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Molecular gas dynamics observations of Chapman-Enskog behavior and departures
therefrom in nonequilibrium gases
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Bird’s direct simulation Monte Carlo method is used to compute the molecular velocity distribution of a gas
with heat flow. At continuum nonequilibrium conditiotismall heat flux, Chapman-Enskog behavior is ob-
tained for inverse-power-law moleculésard-sphere through Maxwgllthe Sonine-polynomial coefficients
away from walls(i.e., the normal solutionagree with theory. At noncontinuum nonequilibrium conditions
(large heat flux these coefficients differ systematically from their continuum values as the local Knudsen
number(nondimensional heat flixs increased.

DOI: 10.1103/PhysRevE.69.042201 PACS nuner51.10-+y, 02.70.Ns, 05.20.Dd, 47.45n
A dilute monatomic gas is described by the Boltz- 5(a+1)(a+2)(mkgT,e/m)¥? |2
mann equation(BE) [1]. Chapman-EnskogCE) theory o | 45— 200) (7= 200) poref el )| 1)
re @

solves the BE as a series expansion in powers of the

'C?Ca' Knudser]_ n_umber Kn[2]_. The flrst-or_der_ tgrms where . is the viscosity at a reference temperature
yield the (equilibrium) Mzaxwelllan yelocﬂy distribution: T, and o and « describe collision dynamics. This pre-
f(O)Z(ﬁCm)_geXF[fCZ/Cm]: wherec is the thermal veloc-  scription leads to a thermal conductivity af,e of

!ty, Cm= (2kgT/m)¥2 is the most probable thermal speed, K, = (K../K;)(15/4)(Kg /M) twrel 1/ fhoo)-

is the molecular massT is the temperature, andg The quantitiesu.,/w,; and K., /K, are CE ratios of the
=1.380658 102 J/K is the Boltzmann constant. The infinite-approximation to first-approximation values of vis-
second-order terms yield tiieontinuun) CE velocity distri-  cosity and thermal conductivity, respective[]. These
bution: f = f(©{1+ &M}, The higher-order terms are signifi- quantities are obtained for VSS molecules from the equiva-
cant for noncontinuum condition§.e., when Kn is not lent “inverse-power-law’(IPL) molecules, point centers of a
smal), but this situation is not well understood. The goal repulsive force that varies with the intermolecular separation
here is to determine the normal-solution velocity distribution’ according to I/”. The viscosity and thermal conductivity
(i.e., outside the Knudsen layers at solid surfacdsring of IPL and VSS molecules have a temperature dependence

heat flow when Kn is not small an@second-order CE ~ Of T“, where w=(1/2)+[2[(»—1)] [2]. Molecules with
theory is not accurate. w=3 (v=w=) have a hard-sphere interaction, whereas mol-

Molecular gas dynamics can simulate continuum and non€cules witho=1 (»=5) have a Maxwell interaction. Real
continuum nonequilibrium gas conditions: no assumption i olecules_ generally have valugs_ between these extremes
made regarding the magnitude of Kn. This approach is emL-2: As in Table 1, the quantitieg../u;, K../K,, and
bodied in the direct simulation Monte CaBSMC) method ~ D+/D1 (self-diffusion coefficientare close to unity for IPL
of Bird [1]. Arguments that DSMC solves the BE were ad-molecules with 1/Zw=<1[6]. For a VSS molecule withy,
vanced originally by Bird[3]. Recently, Wagnef4] pre- the pgrametera is found by equating the VSS and IPL
sented a formal mathematical proof that has been accepted S§NMidt numbergl]: a=2Az[ v]/(2A1[v]—A;[ v]), where
valid [5]. the fl_JnctlonsAl[v] and A,[ v] are given by Chapman and

In DSMC, large numbers of computational molecules rep-Cowling [2].
resent the gas. During a time step, these molecules move
ballistically, reflect from boundariediffuse, specular, etg. TABLE I. Chapman-Enskog results.
and collide with other molecules in the same computationat

cell. Time steps are small compared to the mean collisiofR4antity Hard-sphere Maxwell
time, and cells are small compared to the mean free path, 1/2 1
Because the gas is dilute, only binary collisions are allowed,, 1 213986
and these collisions are performed stochasticatiglecular 1.016034 1
chaos. The collision rate is determined by the number den—Kw/Kl 1.025218 1
sity and the thermal-energy density of molecules in a cell ) 1.018954 1
The post-collision velocities reproduce the angular distribu-—" :
tion of the prescribed molecular interaction. For steady cona,/a; 1 1
ditions, the velocity distribution is determined by samplinga,/a; 0.0954284 0
molecules over long times. asl/a,; 0.0217503 0

