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Learning in neural networks by reinforcement of irregular spiking
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Artificial neural networks are often trained by using the back propagation algorithm to compute the gradient
of an objective function with respect to the synaptic strengths. For a biological neural network, such a gradient
computation would be difficult to implement, because of the complex dynamics of intrinsic and synaptic
conductances in neurons. Here we show that irregular spiking similar to that observed in biological neurons
could be used as the basis for a learning rule that calculates a stochastic approximation to the gradient. The
learning rule is derived based on a special class of model networks in which neurons fire spike trains with
Poisson statistics. The learning is compatible with forms of synaptic dynamics such as short-term facilitation
and depression. By correlating the fluctuations in irregular spiking with a reward signal, the learning rule
performs stochastic gradient ascent on the expected reward. It is applied to two examples, learning the XOR
computation and learning direction selectivity using depressing synapses. We also show in simulation that the
learning rule is applicable to a network of noisy integrate-and-fire neurons.
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I. INTRODUCTION since it is hard to to describe the precise statistics on the state
In engineering applications, the parameters of a Iearning‘j’f the whole network. Previous work has been concentrated

machine are often trained by optimizing an objective func-On mpch s.implified network models with Bernou.lli logistic
tion that quantifies performance at a desired computationaiNits in which each neuron is a memory-less device and cur-
task. A popular method of optimization is to iteratively rent state of neurons completely describes the whole network
change the parameters in the direction of the gradient of thg4—6,8,9. In this work, we consider a more realistic class of
objective function. For example, back propagation learningnetwork models in which two fundamental properties of bio-
is a gradient-following algorithm for artificial neural net- logical synapses are taken into account: First, neurons inter-
works [1]. act with each other through synaptic currents. The time scale
Animals can also learn to optimize performance at certairof synaptic currents is much longer then action potentials.
tasks, and it is widely believed that such optimization occursTherefore, the state of the network has to be described by
at least in part through changes in synaptic strengths. Howpoth the state of neurons and the state of synaptic currents.
ever, it is unclear what mechanism could perform such arsecond, synapses are allowed to be dynamic with short-term
optimization. For biological neural networks, computing theplastic effects such as facilitation and depression.
gradient of an objective function with respect to synaptic In order to derive a learning rule in such networks, we
strengths is difficult, because the dynamics of intrinsic andsimplify the spike generation process of neurons, and model
synaptic conductances is so complex. An alternative is tq with a Poisson process with firing rates of each neuron
compute a stochastic approximation to the gradient by corredetermined by its synaptic inputs. The synaptic update rule
lating fluctuations in the network dynamics with fluctuationswe derived, on average, is in the direction of the gradient of
in its performance2-6]. the expected reward with respect to the synaptic strengths.
A prominent source of fluctuations in neural systems isThe algorithm is compatible with dynamic properties of syn-
the irregular firing of action potentials. For example, corticalapses such as short-term facilitation and depression. We il-
neurons recorded in vivo often produce interspike intervalustrate the algorithm with two simple examples, to learn the
distributions that are roughly exponential, with a coefficientexclusive OR(XOR) computation and to learn direction se-
of variation that is close to [7]. This suggests that the spike |ectivity using depressing synapsid9)].
trains of cortical neurons are roughly Poisson. Such irregular For real neurons, the spike trains will not exactly follow
spiking could be used as a mechanism for learning. Supposeoisson statistics. We show in simulation that the learning
there exists a global reward signal that assesses the overgllle can still be applied in a network of noisy integrate-and-
performance of the network. Then the correlation betweefiire neurons to learn XOR computation.
reward and spiking fluctuations can serve as an error signal
for training the network.
Deriving a learning rule with mathematically proved con- Il. BASIC DEEINITIONS
vergence property in realistic neuronal networks is difficult,
We consider a model network in which each neuron re-
ceives a total synaptic curreift) and produces a Poisson
*Email address: xhxie@mit.edu spike train with instantaneous firing rate
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where T} is the time of theath spike of neurony. {7 is a ks
binary random variable modeling the stochastic release of S0
neurotransmitters in response to a presynaptic srfli?(el 0 3 5 i 55 5 % 3
denotes a release event of neurotransmitters from ngumn 0 I (uA)
neuroni in response to thath spike of neuron, andgﬁ C 44
=0 denotes a nonrelease event. A synapse can be dynamic,
which case the release varialgle depends on the history of 0.3r
neurotransmitter release experiencing short-term dynamic ef < 0.2
fect such as depression or facilitatiphl—13. 0l
In our synaptic transmission model, the postsynaptic cur- '
rent jumps instantaneously in response to a presynaptic re % : 10 15 25 55 35 35
lease event and otherwise decays exponentially with time I (uA)
constantr [Fig. 1(@)]. The amplitude of the postsynaptic _ o
current is determined by the synaptic Strenw_ FIG. 1. Poisson model of spiking neuroiig) An example neu-

