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Relaxation channels of two-vibron bound states ina-helix proteins
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Relaxation channels for two-vibron bound states in an anharmonica-helix protein are studied. According to
a recently established small polaron model@V. Pouthier, Phys. Rev. E68, 021909~2003!#, it is shown that the
relaxation originates in the interaction between the dressed anharmonic vibrons and the remaining phonons.
This interaction is responsible for the occurrence of transitions between two-vibron eigenstates mediated by
both phonon absorption and phonon emission. At biological temperature, the relaxation rate does not signifi-
cantly depend on the nature of the two-vibron states involved in the process. The lifetime for both bound and
free states is of the same order of magnitude and ranges between 0.1 and 1.0 ps for realistic parameter values.
By contrast, the relaxation channels strongly depend on the nature of the two-vibron states which is a conse-
quence of the breatherlike behavior of the two-vibron bound states.
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I. INTRODUCTION

Since the pioneer works of Davydov and co-workers@1#,
soliton mechanisms for bioenergy transport in proteins h
received increasing attention during the last 25 years@2,3#.
The main idea is that the energy released by the hydrolys
adenosine triphosphate can be stored in the CvO vibration
~amide-I! of a peptide group. The dipole-dipole coupling b
tween peptide groups leads to the delocalization of these
brations and to the formation of vibrational excitons, i.
vibrons. Therefore, the strong interaction between the
brons and the phonons of the protein yields a nonlinear
namics which favors the occurrence of the so-called Da
dov’s soliton.

However, it has been pointed out that the solution of
Davydov’s problem is rather a small vibron polaron than
vibron soliton @4–9#. Indeed, the vibron bandwidth in pro
teins is smaller than the phonon cutoff frequency so that
nonadiabatic limit is reached. During its propagation, a
bron is dressed by a virtual cloud of phonons which yield
lattice distortion essentially located on a single site a
which follows instantaneously the vibron~small polaron!.
Nevertheless, the dressing effect leads to an attractive in
action between vibrons mediated by virtual phonons. S
an interaction is responsible for the formation of bound sta
and it has been suggested that proteins can support sol
formed by bound states involving a large number of vib
tional quanta@7–9#.

Although this formalism gives a comprehensive sche
for the formation of solitons in proteins, it assumes the h
monic approximation for the amide-I vibration. Howeve
this approximation failed when several vibrons are exci
because the intramolecular anharmonicity acts as an a
tional nonlinear source. As the dressing effect, the anhar
nicity is responsible for the formation of bound states@10–
15# and the fundamental question of the interplay betwe
both sources of nonlinearity has been addressed in a re
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paper@16#. In this work, we have restricted our attention
the formation of two-vibron bound states~TVBS! only. In-
deed, although the influence of the anharmonicity in mole
lar lattices has been the subject of intense research during
last decade, this research was essentially restricted to cl
cal lattices@17–19#. In particular, the formation of discret
breathers, i.e., highly localized nonlinear vibrations, has b
demonstrated. However, in spite of the great interest
these classical nonlinear objects have attracted, no clear
dence has been found for their existence in real lattices.
contrast, TVBS have been observed in several lo
dimensional molecular lattices@20–28#. These quantum ob
jects correspond to the first quantum states which experie
the nonlinearity and can thus be viewed as the quan
counterpart of breathers or soliton excitations@12#. Their
characterization is thus essential and appears as a first st
understand the formation of multivibron solitons.

In Ref. @16#, we have shown that the anharmonicity mod
fies the vibron-phonon interaction which results in an e
hancement of the dressing effect. Anharmonic vibrons
thus more sensitive to the dressing than harmonic vibro
Moreover, both nonlinear sources favor the occurrence
two kinds of bound states whose properties strongly dep
on the anharmonicity. In the harmonic situation, the tw
bound states appear as combinations of states involving
trapping of the two vibrons onto the same amide-I mode a
onto nearest neighbor amide-I modes. By contrast, the
tramolecular anharmonicity reduces the hybridization
tween these two kinds of trapping so that low frequen
bound states refer to the trapping of the two vibrons onto
same amide-I mode whereas high frequency bound st
characterize their trapping onto nearest neighbor amide-I
brations.