The variable soft spher@/SS) method is used to select ga,/a, 0.0068579 0
post-collision velocitie§1]. The collision process is speci- as/a, 0.0025926 0

fied in terms of a reference molecular “diametgd]:
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1). Gas molecules are confined between two infinite parallel
walls at unequal temperatures, from which molecules reflect
diffusely with complete accommodation. This situation is
mathematically one dimensional. The walls are placed manyy. first five factors are known constants, afdq,
mean free paths apart so that the Knudsen layers occu
small portions of the domain near the walls and the normaj;¢
solution occupies the central region.

The CE distribution for continuum conditions is ex-
pressed as a sum of Sonine polynomi&k

FIG. 2. Temperature profiles for continuum conditions.

d dT/9z are computed. Thea,/a, involve moments
_powers of thermal velocity components, where
(®%8,y=(c?c,ylca

ay (15\/E)

(—1) k! (<?:2i?:z>

2 ) ©

OV = —(8/5)(K/K o) A[ETET, 2) ap 8 /=1 “(k_i)!(H; !
AM=1— K)r=2 . . . . .
A[C]—kzl (ax/ay) Sy, 3 DSMC simulations are performed for the situation in
N Fig. 1. Argon properties are uséf,6]: m=66.3< 10 %" kg
andu,e=2.117<107° Pas afT o= 273.15 K. The cold wall
” K (j+k)!(=x)' at z=0 hasTs=T,—AT/2, and the hot wall az=L has
S [X]=i20 EDIHICED (49 T,=T,+AT/2. HereL=1 mm. The number densitycor-

responds to a pressure pf133.3 or 266.6 Pa af,. The
mean free path.=/mu/mng, is 0.0237 mm at 266.6 Pa
and 273.15 K, sd.~42\ at these conditions. Temperature
differencesAT of 20, 40, 100, 200, 300, and 400 K are used.
Simulations are performed using Birdsmci code[1],

where K= —(5/4)chﬁ1a1 is the thermal conductivityy is
the heat flux,q=K|dT/dz defines the effective thermal
conductivity,ﬁ=q/(mnq§]) is the nondimensional heat flux,
‘C=cl/cy, is the nondimensional thermal velocity, and®Kf  as modified to sample both precollision and postcollision
defines the local Knudsen number. AlthougiK =1 inthe  molecules. Uniform cell sizeAz of 10, 5, and 2.5um (i.e.,

CE distribution, this may not be true in general. For the100, 200, and 400 cellsre used with time stegst of 14, 7,

geometry above, it has been proved tKdK =1 at arbi-
trary heat fluxes for Maxwell and BGK interactiofg,8],

and 3.5 ns, respectively, and 30—60 molecules per cell are
used, all of which satisfy Bird’s accuracy critefi]. Results

and computations have suggested this for the hard-sphefer different meshes, time steps, and numbers of molecules

interaction[9]. The coefficients, of the Sonine polynomials
s{) depend on the type of interaction. CE thef2y can be
used to determine infinite-approximation values for e
and hence they/a,, for IPL molecules(see Table)l The
guantitiesK/K 4 and a,/a; can also be determined from
DSMC simulations. CE theory relat&dK 4 to computed or
known quantities:

T,

exhibit the expected convergence behayii—12. The re-
sults below are obtained using the 25 cell size and the
3.5-ns time step with 30 molecules per cell, for which the
heat flux is estimated to have an uncertainty of 0.2%. Simu-
lations are initialized with spatially uniform properties at the
reference conditions, and the transient flow is allowed to
decay for 2.1 ms, far longer than needed to achieve steady
state. Statistics are collected f@(10°) time steps, so
0(10'% molecules are sampled per cell. Each simulation is
run for 60—120 h on 16—32 nodes of an IBM Linux cluster,
where each node has dual 1.2-GHz P3 processors.
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FIG. 5. Effect of molecular interaction: symbols, coefficients for

FIG. 3. Conductivity-ratio profiles for continuum conditions. continuum conditions: dashed curves, CE values.

Simulation results for hard-sphere and Maxwell interac-
tions atp=266.6 Pa anc T=40 K are shown in Figs. 2—4.