Equation(3) is a simplistic model of a synapse, but there "on which fires Poisson spike train with the average rate of 20 Hz
is no barrier to replacing it with more complex dynamical (top pane]_, and the corresponding chang_e in synaptic activation
equations. A more serious limitation is §@), which models ~ Variable with7;=10 ms(second pangl In this example, every pr-
spike generation statistically, without reference to bioph g esynaptic spike is successfully transmitt@g). The transfer function
icF; 9 Y phy f used in the simulation, which takes the forfitx)=20x/3-3.3

étrictly speaking, the validity of the learning rule to be +In(1+exi~x/3+3.3)] where the parameters are chosen fo imi-
introduced shortl ié dependent on the Poisson assum tiotate the shape of thel curve of real neuronsc) The shape of the

y P . . PUOK; 1 ction ¢; with the transfer function in pangb).
However, we expect the learning rule to be valid for more
realistic networks of conductance-based model neurons un-
der conditions when spiking is approximately Poisson. For AW = 7Rey, (4)
example, such a network can be made to approximate Poi
sond f||r|ng at low lrates _byl Injecting Wh'te noise into e_E_Chthe eligibility trace of the synapse from neurgrio i. The
model neuron. _Aternatlve y, approximate |_30|sson spikinggigibility trace is defined by
can arise from internally generated fluctuations of synaptic
input in a network with balanced excitation and inhibition

.
[14]. € = Jo &(1)[s(V) = £;(1) Iy (dt, (5

Where >0 is a learning rateR is a reward signal, ane| is

Il LEARNING RULE wheresi(t):Eaé(t—Tf") is the spike trgin of neuron andT is
the length of an episode. The functigr(l;)=f/(1,)/f(I;) is a
We first consider the episodic form of the learning rule.positive factor, assuming thétis monotonically increasing.
Suppose that the learning process falls into distinct episodes. In the following section, it is shown that expectation value
The network is reinitialized at the beginning of each episodeof the right-hand side of Eq4) is proportional to the gradi-
at a fixed initial condition or one drawn at random from ent of the expected reward with respectwy). This means
some probability distribution. For each episode, the perforthat the learning rule performs stochastic gradient ascent on
mance of the network is evaluated by a reward funcin the expected reward. The learning rule can be applied to