In this study, the dynamical coupling between the dres
anharmonic vibrons and the remaining phonons was di
garded. Therefore, the present paper is devoted to the c
acterization of this coupling and to a detailed analysis of
relaxation pathways. The TVBS lifetime is determined with
special emphasis on the influence of the different nonlin
sources.
©2004 The American Physical Society06-1
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At biological temperature, the lifetime of the Davydov
soliton is still an open question. It has been shown that
amide-I excitation,in vivo, corresponds to a localized sta
@29,30#. Instead of traveling in a coherent manner, it follow
a stochastic, diffusional path along the lattice. In oth
words, the single-vibron Davydov soliton does not last lo
enough to be useful at biological temperatures and it
been shown that two-vibron solitons are more stable
appear as good candidates for bioenergy transport@31,32#.
However, recent calculations performed by Ivicet al. @9#
clearly show that the multivibron soliton lifetime is of abo
a few picoseconds, i.e., the same order of magnitude as
single-vibron soliton lifetime found by Cottingham and Sc
weitzer @33,34#.

The paper is organized as follows. In Sec. II, the dres
anharmonic vibron point of view described in details in R
@16# is first summarized. Then, the coupling Hamiltonian b
tween these anharmonic polarons and the remaining pho
is determined. The TVBS relaxation rate is expressed in S
III and studied numerically in Sec. IV. The results are fina
discussed in Sec. V.

II. VIBRON-PHONON HAMILTONIANS AND TWO-
VIBRON EIGENSTATES

A. The general vibron-phonon Hamiltonian

According to the original Davydov’s model, the collectiv
dynamics of the amide-I modes is described by a o
dimensional lattice withN sites containing the CvO vibra-
tions. Thenth amide-I mode is assumed to behave as a h
frequency anharmonic oscillator described by the stand
operatorsbn

† and bn . This oscillator is characterized by it
harmonic frequencyv0 and by the cubic and quartic anha
monic parametersg3 and g4, respectively. Finally, the
dipole-dipole coupling between nearest neighbor amid
modes is introduced via the hopping constantJ. These CvO
vibrations interact with the phonons of the lattice whi
characterize the dynamics of the external motions of the p
tide groups. Within the harmonic approximation, t
phonons correspond to a set ofN low frequency acoustic
modes labeled$q% and described by the phonon operatorsaq

†

and aq . The frequency of theqth mode is defined asVq
5Vcusin(q/2)u, where Vc denotes the phonon cutoff fre
quency.

As shown in Ref.@16#, a unitary transformation is per
formed to remove the intramolecular anharmonicity of ea
amide-I mode and a modified Lang-Firsov transformation
applied to renormalize the vibron-phonon interaction. As
result, the vibron-phonon Hamiltonian is defined as~within
the convention\51!

Ĥ5(
n

v̂0bn
†bn2Âbn

†2bn
22B̂bn11

† bn
†bn11bn

2J1@Qn
†~Nn21!Qn11~Nn11!bn

†bn111H.c.#

2J2FQn
†2S Nn2

3

2DQn11
2 S Nn111

1

2Dbn
†2bn11

2 1H.c.G
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2J3@Qn
†~Nn21!Qn11~Nn11!bn

†@Nn1Nn11#bn11

1H.c.#1(
q

Vqaq
†aq , ~1!

where Nn5bn
†bn and A530g3

2/v026g4. In Eq. ~1!, H.c.
stands for the Hermitian conjugate and the different para
eters are expressed in terms of both the anharmonic pa
eters and the small polaron binding energyEB as

v̂05v022A2B2~114h!EB ,

Â5A1~118h!EB , B̂5B1~114h!EB ,

B5144JS g3

v0
D 2

, J15JF1144S g3

v0
D 2

212
g4

v0
G ,

J254JS g3

v0
D 2

, J35JF22S g3

v0
D 2

212
g4

v0
G ,

h5120S g3

v0
D 2

212
g4

v0
. ~2!

Note that the small polaron binding energyEB and the an-
harmonic parameterA appear as the relevant parameters
characterize the nonlinearity of the system. In Eq.~1!,
Qn(Nn) stands for the dressing operator expressed as

Qn~Nn!5exp~2Qn@112h12hNn# !, ~3!

whereQn is defined as

Qn5(
q
A EB

2NVq

sin~q!

i usin~q/2!u
e2 iqnaq

†2H.c. ~4!

