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The performance of the Hopfield neural network model is numerically studied on various complex networks,
such as the Watts-Strogatz network, the Barabasi-Albert network, and the neuronal net@adnofhabditis
elegans Through the use of a systematic way of controlling the clustering coefficient, with the degree of each
neuron kept unchanged, we find that the networks with the lower clustering exhibit much better performance.
The results are discussed in the practical viewpoint of application, and the biological implications are also
suggested.
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Recently, researches related with complex networks havegy, or the degree distribution more specificdtlyg]. Exam-
been broadening territory beyond individual disciplines.ining Table | in more detail, one can easily recognize the
Starting from pioneering works of modeling complex net- systematic dependence of the network performance on the
works [1,2], the essential network concepts have been sucelustering property. As the clustering becomes weaker, the
cessfully applied to various systems covering biological netperformance is enhanced monotonically. The performance
works, food webs, Internet, E-mail network, and sd8nIn  detected by the rati® (the last column in Table I, see Ref.
parallel to the studies of structural properties of complex21)) of the number of correctly recalled bits to the number
networks, there have also been strong interest in dynamigs synaptic couplings again shows the same behavior.
systems defined on network_s. For example, non-l—_|ami|t_onian We in this work study the performance of the Hopfield
dynamic models such as epidemic sprédid cascading fail- - model on various network structures with focus on the role
ures[5], synchronizatioj6,7], the sandpil¢8], and the pris-  of the clustering. We extend the edge exchange method in
oner’s dilemma gam¢9], as well as equilibrium statistical Ref, [22] and suggest a systematic way to control the clus-
physics models such as the Isifi)] and theXY [11] mod-  tering coefficient of a given networkithout changing the
els have been investigated. _ degree of each vertex. A set of networks with the identical

The network of neurons in biological organisms also takegjegree distribution but with various clustering coefficients
the form of complex networkg3,12-14. While Caenorhab-  5re generated and then used as the underlying network struc
ditis elegang1,3,19 and thein vitro [12] neuronal networks  tyres for the numerical simulations of the Hopfield model.
have the high level of clustering, the small characteristic patft|early revealed is that the computational performance de-
length, and the de_gree distribution far from s_cale-free iMends much more strongly on the clustering property than on
common, the functional network of human braijii€] has e degree distribution.
recently been revealed to be scale-free. Motivated by the e begin with a brief review of the edge exchange
neurons connected by synaptic couplings in biological organmethod, recently suggested by Maslov and Sneppen in Ref.
isms, simple mathematical models of artificial neurons haquz]_ Two edges, one connecting verticasand B, and the
been suggestefil7]. One of the practical applications of gtherc andD, are randomly choseifig. 1(a)]. Each vertex

such an artificial neural network can be found in the Hopfield;hanges its partner and the original edgeB and C-D are
model[17], which is used frequently in the pattern recogni-

tion. Very recently, there have been studies of the Hopfield TABLE I. Performance of Hopfield model on networks. All net-
model of neurons put on the structure of complex networkgvorks are of the same siz§=280 and the average degreo
[18,19, with major focus on how the topology, the degree =14. The neuronal network of the wor@ elegansthe Barabasi-
distribution in particular, of a network affects the computa-AlPert (BA) network, and the Watts-Strogat#/S) networks at the
tional performance of the Hopfield model. Also in the ney-rewiring probabilitiesP=0.0,0.1, and 1.0 are used. Both the over-

roscience, recent investigations have revealed the close intét pm ?nd Lhe_ '”p“t'OUtpUt":at'Glz' rtnegsunng f;.h? pgr;ormance dOf
relationship between the brain activity and the underlyingTe network, Increase as the clustering coetlicigns decreased.
he maximum degrek,,,, is also shown to give some rough esti-

neuroanatomy13]. . C 2
Table | summarizes the clustering coefficiersse Ref. mation of the broadness of the degree distribution.

[1] for the definitior) and the performance of the Hopfield

model on various network structurf0] (see below for de- Network kmax Y m R
tails). The difference in the performance, measured by theys (p=0.0 14 0.69 0.689 0.603
overlapm between the neuron state and the stored patterfys (p=g.1) 17 0.50 0.743 0.623
has been previously attributed to the distinct network topoI-C. elegans 77 028 0798 0.642
BA 67 0.11 0.838 0.656
WS (P=1.0 22 0.05 0.881 0.672
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structure of the neural network. For example, in the original
version of the Hopfield neural network the couplings are of
the mean-field type and thus; =1 is taken for any paii, j)

of two neurons. In the standard graph theaoky, is simply
the (ij) component of the so-called adjacency matrix, i.e.,
Ajj=1 if two verticesi and j are connected while\;=0
otherwise. For simplicity, we in this work consider only un-
directed networks and accordingly is a symmetric matrix.