which depends on the spike trains. either feedforward or recurrent networks.
At the end of each episode, the synaptic weights are up- The eligibility trace, Eq(5), depends on both presynaptic
dated by and postsynaptic activities. Presynaptic activity contributes
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through the synaptic activatidm;(t), which is elevated upon R = PQ,NRQ), (6)
successful transmission of each spike from neujoithe or
postsynaptic neuron contributes througt) — f;(t), scaled by . B
the positive factor,. whereP(€,T) is the probability for the stat€ andI’, and
In this learning rule, synaptic change depends on the coithe summation is over all possible states.
relation between the global reward signal and the fluctua- The gradient ofR) with respect to weightV; is
tions in neural spiking. The learning rule can be understood
intuitively as follows. When greater than expected activity in IR _ < IPQ.I) -
: : =X R(Q) = (&;R(2)), (7)
a neuron leads to greater reward, the total inputs to this neu- IW§  or IW; )
ron should be increased. Therefore, we increase excitatory
synaptic weights and decrease inhibitory synaptic weights twheree; =din P(2,I')/dW; is called the eligibility trace,
this neuron. Conversely, if greater than expected activitywhich determines the direction on updating different syn-
leads to reduced reward, we decrease excitatory synaptapses. The expected value of the eligibility trace is zero.
weights and increase inhibitory synaptic weights to this neuThis can be proved by settirig to be constant in Eq.7),
ron. in which case the left hand side of the equatiokes and
The eligibility trace in learning rule Eq4) depends on the right-hand side is zero.
the fluctuation of the postsynaptic activity away from its av-  Using the eligibility trace, we can write down the stochas-
erage activity, its expected value is zemoof in the next tic gradient ascent algorithm to gradually increase the ex-
section. Hence, if the reward function is constant, or uncor-pected reward function,
related to the eligibility trace, there will be no change in
average synaptic strength. Therefore, in the learning rule of AW; = 7R(Q)e;, (8)
Eq. (4), we can substitut® by R-R, as long a®R, is uncor- )
related with the Poisson randomness of the spike trains. Ugvhere z controls the learning rate.
ing RO will not Change the expected value of the Synaptic To further calculate the ellglblllty trace, we first factorize
strength, but a carefully chos&y could be helpful in reduc- the probabilityP(Q,I') of the state into
ing the variance of each update.

.
P(Q,I) = [T Pdot),c}{o).qt), Ot <th), (9)
t=0

IV. DERIVATION OF THE LEARNING RULE

which is the product of the probability at each time step

o:irt]htrrrlllsssfcuggé \t/\r/1ee ?1eertlv\\//?)r:<h?s ?ES%?&/ \ézr:'g;gzt%i dal'conditioned on all previous states. Because at any one time
9 - >upp the spike generation and the neurotransmitter release be-

At the er_1d of each episode, the overa_lll performance of th?Ween different neurons are conditionally independent of
network is evaluated by a reward functiBthat depends on each other, the logarithm of the probabil®fQ,T) can be

the output states of the network. The episodic version of th(\e/vritten as
algorithm performs stochastic gradient ascent on the ex-
pected reward, which we prove next. n P(Q,T)

) L . .
The spike generation is a continuous process. To facilitate

derivation of the algorithm, we discretize the time into suf- " )

ficiently small intervalsit such that the probability for pro- =2 2 In P(oi(t),&;(1), O j}l{e(), &), Ot <t}).
ducing two spikes in the interval is close to zero. Let the =0 1=l

binary variableos;(t) denote the state of tHéh neuron in the (10)

time interval[t,t+At). o;(t)=1 denotes spiking of the neu-

ron, ando;(t)=0 denotes nonspiking. For a network of Hence, the eligibility trace is

neurons, we will also use vector o(t) T

=[4(1), 02(1),...0(D)] to denote the state of all neurons. g = ——In P({ey(t),;(1), 0 j}{o(t),&t), Ot <t)).
The state of neurons in the network between time 0 and =0 I W

can be completely described §y=[o(0), o(At),...,o(T)]. (11)

Besides randomness in the generation of spikes, we also con-

sider stochasticity in the release of neurotransmitters with theet us assume that the neurotransmitter release is indepen-
state variable denoted bl =[{(0),{(At),...,{(T)], where  dent of the spike generation process at any one particular
{(t) is a binary vector with its component representingtime. Then we have

whether there is a synaptic transmission from neurda
neuronj for all i andj at the time interva[t,t+At). In the d , , ,

case of dynamic synapses with depression or facilitation, the &j = % mln PAoi}f{ot).gt), Ot <t). (12)
release probability will change depending on the activities of = !

presynaptic neurons. The overall state of the network in one Given the Poisson assumption on the generation of the
episode is fully determined by the random varialf®sand  spike train of each neuron, the probability for neurda fire

I', and the expected reward is a spike or not during the intervél,t+At) is determined by

T
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1 with probability p;(t) = \;(t)At, will increase the noisiness of the gradient estimate. Next we
. t = . . - . -
ai(t) 0 with probability 1 —p(t), demonstrate the application of the online learning rules in
two examples.
which holds whenAt is sufficiently small. Given this, the

eligibility trace g; can be further simplified to VI. APPLICATION OE THE LEARNING RULE