The Hamiltonian, Eq.~1!, describes the dynamics of an
harmonic vibrons dressed by virtual phonons, i.e., anh
monic small polarons. It takes into account the intramole
lar anharmonicity up to the second order and allows fo
renormalization of the main part of the initial vibron-phono
coupling. However, this coupling remains through the dre
ing operatorsQn(Nn) which depend on the phonon coord
nates in a highly nonlinear way. Therefore, to separate
vibron degrees of freedom from the phonon coordinates
mean field procedure is applied@4–6#. The full Hamiltonian
Ĥ is thus written asĤ5Ĥe f f1Hp1DH, whereHp is the
phonon Hamiltonian and whereĤe f f5^(Ĥ2Hp)& denotes
the effective Hamiltonian of the dressed anharmonic vibro
DH5Ĥ2Hp2^(Ĥ2Hp)& stands for the remaining part o
the vibron-phonon interaction. The symbol^¯& represents a
thermal average over the phonon degrees of freedom at
peratureT.

Finally, starting from a set of anharmonic vibrons strong
coupled to the phonons of the protein, the previous pro
dure yields a different point of view in which the syste
consists in a set of interacting small polarons weakly coup
to the remaining phonons. Due to this weak coupling,
small polarons are supposed to be in stationary states acc
6-2
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RELAXATION CHANNELS OF TWO-VIBRON BOUND . . . PHYSICAL REVIEW E69, 041906 ~2004!
ing to the effective HamiltonianĤe f f and the phonons can b
viewed as a thermal bath responsible for their relaxation.
thus assumed that the bath is not affected by the pola
since this effect is explicitly taken into account through t
definition of the small polarons, i.e., vibrons dressed b
lattice distortion.

To conclude this section, let us mention that the phon
anharmonicity was disregarded in the present work. Ho
ever, it is expected to play an important role since the pr
ence of several amide-I excitations leads to a large lat
distortion when compared to the distortion induced by
single excitation. Nevertheless, such an effect needs a m
appropriate theory and will be addressed in a forthcom
work.

B. The effective vibron Hamiltonian and the two-vibron
eigenstates

The effective dressed anharmonic vibron Hamiltonian
written as

Ĥe f f5(
n

v̂0bn
†bn2Âbn

†2bn
22B̂bn11

† bn
†bn11bn

2J1@F~Nn1Nn11!bn
†bn111H.c.#

2J2@F~Nn1Nn11!4bn
†2bn11

2 1H.c.#

2J3@F~Nn1Nn11!bn
†@Nn1Nn11#bn111H.c.#,

~5!

whereF(X)5exp@2S(T)(112h12hX)# and whereS(T) is
the coupling constant introduced by Ivic and co-workers
(kB denotes the Boltzmann constant!

S~T!5
4EB

NVc
(

q
UsinS q

2D UcosS q

2D 2

cothS Vq

2kBTD . ~6!

In Ref. @16#, a detailed analysis of the two-vibron energ
spectrum of the HamiltonianĤe f f is presented. Within the
number state method@12–15#, the two-vibron wave function
is first expanded asuC&5(C(n1 ,n2)un1 ,n2) whereun1 ,n2)
denotes a local basis vector characterizing two vibrons
cated onto the sitesn1 and n2, respectively. Note that the
restriction n2>n1 is applied due to the indistinguishab
character of the vibrons so that the dimension of the tw
vibron subspace isN(N11)/2. Then, by taking advantage o
the lattice periodicity, the wave function is expanded a
Bloch wave as

C~n1 ,n25n11m!5
1

AN
(
n1

eik(n11m/2)Ck~m!, ~7!