FIG. 1. Exchange of two edges. Two edgésB andC-D in (a)] Recently, Hopfield model on the asymmetric directed BA
are randomly picked and then rewired to have different end verticeBetwork has been studigd9]. According to Eq.(1), the
[ A-D andC-B as in(b)]. The edge exchange keeps the degree offifing of neighbor neurons connected to thth neuron via
each vertex unchanged. excitatory synaptic couplingé/;;>0) leads to the firing
of ith neuron at next time step, while inhibitory couplings
altered toA-D andB-C as shown in Fig. ). The important (Wj; <0) inhibits the firing ofith neuron.
property of the above edge exchange is that this process does For the task of the recognition qf stored patterns, the

not change the degree of each vertex. A blind repetition okynaptic coupling strengthV; is usually given by the Heb-
the above edge exchanges has been shown to destroy glhn learning rule:

degree-degree correlatiofiza2,1§.
Based on the above edge exchange method, we in the P
present paper introduce an additional acceptance stage. The W = > &g (2)
edge exchange trial is accepted only when the new network w=t
configuration has highe(or lowen clustering coefficient. whereg" is theith component of the:th stored pattern vec-
This is identical to the standard Monte CatMdC) simula-  tor and is quenched random variable taking values 1 and -1
tion at zero temperatur€ with the HamiltonianH set toH with equal probability. In this work, we present results only
=-2, v, (orH=X, v,), wherey, is the clustering coefficient for p=5 (we also triedp=10 and 20 only to find insignifi-
of the vertexv [1]. In addition, we also apply the standard cant qualitative differencésThe initial neuron state con-
MC scheme to the above Hamiltonian at finite temperaturesfiguration {o;(t=0)} is produced from one of the pattern
In either way, one can control the clustering coefficient of avectors, say therth pattern, with 20% error. In other
given network with the degree of each vertex kept fixed. words, a,(0)=¢ for 80% of the neurons, while the other
We use v.arious network structures as underlying network90o, has the reversed bit(0)=-¢'. As the neuron con-
of the Hopfield model. Since the real neuronal network offigyration evolves in time by Eq(1), the overlapm de-
Caenorhabditis eleganisasN=280 vertices and the average fined py
degreg(K) =~ 14, we generate various model networks of the
size N=280 such as Barabasi-Albe(BA) network with _1 v
Mo=M=7 (starting from M, vertices, one vertex wittM m(t) = N; 704 ®
edges is added at each step in the BA md@) and the
Watts-StrogataWS) networks with the connection range IS measured as a function of time. The complete recognition
=7 at the rewiring probabilitie=0 (corresponding to a Of the patternv gives m=1, which corresponds to the null
regular local one-dimensional networl=0.1 (well inside ~ Hamming distancel(t) = (1/N)2[a;(t) - £1°=2-2m(t). We
in the small-world regimg1]) and P=1.0 (corresponding to also measure the input-output raRaf the correctly recalled
a fully random network All the networks have different pixels to the number of synaptic couplings, which is written
topologies in the sense that each has its own unique degrés R=(1+m)p/(k) [21,20. The asynchronous dynamics, in
distribution. After the original networks are built, we de- which a neuron is chosen at random at each time step, is used
crease or increase the clustering coefficients through the uglroughout the present work. After sufficiently long runs of
of the above zero-temperature MC method. Once the targetynamic evolution up ta=2000, where the one time unit
value of the clustering coefficient is reached, the current neteorresponds to the one whole sweep of all neurons, the
work structure is frozen and then used as an underlying netast 200 time steps are used to make the time average of
work structure for the Hopfield model. We also perform MC m(t), and disorder averages over 1000 different pattern
at finite temperatures with the Hamiltonidth=->, y, to  realizations are performed.
generate networks at a givanfor comparisons. Figure 2 is the main result of the present paper. For each
In the Hopfield model of a neural netwofk7], a neuron network, we start from the original network structuie-
at the sitei can have two states, firingr;=1) or not firing  noted by the big filled circle on each cujyand increaséor
(o7=-1). The neuron state;(t) at timet is determined from decreasgthe clustering coefficient by using the edge ex-

the configuration of other neuronstatl according to change zero-temperature MC method described above. Once
the target value of the clustering coefficienty
oi(t) = sgr(z AjjWij oyt = 1)>' (1) =0.0,0.05,0.10,0.15.) is achieved, the network structure
i

is saved and used for the Hopfield model simulations. We
whereWj; is the strength of the synaptic coupling betweenrepeat this procedure for 5-10 times to make an average
neuronsi and j, and A;;(=0,1) describes the connection over network structures. We also present the result obtained
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FIG. 2. Efficiency of the Hopfield neural network on ti&
elegansneuronal network, BA network, and WS network at the 0.7
rewiring probabilitiesP=0,0.1, and 1.0. The overlap between the
stored pattern and the neuron state measures the performance c
each network and is plotted as a function of the clustering coeffi-
cient y=(Zv,)/N. The big filled circles are for the original net- 0.9
works before the edge exchange MC is app(&eE text for details
It should be noted that at all points on each curve, not only the
degree distribution but also the actual degree of each neuron is
exactly identical. Performance of each network monotonically de- g
creases as the clustering becomes stronger.