N :é o-(t)&ln P [1 _U.(t)]‘“”(l -pi(t) Next, we illustrate the application of the learning rule in
R AW, ' W two examples. The first one is to learn XOR computation,
. which is known to require hidden layer representation in
oi(t) 1-ait) |apt) feedforward networks. The second example is to learn direc-
:E { ) 1-n } 3 (13 tion selectivity using dynamic synapses. We use this example
t=0 pl(t) 1 pl(t) &VVU

primarily to illustrate the applicability of the algorithm in
networks with dynamic synapses.

T
=S ai() - Ni(DAL - aN(D) (14)
=0 Ni(DAL(L - N\(DAD) W A. Learning XOR computation

. The learning rule Eq(16) is used to train a three-layer
, feedforward network of Poisson neurons to learn the XOR
_Jo FO/OLs 0 = i) ]y (Hdt, (19 computation. The feedforward architecture consists of two
input neurons, ten hidden neurons and one output neuron.
wheres(1)=2,8(t-T7?) is a series of delta functions repre- The  training data are four binary patterns
senting spiking of neuronin continuous time. The last equa- {[1,0],[0,1],[1,1],[0,0]} with desired outputs of
tion is derived in the limit ofAt being zero. Substituting the {1,1,0,0, respectively. For input neurons, we model the
eligibility trace g; into Eq. (8), we derive the episodic ver- input data 1 with Poisson spike trains of high r&260 H2),
sion of the learning rule Ed4) for Poisson spiking neurons. and 0 with Poisson spike trains of low ra& Hz). Lower
From the derivation of the algorithm, we see that the al-ates can be used if each binary variable is represented by a
gorithm can be applied to stochastic and/or dynamic synpeyral population, rather than by a single neuron.
apses, as long as the random process for generating synaptic ot each training epoch, a randomly chosen input pattern is
transmission is independent of the process for generatingresented for 500 ms. The reward is evaluated based on ac-
spike trains. The differences only reflect on the way for calvjyities of the output neuron. If the input pattern[is, 0] or
culating synaptic activation variables. For stochastic and/o[(), 1], we give a positive reward dk=2 whenever the out-
dynamic synapses, the right-hand side of E8).includes  t neyron fires a spike. For the input pattefasi] and

only the successfully transmitted spikes. [0,0], we administer a negative reward BE—-1 when the
output neuron fires a spike. No reward is administered when
V. ONLINE LEARNING the output neuron fires no spikes. Other reward schemes are
possible, and may be better or worse for the speed of con-
In some contexts it is not possible to segment the learningergence or for escaping from local optima. For example, the
process into discrete episodes, and reward is administereflgorithm often gets stuck in local optima if instead we use
continuously in time. Then one can apply the online learnindR=1 for output spiking in response to input pattefis 0]

rule and[0,1]. The problem of escaping from local optima is a
dW. potential problem for all gradient algorithms.
Ftll = nR(t)Ej (t), (16) We use the same transfer functifrior all neurons;f; has

a shape similar to thé-I (firing rate vs input currentcurve
where the weights are updated continuously in time. Thef real neurongFig. 1(b)]. Under this transfer function, the
eligibility trace's; is defined by corresponding scale functiog;(l;) in Eq. (5) decreases for
large neural activitie§Fig. 1(c)], and therefore acts to stabi-
€& _ lize the algorithm.
Te; +8; = Gi(Olsi(t) — fi® ;0. (17) The online learning algorithm is used to learn both layers
of synaptic weightginput to hidden, and hidden to output