where the total momentumk is associated with the motion o
the center of mass of the two vibrons. The wave funct
Ck(m) refers to the degree of freedomm which character-
izes the distance between the two vibrons. Sincek is a good
quantum number, the HamiltonianĤe f f appears as block di
agonal and the Schro¨dinger equation can be solved for ea
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k value. For a givenk value, the protein exhibits (N11)/2
eigenstatesuCks&, where the indexs51, . . . ,(N11)/2.
Due to the nonlinear sources, there are two different eig
states, i.e., two-vibron free states~TVFS! and TVBS. The
TVFS correspond to a delocalization of the separating d
tancem. The wave functionCk(m) behaves as a plane wav
and the TVFS belong to an energy continuum. By contra
the TVBS correspond to a localization of the separating d
tance and characterize the trapping of the two quanta o
only a few neighboring sites. We have shown that the prot
supports two kinds of bound states, called TVBS-I a
TVBS-II. The TVBS-I, denoteduCk,s51&, are located below
the TVFS continuum over the entire Brillouin zone where
for TVBS-II, two situations occur depending on the streng
of the small polaron binding energy. For small values ofEB ,
the band disappears inside the continuum whenuku is lower
than a critical wave vectorkc whereas, for strong values o
EB , the band is located below the continuum over the en
Brillouin zone. As a result, the notationuCk,s52& refers ei-
ther to a free state or to TVBS-II, depending on the situati
In the harmonic situation, both TVBS-I and TVBS-II appe
as combinations of states involving the trapping of the t
vibrons onto the same amide-I mode and onto nearest ne
bor amide-I modes. By contrast, the intramolecular anharm
nicity reduces the hybridization between these two kinds
trapping so that TVBS-I refer to the trapping of the tw
vibrons onto the same amide-I mode whereas TVBS-II ch
acterize the trapping onto nearest neighbor amide-I vib
tions.

C. The vibron-phonon coupling Hamiltonian

By comparing Eqs.~1! and ~5!, it is straightforward to
show that the coupling HamiltonianDH corresponds to a
modulation of the different lateral contributions describi
vibron hops, i.e., the terms proportional toJ1 , J2, andJ3 in
Eq. ~1!. However, ina-helix proteins, it has been shown th
J2'J3'J1 /v0 @16#. As a resultJ2 andJ3 are of about three
orders of magnitude lesser thanJ1 and can be neglected. Th
coupling HamiltonianDH is thus written as

DH52J1 (
n,d561

@Qn
†~Nn11!Qn1d~Nn1d!

2^Qn
†~Nn11!Qn1d~Nn1d!&#bn

†bn1d . ~8!

In addition, the small polaron binding energy is about o
order of magnitude smaller than the phonon cutoff freque
so that the dressing operator, Eq.~3!, can be linearized@8,9#.
As a consequence, by neglecting the rather small param
h in Eq. ~3! @16#, the coupling between the anharmonic p
larons and the remaining phonons is finally expressed as

DH'2 (
n,d561

DJ~n,n1d!bn
†bn1d , ~9!

where
6-3
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DJ~n,n1d!5J1(
q

F2 iA EB

2NVq

sin~q!e2 iqn

usin~q/2!u

3~12e2 iqd!aq
†2H.c.G . ~10!

Therefore, within the anharmonic polaron point of view, t
main contribution of the coupling with the phonons corr
sponds to a random modulation of the single-vibron hopp
constant. As shown in the following sections, this coupling
responsible for dephasing mechanism only and does no
low for energy relaxation. In other words, the interacti
with the phonon bath does not modify the polaron num
~equal to two! but induces transitions between the differe
two-polaron eigenstates. The lifetime connected to such
cesses refers to the time for the decay of a given two-vib
bound state into all the other two-vibron states but does
account for the decay into the ground state with zero vib
tional excitation ~known as the lifetime for energy relax
ation!.

III. TWO-VIBRON BOUND STATE RELAXATION RATE

Due to the coupling HamiltonianDH @Eq. ~9!#, TVBS do
not represent exact eigenstates of the whole polaron-pho
system. More precisely, this coupling is responsible for
occurrence of transitions between two-vibron states medi
by the emission or the absorption of acoustic phono
Therefore, by using the Golden rule formula, the rate for
transition from a TVBSuCksb

& with frequencyvksb
to an-

other stateuCk8s8& with frequencyvk8s8 is expressed as

Wksb→k8s852p(
a,b

Pau^Cksb
,auDHuCk8s8 ,b&u2

3d~vksb
1Va2vk8s82Vb!. ~11!

