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The performance of the Hopfield neural network model is numerically studied on various complex networks,
such as the Watts-Strogatz network, the Barabási-Albert network, and the neuronal network ofCaenorhabditis
elegans. Through the use of a systematic way of controlling the clustering coefficient, with the degree of each
neuron kept unchanged, we find that the networks with the lower clustering exhibit much better performance.
The results are discussed in the practical viewpoint of application, and the biological implications are also
suggested.
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Recently, researches related with complex networks have
been broadening territory beyond individual disciplines.
Starting from pioneering works of modeling complex net-
works [1,2], the essential network concepts have been suc-
cessfully applied to various systems covering biological net-
works, food webs, Internet, E-mail network, and so on[3]. In
parallel to the studies of structural properties of complex
networks, there have also been strong interest in dynamic
systems defined on networks. For example, non-Hamiltonian
dynamic models such as epidemic spread[4], cascading fail-
ures[5], synchronization[6,7], the sandpile[8], and the pris-
oner’s dilemma game[9], as well as equilibrium statistical
physics models such as the Ising[10] and theXY [11] mod-
els have been investigated.

The network of neurons in biological organisms also takes
the form of complex networks[3,12–14]. While Caenorhab-
ditis elegans[1,3,15] and thein vitro [12] neuronal networks
have the high level of clustering, the small characteristic path
length, and the degree distribution far from scale-free in
common, the functional network of human brains[16] has
recently been revealed to be scale-free. Motivated by the
neurons connected by synaptic couplings in biological organ-
isms, simple mathematical models of artificial neurons have
been suggested[17]. One of the practical applications of
such an artificial neural network can be found in the Hopfield
model [17], which is used frequently in the pattern recogni-
tion. Very recently, there have been studies of the Hopfield
model of neurons put on the structure of complex networks
[18,19], with major focus on how the topology, the degree
distribution in particular, of a network affects the computa-
tional performance of the Hopfield model. Also in the neu-
roscience, recent investigations have revealed the close inter-
relationship between the brain activity and the underlying
neuroanatomy[13].

Table I summarizes the clustering coefficients(see Ref.
[1] for the definition) and the performance of the Hopfield
model on various network structures[20] (see below for de-
tails). The difference in the performance, measured by the
overlapm between the neuron state and the stored pattern,
has been previously attributed to the distinct network topol-

ogy, or the degree distribution more specifically[18]. Exam-
ining Table I in more detail, one can easily recognize the
systematic dependence of the network performance on the
clustering property. As the clustering becomes weaker, the
performance is enhanced monotonically. The performance
detected by the ratioR (the last column in Table I, see Ref.
[21]) of the number of correctly recalled bits to the number
of synaptic couplings again shows the same behavior.

We in this work study the performance of the Hopfield
model on various network structures with focus on the role
of the clustering. We extend the edge exchange method in
Ref. [22] and suggest a systematic way to control the clus-
tering coefficient of a given networkwithout changing the
degree of each vertex. A set of networks with the identical
degree distribution but with various clustering coefficients
are generated and then used as the underlying network struc-
tures for the numerical simulations of the Hopfield model.
Clearly revealed is that the computational performance de-
pends much more strongly on the clustering property than on
the degree distribution.

We begin with a brief review of the edge exchange
method, recently suggested by Maslov and Sneppen in Ref.
[22]. Two edges, one connecting verticesA and B, and the
otherC andD, are randomly chosen[Fig. 1(a)]. Each vertex
changes its partner and the original edgesA-B andC-D are
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TABLE I. Performance of Hopfield model on networks. All net-
works are of the same sizeN=280 and the average degreekkl
<14. The neuronal network of the wormC. elegans, the Barabási-
Albert (BA) network, and the Watts-Strogatz(WS) networks at the
rewiring probabilitiesP=0.0,0.1, and 1.0 are used. Both the over-
lap m and the input-output ratioR, measuring the performance of
the network, increase as the clustering coefficientg is decreased.
The maximum degreekmax is also shown to give some rough esti-
mation of the broadness of the degree distribution.

Network kmax g m R

WS sP=0.0d 14 0.69 0.689 0.603

WS sP=0.1d 17 0.50 0.743 0.623

C. elegans 77 0.28 0.798 0.642

BA 67 0.11 0.838 0.656

WS sP=1.0d 22 0.05 0.881 0.672
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altered toA-D andB-C as shown in Fig. 1(b). The important
property of the above edge exchange is that this process does
not change the degree of each vertex. A blind repetition of
the above edge exchanges has been shown to destroy all
degree-degree correlations[22,16].