The convergence of online learning rules like Efi6) is  starting from random initial conditions for the weights. An
mathematically far more complex than that of episodic learnexample of the learning process is shown in Fig. 2. Initially,
ing. Equation(16) can be viewed as an approximation to the output neuron fires at high rates only when both inputs
stochastic gradient ascent. The time constardf the eligi- are 1. By the end of training, the output neuron fires at high
bility trace should be set with reference to the correlationrates only when one input neuron receives 1, but not both
between spiking fluctuations(t) - f;(t) and rewardR(t’) for  [Fig. 2@)]. The total reward administered during one epoch
t'>t. Suppose that this correlation decays over some chagradually increases on average, although it fluctuates up and
acteristic time scale,. Roughly speaking, the approximation down on short time scalg&ig. 2(b)].
to stochastic gradient ascent is expected to be goed i The network learns to represent XOR computation by bal-
longer thanr.. However, it is bad to make, too long, as that ancing excitation and inhibitio(Fig. 3). After learning, each
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FIG. 2. (Color) Learning XOR computation@ The change in the firing rates of the output neurons corresponding to the four input
patterns plotted as a function of training epochs. During training, the activities of the output neuron to [dattémgradually decrease,
whereas those corresponding to pattednl] and[1,0] increase(b) The total reward administered during one training epoch drawn as a
function of training epochs. The total reward in one training epoch is the sum of the reward administered during four training episodes for
each pattern.

hidden neuron is excited by one input neuron and inhibitecchoose correspondingly a largey; but at the price of slow-
by the other one. Therefore, if both input neurons are actiing down the learning process. For a delay of reward in the
vated, the hidden neurons are inactive because their totatale of seconds, the system needs to solve the temporal
synaptic inputs roughly cancel out. credit assignment problem of estimating current reward. Al-
In the above simulation, the reward signal is administeredyorithms such as temporal difference learning may provide a
following each spike of the output neuron. This constraintsolution to such problemil5].
can be relaxed under the condition that the correlation be-
tween the reward signal and the eligibility trace is large
enough. For example, in simulation we find that with the
time constant of eligibility trace,=10 ms, the XOR can still Many theories have been proposed for the computational
be learned even if the reward signal is delivered after a delafunctions of dynamic synapses, such as gain control, tempo-
of 10 ms. To compensate much longer delay, we have toal information processing, and sequence recognition

B. Learning direction selectivity using dynamic synapses
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S < selectivity. The postsynaptic neuron receives synaptic inputs from
50 50
(] (%) . . .. .
two groups with 20 neurons in each. Firing rates of the neurons in
0 23 4.5 6 78 910 O o 3 a6 789 10 each group are the same, and are coded as the rectified sinusoidal
Hidden neuron index Hidden neuron index function with peak amplitude 200 Hz and period 300 ms. Between

) ) ) groups, the firing rates are temporally shifted from each other with
FIG. 3. Synaptic weights before and after learning. The top twoy delay or advance of 60 ms in the second grdilfed circles

panels represent synaptic connections from two input neurons to 1Qpresenting inputs in the preferred or nonpreferred directions, re-
hidden neurons beforgpanel (a)] and after[panel (b)] learing.  gpectively. The synapses are all excitatory. From each group, half
Dark and gray bars represent synapses emanating from the t"‘é.‘%/napses are depressing synagselid lineg with the mean recov-

input neurons separately. The bottom two panels plot the synaptigry time =200 ms, and the other half are nondepressing synapses

weights from the hidden to the output neuron befiganel(c)] and  (gashed lines The stochastic release probabiljty=0.8. The syn-
after [panel(d)] learning. To limit the firing rate of the output neu- aptic weights are randomly initialized.

ron not being too high, we have bounded the synaptic strength from

the input neurons to the hidden neurons to be less than 50 and frofainctions shown in Figs.(@) and &b). The rate of the output

the hidden neurons to the output neuron to be less than 150.  neuron is determined by the total synaptic inputs using the
transfer function given in Fig. 1.

[13,16—-19. In particular, one study showed that a neural The synapses are all excitatory with the synaptic weights

circuit of depressing synapses can possess the property Eﬁndomly Inltlallzed. In each trial of tra|n|ng, both dl_reCtIan_

direction selectivity[10]. Here we show that such a circuit &r€ presented, with each held for 600 ms. One direction is

can be learned through the synaptic update rules introducefined to be the preferred direction by administering a re-

earlier. ward of 1 if the output neuron fires a spike. The other direc-

Direction selectivity can be produced by mechanismstion is trained to be the nonpreferred direction by adminis-