Equation~11! describes a transition in the course of whi
the phonon bath evolves from an initial stateua& with fre-
quencyVa to a final stateub& with frequencyVb . Since the
bath is assumed to be in thermal equilibrium at tempera
T, a statistics is realized over the initial state with the pro
ability occupationPa and a sum over all the possible fin
bath states is performed. By inserting the expression of
coupling HamiltonianDH @Eq. ~9!#, the total rate for leaving
the stateuCksb

& obtained by summing over all possible tra
sitions is expressed as

Wksb
52 Re(

n,d
(

n8,d8
(

k8,s8
E

0

`

dtei (vksb
2vk8s8)t

3^Cksb
ubn

†bn1duCk8s8&^Ck8s8ubn8
† bn81d8uCksb

&

3^DJ~n,n1d,t !DJ~n8,n81d8,0!&, ~12!

where^¯& stands for an average over the phonon bath
where the operatorsDJ depend on timet according to a
Heisenberg representation with respect to the phonon Ha
tonianHp .
04190
-
g
s
al-

r
t
o-
n
ot
-

on
e
ed
s.
e

re
-

e

d

il-

As shown in Eq.~12!, the TVBS relaxation rate is ex
pressed in terms of the Fourier transform of the correlat
function of the couplingDJ. The characteristic time of this
rate is the correlation timetc of the phonon bath which
corresponds to the time for which the correlation functio
vanish. In a general way,tc is about 1 ps for phonons in
low-dimensional molecular lattices@14#. We thus assume
that this correlation time is sufficiently small in order to n
glect the spatial correlations in the phonon bath. As a res
the correlation functions of the couplingDJ which appear in
Eq. ~12! are nonzero ifn5n81d8 and n85n1d only.
Therefore, by performing both the time integration and t
thermal average in Eq.~12!, the relaxation rate is finally
expressed as

Wksb
5

32J1
2EB

Vc
2 (

k8s8
Zksb→k8s8$F~vk8s82vksb

!

3n~vk8s82vksb
!1F~vksb

2vk8s8!

3@11n~vksb
2vk8s8!#%, ~13!

wheren(V) denotes the Bose-Einstein phonon distributi
at temperatureT and where the coupling distributionF(V),
which measures the probability for the exchange of a pho
with frequencyV during the process, is defined as

F~V!5H V

Vc
A12S V

Vc
D 2

if V.0

0 if V,0

. ~14!

In Eq. ~13!, Zks→k8s8 characterizes the strength of the co
pling between the two-vibron eigenstatesuCks& anduCk8s8&
due to the vibron-phonon interaction. This coupling is e
pressed as

Zks→k8s85 (
n,d561

u^Cksubn
†bn1duCk8s8&u

2. ~15!

After some algebraic manipulations,Zks→k8s8 is ex-
pressed in terms of the wave functions as

Zks→k8s85
1

N U(
m

Cks~m!

D~m! S Ck8s8~m21!

D~m21!
ei (k82k)m/2

1
Ck8s8~m11!

D~m11!
e2 i (k82k)m/2DU2

1
1

N U(
m

Ck8s8~m!

D~m! S Cks~m21!

D~m21!
e2 i (k82k)m/2

1
Cks~m11!

D~m11!
ei (k82k)m/2DU2

, ~16!

where the conventionCks(21)50 is used.
As shown in Eq.~13!, the rate depends on the temperatu

through the average number of phonons. Moreover, the t
perature is involved in the definition of the two-vibron wav
functions due to the dressing effect@16#. The relaxation rate
6-4
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RELAXATION CHANNELS OF TWO-VIBRON BOUND . . . PHYSICAL REVIEW E69, 041906 ~2004!
exhibits two contributions connected to the absorption@term
proportional ton(V)] and to the emission@term proportional
to 11n(V)] of an acoustic phonon, respectively. Note th
Eq. ~13! clearly shows that the relaxation rateWksb

is ex-
pressed as the sum over the rate connected to the diffe
relaxation channelsWksb→k8s8 . As a result, each channe
can be characterized separately.