Based on the above edge exchange method, we in the
present paper introduce an additional acceptance stage. The
edge exchange trial is accepted only when the new network
configuration has higher(or lower) clustering coefficient.
This is identical to the standard Monte Carlo(MC) simula-
tion at zero temperatureT with the HamiltonianH set toH
=−ov gv (or H=ov gv), wheregv is the clustering coefficient
of the vertexv [1]. In addition, we also apply the standard
MC scheme to the above Hamiltonian at finite temperatures.
In either way, one can control the clustering coefficient of a
given network with the degree of each vertex kept fixed.

We use various network structures as underlying networks
of the Hopfield model. Since the real neuronal network of
Caenorhabditis eleganshasN=280 vertices and the average
degreekKl<14, we generate various model networks of the
size N=280 such as Barabási-Albert(BA) network with
M0=M =7 (starting from M0 vertices, one vertex withM
edges is added at each step in the BA model[2]) and the
Watts-Strogatz(WS) networks with the connection ranger
=7 at the rewiring probabilitiesP=0 (corresponding to a
regular local one-dimensional network), P=0.1 (well inside
in the small-world regime[1]) andP=1.0 (corresponding to
a fully random network). All the networks have different
topologies in the sense that each has its own unique degree
distribution. After the original networks are built, we de-
crease or increase the clustering coefficients through the use
of the above zero-temperature MC method. Once the target
value of the clustering coefficient is reached, the current net-
work structure is frozen and then used as an underlying net-
work structure for the Hopfield model. We also perform MC
at finite temperatures with the HamiltonianH=−ov gv to
generate networks at a givenT for comparisons.

In the Hopfield model of a neural network[17], a neuron
at the sitei can have two states, firingssi =1d or not firing
ssi =−1d. The neuron statesistd at timet is determined from
the configuration of other neurons att−1 according to

sistd = sgnSo
j

Li jWijs jst − 1dD , s1d

whereWij is the strength of the synaptic coupling between
neurons i and j , and Li js=0,1d describes the connection

structure of the neural network. For example, in the original
version of the Hopfield neural network the couplings are of
the mean-field type and thusLi j =1 is taken for any pairsi , jd
of two neurons. In the standard graph theory,Li j is simply
the si j d component of the so-called adjacency matrix, i.e.,
Li j =1 if two vertices i and j are connected whileLi j =0
otherwise. For simplicity, we in this work consider only un-
directed networks and accordinglyL is a symmetric matrix.
Recently, Hopfield model on the asymmetric directed BA
network has been studiedf19g. According to Eq.s1d, the
firing of neighbor neurons connected to theith neuron via
excitatory synaptic couplingssWij .0d leads to the firing
of ith neuron at next time step, while inhibitory couplings
sWij ,0d inhibits the firing of ith neuron.

For the task of the recognition ofp stored patterns, the
synaptic coupling strengthWij is usually given by the Heb-
bian learning rule:

Wij = o
m=1

p

ji
mj j

m, s2d

whereji
m is the ith component of themth stored pattern vec-

tor and is quenched random variable taking values 1 and −1
with equal probability. In this work, we present results only
for p=5 swe also triedp=10 and 20 only to find insignifi-
cant qualitative differencesd. The initial neuron state con-
figuration hsist=0dj is produced from one of the pattern
vectors, say thenth pattern, with 20% error. In other
words, sis0d=ji

n for 80% of the neurons, while the other
20% has the reversed bitsis0d=−ji

n. As the neuron con-
figuration evolves in time by Eq.s1d, the overlapm de-
fined by

mstd ;
1

N
o

i

sistdji
n s3d

is measured as a function of time. The complete recognition
of the patternn gives m=1, which corresponds to the null
Hamming distancedstd;s1/Ndofsistd−ji

ng2=2−2mstd. We
also measure the input-output ratioR of the correctly recalled
pixels to the number of synaptic couplings, which is written
as R=s1+mdp/ kkl f21,20g. The asynchronous dynamics, in
which a neuron is chosen at random at each time step, is used
throughout the present work. After sufficiently long runs of
dynamic evolution up tot=2000, where the one time unit
corresponds to the one whole sweep of all neurons, the
last 200 time steps are used to make the time average of
mstd, and disorder averages over 1000 different pattern
realizations are performed.