: ; : ring a reward of —1 if the output neuron fires a spike. We
other other dynamic synapses. Our main goal here is not tbese the online leaming rule Eq16) to update synaptic

argue against other models, but to illustrate the applicabilit)aleights

of Ege_alglo rlthn:jttl)fdynanzjlc ;ynapg_es. . lect The learned synaptic weights are shown in Fige)5At
simple model for producing a direction selective neurony,q anq of learning, only nondepressing synapses remain for

is shown in Fig. 4. The neuron receives 40 presynaptic ingnq group, and depressing synapses for the other group. The

puts, which are separated into two groups. Each group consynaptic weights of all other synapses decay to near zero.
tains 20 neurons representing inputs from a region in visuathe total reward is plotted in Fig.(8) as a function of the
space. The regions of the two groups are spatially displaceqlraining epoch number.
When a moving stimulus is presented, the two groups see the By using nondepressing synapses from one group and de-
same input, except for a temporal sljifigs. Ga) and @b)].  pressing synapses from the other group, the postsynaptic

Half of the synapses in each group are nondepressingieuron is able to achieve direction selectivityd]. The pre-
whereas the other half are depressing. In response to a fferred direction stimulates the nondepressing synapses first,
esynaptic spike, a nondepressing synapse always releasesra the depressing synapses second. Because the depressing
vesicle with a fixed probabilityp,, and can release at arbi- synapses introduce a phase shift forward in time, the
trarily high rates. In contrast, a depressing synapse entersp@stsynaptic neuron is coactivated by the synaptic input from
refractory state after vesicle release, during which it cannoboth groupgFig. @), 6(c), and ge). On the other hand, the
release again. It recovers after a time that is exponentiallyjponpreferred direction stimulates the depressing synapses
distributed with mearr,. In response to a presynaptic spike, first, and the nondepressing synapses second, which sepa-
a depressing synapse releases a vesicle with probapility rates the synaptic inputs from both groups in time, leading to
but only while nonrefractory. The synaptic activation vari- weak response in the postsynaptic neufbigy. 6b), 6(d),
able is calculated using E@3), except that the right-hand and Gf)].
side of the equation consists of the release events, rather than
the whole spike train. VIl. NETWORKS OF INTEGRATE-AND-FIRE NEURONS

All neurons in the network fire Poisson spike trains. For The learning rule is derived with the assumption of Pois-
the input neurons, the instantaneous rates are specified by then spike trains. The spike trains of biological neurons are
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FIG. 5. Learning to be direction selective using synapses with F1G- 6. Responses of the postsynaptic neuron to the preferred
depression(a) Initial synaptic weights from all input neurongo) ~ (I€ft three panelsand nonpreferredright three panejsdirections
The depressing synapses from the input neurons are indicated Bjter training.(& and (b) show the input firing rates from the two
bars. Neurons from 1 to 20 belong to the first group and neuron§"0UpPs. The first group is indicated by the solid lines, and the sec-
from 21 to 40 belong to the second group, which is activated with £2nd group by the dotted linesc) and (d) plot the total synaptic
delay after the first group when the stimulus is moving in the pre-NPUts from the two groups separately. The solid line indicates the
ferred direction(c) The synaptic weights after training. Only non- _total input from the first group and the dotted Ilne_ln_dlcates the total
depressing synapses from the first group and the depressing sylfPut from the second group. Because after training the synapses
apses from the second group are selected, whereas the strength/@m the first group are mostly nondepressing synapses, their total
the rest synapses decays to z&th.The total reward administered sypaptlc input follows the input firing rate without significant phase
during each trial as a function of the training epochs. shift. However, the synapses from the second group are mostly
depressing synapses. Their total synaptic input is phase-shifted for-
ward, which leads to overlapping synaptic inputs(én and non-

not truly Poisson. However, the learning rule may still work 4\ erianping synaptic inputs ift). (€) and (f) show the spike trains
in the presence of deviations from Poisson behavior. In thig the postsynaptic neuron corresponding to the preferred and non-

section, we test application of the algorithm to a network ofyreferred directional inputs, respectively.
integrate-and-fire neurons. We inject white noise to those
neurons to emulate random inputs neurons receive. Th

model neuron is described by Be used for learning XOR computation. The learning curve

and the resulting synaptic strength are also similar to those in
i the preceding section with Poisson spiking neurons.
TmE:‘Vi + Vet 1i(1) + (1), (18) The learning rule Eq(16) uses the correlation between
reward and variations in neural activities to direct the change
whereV; is the membrane potential for neuronr,, is the  of synaptic strength. If spike trains are not Poisson, the learn-
membrane time constan¥,. is the resting potential, and ing rule may still, on average, perform hill-climbing on the