At this step, the diagonalization of the HamiltonianHe f f
realized in Ref.@16# allows us to calculate both the two
vibron eigenstatesuCks& and eigenenergiesvks . Then, by
using Eqs.~13!–~15!, the TVBS relaxation rate can be com
puted. This procedure is illustrated in the following sectio

IV. NUMERICAL RESULTS

In this section, the previous formalism is applied to co
pute the TVBS relaxation rate in an anharmonica-helix pro-
tein. The intramolecular anharmonicity is described by
single parameter, namely, the anharmonic constantA, which
ranges between 0 and 10 cm21 @16,35,36#. The small po-
laron binding energyEB is taken as a parameter which e
tends from 0 to 15 cm21. The phonon cutoff frequencyVc is
fixed to 100 cm21 and the hopping constant is set toJ
58 cm21.

The temperature dependence of the zero wave ve
TVBS-I relaxation rate~full circles! is shown in Figs. 1~a!
and 1~b! for two typical situations. The empty circles corr
spond to the rate for the relaxation over all the other TVB
whereas the empty squares represent the rate for the d
into the set of the second eigenstatesuCks52&. Note that as
remained in Sec. II B, such states refer to either free or bo
states~TVBS-II!, depending on the nonlinearity.

WhenA58 cm21 andEB54 cm21 @Fig. 1~a!#, the relax-
ation rate exhibits a quasilinear dependence versus the
perature, excepted at low temperature. More precisely,
linear regime is reached when the temperature is greater
50 K whereas the rate shows a power law dependence a
temperature. The relaxation rate is equal to 0.049 cm21 at
T55 K and reaches 7.64 cm21 at T5315 K. At low tem-
perature, Fig. 1~a! clearly indicates that the main mechanis
for the relaxation involves the decay of the zero wave vec
TVBS-I into the other TVBS-I. For instance, this chann
represents 99.8% of the relaxation atT55 K. As increasing
the temperature, the relaxation over the other TVBS-I
creases and the rate for the relaxation over the st
uCks52& increases very slightly. Indeed, atT5315 K, the
relaxation over the other TVBS-I represents 55.54%. Ho
ever, the second channel, i.e., the relaxation over all
states s52, represents only 7.22% which indicates th
37.24% of the relaxation involves the decay of the TVBS
into the TVFS continuum.

WhenEB512 cm21 @Fig. 1~b!#, the relaxation rate for the
zero wave vector TVBS-I exhibits almost the same tempe
ture dependence as in the previous case. Nevertheless
rate is more important since it is equal to 0.19 cm21 at T
55 K and reaches 19.58 cm21 at T5315 K. However, the
main difference with the previous case originates in the
ture of the relaxation channels. Indeed, although the re
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ation over the other TVBS-I remains the main pathway
low temperature, this is no longer true at high temperatu
Indeed, as shown in Fig. 1~b!, the decay into the othe
TVBS-I represents almost 100% of the relaxation atT
55 K. However, on increasing the temperature, the rel
ation over the other TVBS-I strongly decreases whereas
rate for the relaxation over the statesuCks52& increases and
becomes the dominant contribution~the transition occurs
around 130 K!. At high temperature, i.e.,T5315 K, the re-
laxation according to the second channel represents 85.
whereas the decay into the other TVBS-I characteri
10.84% of the global rate. As a consequence, for suc
strong nonlinear situation, the decay of the TVBS-I into t
TVFS is no more than 5% at high temperature.

The behavior of the TVBS-I relaxation rate as a functi
of the anharmonicity is displayed in Fig. 2. The calculatio
are performed atT5310 K and for three different values o
the small polaron binding energy. WhenEB54 cm21 @Fig.
2~a!#, the rate slightly decreases as the anharmonicity
creases. It is equal to 8.28 cm21 when A50 and to
7.26 cm21 when A510 cm21. In marked contrast, the rat
for the decay into the other TVBS-I first increases to reac
maximum equal to 6.02 cm21 when A52 cm21. Then, it
decreases and is equal to 3.48 cm21 whenA510 cm21. As
shown in Fig. 2~a!, the rate for the decay into the secon

FIG. 1. Temperature dependence of the zero wave ve
TVBS-I relaxation rate~full circles! for A58 cm21 and for EB

54 cm21 ~a! and EB512 cm21 ~b!. Empty circles correspond to
the rate for the relaxation over all the other TVBS-I whereas em
squares represent the rate for the decay into the set of the se
eigenstatesuCks52& ~see the text!.
6-5
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eigenstatesuCks52& is rather small whatever the anharm
nicity although it increases whenA increases. Consequentl
in this low nonlinear regime (EB54 cm21), the main part of
the relaxation of TVBS-I involves the decay into both t
other TVBS-I and the TVFS continuum.