0.8

for finite-temperature MC method in Fig. 3. We start from 07
the original network at sufficiently high temperatufes 1 . ! . . . . .
and use the standard Metropolis algorithm applied Hor
=-3, v,. At eachT, we equilibrate the network for f0MC
steps and perform the Hopfield model dynamic simulation.
The temperature is then decreased slowly to make equilibra- £, 3. Networks are generated from the finite-temperature
tion at eachT more efficient. It is to be noted that we have edge-exchange MC for the Hamiltoni&h=-3, 7,. (a) Clustering
introduced the finite temperature only when we generate Nefyeficienty versus the temperatuf (b) The overlapm versusT.
yvorks by gdgg exchange_; the time evolution of neuron stateg,,y, (a) and(b), m as a function ofy is obtained in(c).
in Eq. (1) is still deterministic.
5 Tr:jexmo_st lkr]npo[]tant ccf)nclusmn o?ehcaﬂ m?_k?dout 3f ::'gsclustering becomes strong the WS network with 1.0 has
and 3c) is that the performance of the Hopfie model on !

. S . etter performance than the other smaller value® ¢23].

various networks can be enhanced significantly if the cluss owev[()er the overall behavior does not show signif(i@caalt dif-

tering is weakened by the simple method of edge exchan L .
withgut altering the )cliegree OﬁZ each neuron '?here arego rences. On the other hand, it is interesting to note that the

course differences in performance among networks at the” and theC. elegansnetworks exhibit almost the same
samey, e.g., for lowery WS networks are more efficient Nigh performance at large, which appears to imply the
than the BA and theC. elegans while the trend becomes [mportance of hub verticeghe maximum degree in the.
opposite for highey, implying that the clustering coefficient €legansnetwork is 77 while it is 67 for the BA network as
is not the single parameter controlling the performanceshown in Table ).
However, Figs. 2 and(8) strongly suggest that the efficiency In the viewpoint of biological evolution, it is not clear
of Hopfield neural network depends much more strongly orwhy the evolution chose the very structure of the neuronal
v than on the degree distribution as widely believed. Conseretwork of C. elegansOne expects that the actual detailed
quently, we suggest that the difference in the pattern recogstructure of the neuronal network @f. elegansmust have
nition performance in Table | is strongly related with the some advantage over other structures, which then leads to a
clustering property of each network. The result of the impor-very crude expectation that the advantage may be detected
tance of the clustering in the task of the pattern recognitiorby the measurement of the performance of the Hopfield
by using the Hopfield model has also some practical impormodel, as has been investigated in this work. One somehow
tance. It provides a different way to enhance the performanceanlikely explanation is that the worm is still in the evolution-
without adding more synaptic coupling®0]. For example, ary process of optimizing its neuronal connection. The other
the simple one-dimensional Hopfield network can be madexplanation can be the cost of the long-range synaptic cou-
about 30 % more efficient by exchanging pairs of edges. plings. The actual connection topology 6f eleganscan be

The WS networks aP=0.0,0.1, and 1.0 exhibit almost the best that the evolution can find if we consider the com-
the same performance for small clustering coefficient. As th@etition between the performance and {lemergy cost to
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make long connections. This is somehow likely because thability of performance under malfunctioning of neurons. In
present work does not take the geometric constraint into achis respect, it may also draw some interest that the perfor-
count. Similar question on the competition between the totainance curve forC. elegansin Fig. 2 is the flattest one
axonal length(measuring energy cost for long-range connec-around the point for the actual original network.

tion) and the characteristic path lengtmeasuring the effi-

ciency of wiring structurghas been recently pursued in Ref. ~ This work has been supported by the Korea Science and
[14] and the optimization of the neuronal-component placeEngineering Foundation through Grant No. R14-2002-062-
ment on geometry has been investigated in Re5). One  01000-0 and by Hwang-Pil-Sang research fund at Ajou Uni-
can also think of other possibility that the better performanceversity. Numerical works have been performed on the com-
by removing clustering has dark side effect, such as vulnerputer cluster Iceberg at Ajou University.
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