[i(t) is the total synaptic input;(t) is the white noise: expected reward function, though not necessarily in the gra-
dient ascent direction.
(EM)=0, (GOEE) =0 msot-t), (19
foralli,j=1,...n. When membrane potenti& reaches a VIII. DISCUSSION
thresholdVy,, a spike is generated ang is reset toV,. ) o
The synaptic inputl;(t)=3; W;h;(t), where h;(t) is the We have proposed a synaptic update rule for learning in

synaptic activation variable, which is modeled by E3). networks of spiking neurons. We show that the learning rule
The firing rate vs current relationship can be calculatedS On average performing gradient ascend on an expected
explicitty when white noise is injected. The firing rate is reward function. The algorithm itself does not compute gra-

described by[20] dient information explicitly, but estimates the gradient using
the correlation between the global reward signal and the fluc-
_ T e ' " tuations in neural activities.
fi(l) = [TmJO e (e — &) fudu] ™, (20 The learning rule depends on the spiking of presynaptic
and postsynaptic neurons. Recent experiments have demon-
wherey,=(Vin—Viest— )/ o andy, =(V, =V,es— 1)/ 0. strated types of synaptic plasticity that depends on the tem-

We apply the learning rule Eq16) to learn the same poral ordering of presynaptic and postsynaptic spiking. At
XOR problem described in Sec. VI A. The result is shown incortical and hippocampal synapses, long-term potentiation is
Fig. 7, which demonstrates that the learning rule could stilinduced by repeated pairing of a presynaptic spike and a
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FIG. 7. (Color) Learning XOR in a network of integrate-and-fire neurons. Pagaland(b) plot the membrane potentials of the output
neuron over four input patterns before and after learning, respectively. Each input pattern is held for 500 nis) Plnelthe change on
the firing rates of the output neurons over different input patterns during training. Rapddts the synaptic weight from the input to the
hidden neurons after training. Dark and gray bars represent synapses emanating from the two input neurons separately. The learned synaptic
weight from the hidden to the output neurons saturates at maximum value as in Fig. 3 and is not shown here.

succeeding postsynaptic spike, while long-term depressiogoverned by the terngh;; or f;h;;, that dominates the differ-
results when the order is reversgtl,22. To induce either ence. A lone presynaptic spike in neurpsets up an expo-
type of plasticity, the time difference between presynaptinentially decaying trace ih;;. If it is closely followed by a
and postsynaptic spikes has to be within a short time winpostsynaptic spike, thegh;; will dominate overf;hy;;. If it is
dow. closely preceded by a postsynaptic spike, ts¢g=0, but
Relating our learning rule to such experiments is not rig-fih;; could be nonzergwhether this is true depends on how
orously possible, because spiking in vitro is far from Pois-the learning rule is extended to the non-Poisson)casere-
son. To properly make the connection, it is necessary to exfore it is possible for the eligibility trace to change sign,
tend the learning rule to a model of spiking that is moredepending on the temporal ordering of presynaptic and
biophysically realistic than the Poisson model, a task that igpostsynaptic spiking.
outside the scope of the present work. However, the follow- Experiments on spike-timing dependent plasticity have
ing heuristic arguments can be made. The eligibility trace isiot tried to control any reward signal. If any reward circuitry
determined by filteringp;(s—fj)hj;, and therefore its sign is exists, it is not clear whether it would be operative in vitro
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anyway. If we suppose that the reward signal is frozen aseparate reward signg24]. How to construct such a hierar-
some positive value in vitro, then the above argument abouthical organization is a challenging issue that needs to be
the sign of the eligibility trace implies the form of spike- resolved.

