamical equation fok,(t):  =2KAk, eventually coincides with the unstable steady state. By in-
-2b(t)x,+2D &8y, reZ—and as a result, the equation for creasingD we can change the sharpness of the equilibrium
the steady state correlation functiolKAx,—bx,+Dd density profile, but not the topology. It should be observed
=0, reZ, with the natural asymptotic conditions here thaip.(y) represents the average over all sample paths
liM;_ 40, =0; b is still unknown. Substituting of Eq.(2). If we consider a single sample path then the local

Kr:At‘“', t>1, we obtain the set of algebraic equations, cor-density profile of Eq(2) is formed by time averaging, ini-
responding tor=0 andr=1: [2K(1-t'})+b]JA=D, t2 tially inthe vicinity of an absolute minimum of the potential

-2(1+b/2K)t+1=0. Thelast equation has two different

e

5

roots,t, =(2K)'[2K+bz \b(4K+b)], connected by the rela- 3—3 ‘ | i (@)

tion, t,t_=1. Sincet=t,>1, this means that.=t*<1. 05 | . ‘

Therefore finally we obtain 05 : : s
YO

D 2K + b+ \b(4K + b) ]‘f 28, | : : |
" b4k +b) 2K ' ) er
| o | 0 0 O O O A W I W
In particular, xo=D/+b(4K+b). Further, we can usgg in 0 05 1 15 9
combination withV.(y)=0 to characterize the effective 10°t
Spatlaﬂ%/ homoge.neous steady .States' EXCIUMQSKQ FIG. 4. Three output signalgollective variableY, N=M =500
—m+3y°) from this set, we a;rrlvze at t_VZVO case&d) y with (a) D=0.5; (b) D=0.24; and(c) D=0.1; correspondingly,
=0, (3rko—~m)(4K+3ko—-m)=D /Ko’ (b) y*=m=3kg, (M above, near, and below the characteristic surfaeg(D,K) at K
= 3k0) (2K+m=3kg) = D2/4k5. Observe first that whiléa) =15 (see Fig. 3 effective stable steady stateg) 0 and(c) +0.43.
always givesy=0 and xo=m/3, the set(b) has no real The difference appears to be not only quantitative but also, more
rootsy (x,>0) for a certain range of values @ andK importantly, qualitative.
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reflecting the local potential asymmetry. After a sufficiently us to visualize this effect if the chain is long enough.

long period, the system with probability 1 will pass through  Finally, if we set D=0.1 and Ym=0.5, we obtainy
the low-probability range to the vicinity of the other absolute ~ +0.43. This is close to the observed value obtained by
minimum of the potential, and so on. The rate of this procesgjirect simulation of Eq(1) (with N=M=300 and 500 The

rapidly increases withD [21]. The rate of development of & g4reement improves with larger valueshf There also ex-
difference between the most probable and mean values of the . pair of steady states closeyg0: y~+0.1 — but

local density is also increasing with since, within the same . o ; .
time interval, more different states are realizable. It is reihese are not clearly identified in the simulation of STSR.

markable that the time interval related to the signal as well as Thi K Gall ted b h s f
the inherent nature of SR is favorable to observe the mean IS work was partially supported by research grants from

values or, in other words, to feel the effective potential. The"e Royal Society of London and the University of Dundee,

collective variableY, which is a sort of site average, allows Division of Mathematics.

[1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. 24, L453 53, 2081(1996.
(1981); R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, SIAM [11] F. Marchesoni, L. Gammaitoni, and A. R. Bulsara, Phys. Rev.
(Soc. Ind. Appl. Math. J. Appl. Math. 43, 565 (1983. Lett. 76, 2609(1996.
[2] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Rev[12] M. Lécheret al, Phys. Rev. E61, 4954 (2000.
Mod. Phys. 70, 223(1998. [13] F. J. Alexander, S. Habib, and A. Kovner, Phys. Rev4&
[3] J. Stat. Phys. 701993, special issue on the stochastic reso- 4284(1993.
nance phenomenon, edited by F. Moss, A Bulsara, and M[14] G. Costantini and F. Marchesoni, Phys. Rev. L&, 114102

Schlesinger. (200Y).
[4] M. Locheret al, Chaos8, 604 (1998. [15] T. Kanamaru, T. Horita, and Y. Okabe, Phys. Rev. 64,
[5] M. I. Freidlin, Physica D137, 333(2000. 031908(2001).
[6] J. K. Douglasset al., Nature(London 365 337 (1993; K. [16] P. Hanggi, F. Marchesoni, and P. Sodano, Phys. Rev. Géft.
Wiesenfeld and F. Mosshid. 373 33(1995; J. E. Levin and 2563(1988.
J. P. Miller, ibid. 380, 165(1996); P. Cordoet al, ibid. 383 [17] F. Marchesoni, C. Cattuto, and G. Costantini, Phys. Re&7B
769(1996); J. J. Collins,ibid. 402 241(1999; D. F. Russell, 7930(1998.
L. A. Wilkens, and F. Mosshid. 402 291(1999; F. Jaramillo  [18] S.-N. Chow, J. Mallet-Paret, and W. Shen, J. Diff. Eqh49,
and K. Wiesenfeld, Nat. Neuroscil, 384 (1999; E. Simo- 248(1998.

nottoet al, Phys. Rev. Lett.78, 1186(1997); |. Hidakaet al, [19] M. Peyrard, Physica D119 184(1998.
ibid. 85, 3740(2000; P. S. Greenwooet al, ibid. 84, 4773 [20] S. M. Hensoret al, Science294, 602 (2001).
(2000; T. Mori and Sh. Kai,ibid. 88, 218101 (2002; B. [21] M. Freidlin and A. WentzelllRandom Perturbations of Dy-

Spagnoloet al, J. Phys.: Condens. Mattet4, 2247 (2002); namical Systemé&Springer, Berlin, 198y
Fluct. Noise Lett.3, L177(2003; Physica A331, 477(2004). [22] B. J. West, G. Rovner, and K. Lindenberg, J. Stat. PI8G.
[7]1 T. Shinbrot and F. J. Muzzio, Naturdondon 410, 251 633(1983.
(2009); L. Glass,ibid. 410, 277(200); G. Oster,bid. 417, 25 [23] E. A. Novikov, Zh. Eksp. Teor. Fiz47, 1919 (1964 [Sov.
(2002. Phys. JETP20, 1290(1965]; A. Samoletov, J. Stat. Phy$S86,
[8] S. Kadar, J. Wang, and K. Showalter, Natdt®ndon) 391, 1351(1999.
770(1998; J. M. G. Vilar and J. M. Rubi, Phys. Rev. Leff8, [24] In contrast to Ref[13], our approach is dynamic by its nature
2886(1999. and the spatially homogeneous steady states appear as the re-
[9] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A8, 2239 sult of temporal evolution and provide more detailed results,
(1985. cf. Ref.[13].

[10] J. F. Lindneret al, Phys. Rev. Lett.75, 3(1995; Phys. Rev. E  [25] The point is likely applicable to allied effec{g,14].

045102-4