The temperature profiles in Fig. 2 exhibit small jumps nea . )
the walls and a nearly linear profile in the central redi6h larly good agreement. Slmglanon results fpr-133.3 Pa
and/or AT=20 K are essentially the same except that the

The statistical variations are too small to be observed be=" ™. )
cause of the large number of molecules sampled per cell. Th;éroﬂles have thicker Knudsen layers at the lower pressure

conductivity-ratio profiles in Fig. 3 obtain the theoretical and more statistical variation at the lower temperature differ-

value of K/Kgz=1 to within the uncertainty in the central ence . _
region, where the normal solution is obtained. The Knudse% Simulation results for 1/20<1 at p=266.6 Pa and

central region, where the normal solution is obtained. Al-
Ilhough not shown, the,/a, for k=6, 7, 8, 9 exhibit simi-

layers are easily seen in these profiles as departures frofh! — 40 K are compared with CE theory in Fig. 5. The sym-

unity. The statistical variations in these profiles are large ols are the simulation values @i /a, for k=2, 3, 4, 5

because the temperature gradient is determined by centrﬁyer‘?‘ged over the central 40% of the dorriaie,, the normal .
differences. solution, and the curves are the CE values. Agreement is

Figure 4 shows profiles of the Sonine-polynomial coeffi-gooc_j over the entire_ range of .
cientsa, /a, for k=2, 3, 4, 5 along with CE values for the Figure 6 shows simulation results for the hard-sphere in-

hard-sphere interaction. Excellent agreement is seen in tHEraction atp=266.6 Pa andAT=200K. Since the local
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FIG. 4. Solid curves, coefficient profiles for continuum condi-
tions; dashed lines, CE values.

FIG. 6. Solid curves, coefficient profiles for noncontinuum con-
ditions; dashed lines, CE values.
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0.10 —— T ‘ ‘ Figure 7 shows simulation results quantifying the de-
*'k=~ """"""""""""""" | pendence of the normal-solution Sonine-polynomial coeffi-
\ cients on Kn for the hard-sphere interaction. Each cluster of
0.08 | \ . points corresponds to a single temperature difference, and
each point within a cluster corresponds to a location within
5/16<z/L<9/16. For Kn=0(0.05), the molecular velocity
0.06 @ = 0.5 (hard sphere) E distribution differs significantly from the CE distribution
as/a; is comparable t@a,/a;, andag/a, exceedsa,/a;.
The trend that even-index coefficient ratios decrease and
0.04 | i odd-index coefficient ratios increase with increasing Kn is
/' also observed for the Maxwell interaction.
k=3gp 1 The conductivity-ratio profiles for both molecular interac-
0.02 g | tions at all temperature differences are similar to Fig. 3: the
' CE value of 1 is achieved in the central region. Additionally,
the pressure portion of the stress tensor remains isotropic for
the Maxwell interaction but becomes increasingly aniso-
tropic for the hard-sphere interaction as Kn is increased.
These facts agree with previous theoretical and computa-
tional results[7-9] and provide strong evidence that the
simulation results are accurate and that the normal solution is
achieved in the central region.

Molecular gas dynamics is a viable approach for investi-
gating nonequilibrium gases. The DSMC method accurately
Knudsen number Kﬁq/(mncﬁl)=0(0.02) for this case, the reproducgs th_e §ubt!e effects_ of.molecular interaction on the

CE velocity distribution functior(i.e., the normal solution

conditions are noncontinuum, so CE theory does not accu I is obtained b d
rately represent the gas: the Sonine-polynomial coefficient§XCellent agreement is obtained between DSMC and CE

depart from the CE values in the central region. The profiledn€0rY for @ stationary gas with a small heat fleentinuum
are closer to the CE values on the hot side of the centra‘fond't'on3* whereas significant differences are observed and

region because conditions there are more “continuum:” Knquantified at large heat flux¢eaoncontinuum conditions

is smaller because the heat flgpis constant throughout the This work was performed at Sandia National Laborato-

domain, the pressurp=(mnd)/2 (the ideal gas lais  ries. Sandia is a multiprogram laboratory operated by Sandia
approximately constant, and the most probable spges  Corporation, a Lockheed Martin Company, for the United

larger on the hot side. Although not shown, the same degre8tates Department of Energy under contract DE-ACO04-
of difference between simulation results and CE theory i94AL85000. The authors thank Professor A. Santos of the
observed for the Maxwell interaction at these conditions. Universidad de Extremadura for helpful discussions.
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FIG. 7. Symbols linked by dotted curves, coefficients vs local
Knudsen number(nondimensional heat flux dashed lines, CE
values.
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