timing-dependent plasticity observed by Bi and Poo, and The learning rule relies critically on the modulation of
Markram et al. [21,22. On the other hand, if the reward reward signals. Investigating the existence of such reward
signal is frozen at some negative value, the learning rulgjgnals and manipulating them to change the course of syn-

would lead to potentiation for the opposite temporal order-gptic plasticity is an interesting topic for future experimental
ing, as observed by Beét al. [23]. According to this inter- ¢y dies.

pretation, the time window for plasticity induced by presyn-
aptic followed by postsynaptic spiking is determined by the ACKNOWLEDGMENTS
time constant of the postsynaptic currents. . .
In this paper, we derived the algorithm from a simple ~We thank Sam Roweis, Mark Goldman, and lla Fiete for
Poisson spiking model. We speculate that the idea of updafelpful discussions.
ing synaptic strength based on the correlation between local
neural activity fluctuation and a global reward signal could . . APPE_ND'X:_ METHODS , )
be applicable to networks of biophysical neurons. However, In simulation, we discretize the continuous dynamics us-
for the algorithm to work properly, each neuron should havend Euler's method with a step size aft=0.1 ms. At each
a mechanism for estimating its mean activity, thatfjg) in ~ time interval, a spike is generated with probabilifyt) At for
the learning rule. If the input to a postsynaptic neuron isheuroni, where;(t) is its firing rate at discretized time
slowly variant, the neuron could estimate its mean activityThe spike train generated this way would be an approxima-
based on previous spikes, for example by low-pass filteringtion to the Poisson statistics and is exact in the limit whén
However, this mechanism will fail to work if the input goes to zero. The synaptic time constagt10 ms, the time
changes rapidly. One possible way to solve this problem is teonstant for eligibility trace.=10 ms, and the transfer func-
do noise injection into neurons, and modify the learning ruletion used is shown in Fig.(b).
to depend on the correlation between injected noise and the In the first example of learning XOR computation, we use
global reward signal. This way, each neuron only needs t@a three-layer feedforward network with two input neurons,
detect the statistics of injected noise, independent of its owten hidden neurons and one output neuron. Each one of the
activity. If the injected noise is close to be stationary, esti-four input patterns is presented for a fixed period of 500 ms
mating its variance by the postsynaptic neuron becomes relavith random orders in each training epoch. When the output
tively easy. Another possible way to solve the problem is toneuron fires a spike, we give a positive reward of 2 if the
use the temporal variance rather than statistical variance afesired output is 1 and a negative reward of —1 if the desired
neural activities. For example, we can modify the algorithmoutput is 0. In this example, to simplify the problem we use
to update synaptic strength based on the correlation betweetatic and deterministic synapses, therefore, every presynap-
the temporal variance of neural activity and the temporatic spikes are faithfully transmitted to postsynaptic neurons.
variance of reward function. In the second example of learning direction selectivity using
The learning update is a noisy estimate of the gradient oflepressing synapses, the preferred and nonpreferred direc-
the expected reward function. The signal-to-noise ratio ofion inputs are presented for 600 ms in alternation. For de-
this estimate tends to deteriorate with increased network siz@ressing synapses, the refractory time after each release
because the correlation of reward with the fluctuations inevent is modeled by an exponential distribution with mean
spiking of any single neuron becomes weaker. Thereforeime 7,=200 ms. In simulation, we model this distribution
similar to other types of reinforcement learnif)3,15, the  using —; In(x), wherex is a random variable uniformly dis-
learning rule suffers from slow convergence in large nettributed between 0 and 1. For both depressing and nonde-
works. However, the learning rule proposed here should beressing synapses, we choose the stochastic release probabil-
faster than algorithms that correlate reward with fluctuationsty p,=0.8.
in synaptic efficacy{2,3]. One way to speed up reinforce-  For the integrate-and-fire neuron model, the parameters
ment learning is to dissolve a large learning problem intowe use arer,=20 ms, Vi,=-54 mV, V,=-60 mV, V,¢s=
smaller subproblems, each learned by a module trained by-&74 mV, ando=5.6.
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