When increasing the small polaron binding energy@Figs.
2~b! and 2~c!#, the TVBS-I relaxation rate behaves in a sim
lar way with respect to the anharmonicity and slightly d
creases asA increases. However, the rate increases withEB
since it is equal to 16.31 cm21 when EB58 cm21 and A
50 @Fig. 2~b!# and reaches 22.73 cm21 when EB
512 cm21 and A50 @Fig. 2~c!#. In a marked contrast, th
relaxation pathways are strongly modified when the sm
polaron binding energy is increased. Indeed, whenEB
58 cm21 @Fig. 2~b!#, the rate for the decay into the othe
TVBS-I decreases asA increases. By contrast, the rate for t
decay into the second eigenstatesuCks52& increases. This
second channel becomes slightly more efficient than the
channel when the anharmonicity exceeds 7 cm21. WhenA

FIG. 2. TVBS-I relaxation rate~full circles! vs the intramolecu-
lar anharmonicity atT5310 K for EB54 cm21 ~a!, EB58 cm21

~b!, andEB512 cm21 ~c!. Empty circles correspond to the rate fo
the relaxation over all the other TVBS-I whereas empty squa
represent the rate for the decay into the set of the second eigen
uCks52& ~see the text!.
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510 cm21, the first channel represents 21.92% of the rel
ation whereas the second channel characterizes 43.31%
the decay. Such a behavior appears more pronounced w
the small binding energy is set toEB512 cm21. In that case,
Fig. 2~c! clearly shows that the decay of the TVBS-I into th
TVFS continuum is rather weak. Its contribution is less th
5% whenA is greater than 3.5 cm21. For a small anharmo-
nicity, the rates for the decay into the other TVBS-I and in
the second eigenstates are of the same order of magni
However, as increasing the anharmonicity, the second ch
nel becomes dominant since the corresponding rate re
sents almost 90% of the global rate whenA510 cm21.

The dependence of the TVBS-I relaxation rate on
small polaron binding energy is shown in Fig. 3 forT
5310 K andA58 cm21. The global rate evolves in a qua
silinear way and varies from 1.98 cm21 whenEB51 cm21

to 23.19 cm21 whenEB515 cm21. As shown in Fig. 3, the
more surprising results correspond to the behavior of
rates connected to the first and to the second channel. Ind
for small EB values, the decay into the other TVBS-I is th
dominant relaxation pathway. For instance, whenEB
52 cm21, this first channel represents 67.66% of the rela
ation whereas the contribution of the second channe
2.13%. Therefore, 30.21% of the relaxation involves the
cay of the TVBS-I into the TVFS continuum. However, a
EB increases, the rate connected to the second channe
creases and becomes the main contribution for strongEB
values. WhenEB514 cm21, the second channel represen
91.54% of the relaxation whereas the contribution of the fi
channel is 6.81%. Note that both channels contribute i
similar way whenEB is about 7.5 cm21.

The correlation between the relaxation channels and
nature of the two-vibron eigenstates is illustrated in Fig. 4
T5310 K andA58 cm21. The upper panel represents th
corresponding two-vibron energy spectrum whereas
lower panel displays the wave vector dependence of the
laxation rates. More precisely, open circles characterize
rate W0,1→ks51 for the decay of the zero wave vecto
TVBS-I into the TVBS-I with wave vectork. In the same

s
tes

FIG. 3. TVBS-I relaxation rate~full circles! vs the small polaron
binding energy atT5310 K for A58 cm21. Empty circles corre-
spond to the rate for the relaxation over all the other TVBS
whereas empty squares represent the rate for the decay into th
of the second eigenstatesuCks52& ~see the text!.
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RELAXATION CHANNELS OF TWO-VIBRON BOUND . . . PHYSICAL REVIEW E69, 041906 ~2004!
way, open squares correspond to the decay of the zero w
vector TVBS-I into the stateuCks52&, i.e., W0,1→ks52.