Figure 2 is the main result of the present paper. For each
network, we start from the original network structure(de-
noted by the big filled circle on each curve), and increase(or
decrease) the clustering coefficient by using the edge ex-
change zero-temperature MC method described above. Once
the target value of the clustering coefficientsg
=0.0,0.05,0.10,0.15, . . .d is achieved, the network structure
is saved and used for the Hopfield model simulations. We
repeat this procedure for 5–10 times to make an average
over network structures. We also present the result obtained

FIG. 1. Exchange of two edges. Two edges[A-B andC-D in (a)]
are randomly picked and then rewired to have different end vertices
[ A-D andC-B as in (b)]. The edge exchange keeps the degree of
each vertex unchanged.
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for finite-temperature MC method in Fig. 3. We start from
the original network at sufficiently high temperatureT=1
and use the standard Metropolis algorithm applied forH
=−ov gv. At eachT, we equilibrate the network for 104 MC
steps and perform the Hopfield model dynamic simulation.
The temperature is then decreased slowly to make equilibra-
tion at eachT more efficient. It is to be noted that we have
introduced the finite temperature only when we generate net-
works by edge exchange; the time evolution of neuron states
in Eq. (1) is still deterministic.

The most important conclusion one can make out of Figs.
2 and 3(c) is that the performance of the Hopfield model on
various networks can be enhanced significantly if the clus-
tering is weakened by the simple method of edge exchanges
without altering the degree of each neuron. There are of
course differences in performance among networks at the
sameg, e.g., for lowerg WS networks are more efficient
than the BA and theC. elegans, while the trend becomes
opposite for higherg, implying that the clustering coefficient
is not the single parameter controlling the performance.
However, Figs. 2 and 3(c) strongly suggest that the efficiency
of Hopfield neural network depends much more strongly on
g than on the degree distribution as widely believed. Conse-
quently, we suggest that the difference in the pattern recog-
nition performance in Table I is strongly related with the
clustering property of each network. The result of the impor-
tance of the clustering in the task of the pattern recognition
by using the Hopfield model has also some practical impor-
tance. It provides a different way to enhance the performance
without adding more synaptic couplings[20]. For example,
the simple one-dimensional Hopfield network can be made
about 30 % more efficient by exchanging pairs of edges.

The WS networks atP=0.0,0.1, and 1.0 exhibit almost
the same performance for small clustering coefficient. As the

clustering becomes strong the WS network withP=1.0 has
better performance than the other smaller values ofP [23].
However, the overall behavior does not show significant dif-
ferences. On the other hand, it is interesting to note that the
BA and theC. elegansnetworks exhibit almost the same
high performance at largeg, which appears to imply the
importance of hub vertices(the maximum degree in theC.
elegansnetwork is 77 while it is 67 for the BA network as
shown in Table I).

In the viewpoint of biological evolution, it is not clear
why the evolution chose the very structure of the neuronal
network of C. elegans. One expects that the actual detailed
structure of the neuronal network ofC. elegansmust have
some advantage over other structures, which then leads to a
very crude expectation that the advantage may be detected
by the measurement of the performance of the Hopfield
model, as has been investigated in this work. One somehow
unlikely explanation is that the worm is still in the evolution-
ary process of optimizing its neuronal connection. The other
explanation can be the cost of the long-range synaptic cou-
plings. The actual connection topology ofC. eleganscan be
the best that the evolution can find if we consider the com-
petition between the performance and the(energy) cost to

FIG. 2. Efficiency of the Hopfield neural network on theC.
elegansneuronal network, BA network, and WS network at the
rewiring probabilitiesP=0,0.1, and 1.0. The overlapm between the
stored pattern and the neuron state measures the performance of
each network and is plotted as a function of the clustering coeffi-
cient g;sogvd /N. The big filled circles are for the original net-
works before the edge exchange MC is applied(see text for details).
It should be noted that at all points on each curve, not only the
degree distribution but also the actual degree of each neuron is
exactly identical. Performance of each network monotonically de-
creases as the clustering becomes stronger.

FIG. 3. Networks are generated from the finite-temperature
edge-exchange MC for the HamiltonianH=−ov gv. (a) Clustering
coefficientg versus the temperatureT. (b) The overlapm versusT.
From (a) and (b), m as a function ofg is obtained in(c).
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make long connections. This is somehow likely because the
present work does not take the geometric constraint into ac-
count. Similar question on the competition between the total
axonal length(measuring energy cost for long-range connec-
tion) and the characteristic path length(measuring the effi-
ciency of wiring structure) has been recently pursued in Ref.
[14] and the optimization of the neuronal-component place-
ment on geometry has been investigated in Ref.[15]. One
can also think of other possibility that the better performance
by removing clustering has dark side effect, such as vulner-

ability of performance under malfunctioning of neurons. In
this respect, it may also draw some interest that the perfor-
mance curve forC. elegansin Fig. 2 is the flattest one
around the point for the actual original network.

This work has been supported by the Korea Science and
Engineering Foundation through Grant No. R14-2002-062-
01000-0 and by Hwang-Pil-Sang research fund at Ajou Uni-
versity. Numerical works have been performed on the com-
puter cluster Iceberg at Ajou University.
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