WhenEB54 cm21 @Fig. 4~a!#, the TVBS-II band occurs
at the end of the first Brillouin zone only. For the first rela
ation channel, i.e., the relaxation over the other TVBS-I,
rate decreases as the modulus of the wave vector incre
In other words, the decay into low wave vector TVBS-I
the dominant relaxation pathway. Although such an effec
not correlated to the energy spectrum, this is no longer
for the k dependence of the rate connected to the sec
channel. Indeed, Fig. 4~a! clearly shows that the secon
channel opens at the end of the first Brillouin zone only, i
when the TVBS-II band occurs. Therefore, this second ch

FIG. 4. Correlations between the relaxation channels and
nature of the two-vibron eigenstates forT5310 K, A58 cm21,
andEB54 cm21, ~a! andEB510 cm21 ~b!. The upper panel rep
resents two-vibron energy spectrum whereas the lower panel
plays the wave vector dependence of the relaxation rates. O
circles characterize the rateW0,1→ks51 whereas open squares co
respond to the rateW0,1→ks52.
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nel becomes the dominant relaxation pathway at the en
the Brillouin zone. WhenEB510 cm21 @Fig. 4~b!#, the re-
sults are slightly different sinceEB is strong enough so tha
the TVBS-II band is localized below the continuum over t
entire Brillouin zone. As a result, the second channel
clearly the main mechanism for the relaxation whatever
value of the wave vector.

In Fig. 5, the influence of the small polaron binding e
ergy on the relaxation rate of theuCk50,s52& eigenstate is
shown at biological temperature (T5310 K) and for A
58 cm21. As in the previous figures, full circles characte
ize the global rate, empty circles represent the rate for
decay into the TVBS-I, and empty squares correspond to
rate for the decay into all the otheruCk,s52& eigenstates. In
addition, empty triangles characterize the rate for the de
into the TVFS continuum. The figure clearly shows that t
system exhibits two regimes depending on the value ofEB .

For the small values of EB , i.e., typically EB
,8.5 cm21, the rate increases in a quasilinear way withEB .
It is equal to 1.65 cm21 when EB51 cm21 and reaches
13.67 cm21 when EB58.0 cm21. As shown in Fig. 5, the
relaxation into both the TVBS-I and the otheruCk,s52&
eigenstates can be neglected. In other words, the main re
ation pathway corresponds to the decay of theuC0,s52&
eigenstate into the TVFS continuum. WhenEB becomes
greater than a critical value, the global rate behaves i
different manner with respect to the small polaron bindi
energy. It increases more rapidly than the previous lin
regime to reach 38.75 cm21 for EB515 cm21. Moreover,
the rate for the relaxation into the TVBS-I increases withEB
whereas the rate for the relaxation into TVFS slightly d
creases. For strongEB , the decay into TVBS-I represent
64% of the relaxation whereas the decay into TVFS cor
sponds to 33%. Note that although the rate for the decay
the uCk,s52& eigenstates slightly increases around the tran
tion, it decreases asEB increases and can be neglected fo
strong nonlinearity.

Finally, the relaxation rate of theuCk50,s52& eigenstate
versus the anharmonicity is shown in Fig. 6 forT5310 K

e

is-
en

FIG. 5. Relaxation rate~full circles! of the uCk50,s52& eigen-
state vsEB at T5310 K and forA58 cm21. Empty circles repre-
sent the rate for the decay into the TVBS-I and empty squa
correspond to the rate for the decay into all the otheruCk,s52&
eigenstates. Empty triangles characterize the rate for the decay
the TVFS continuum.
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V. POUTHIER AND C. FALVO PHYSICAL REVIEW E69, 041906 ~2004!
and for EB510 cm21. As in Fig. 5, the different rates ex
hibit two regimes depending on the anharmonicity. Fo
small anharmonicity, i.e.,A,4 cm21, the global rate is al-
most independent of the anharmonic parameter and
equal to 17.00 cm21. In addition, the decay into the TVFS
continuum appears as the main mechanism for the relaxa
In a marked contrast, for a strong anharmonicity, i.e.,A
.4 cm21, the rate increases as the anharmonic param
increases and reaches 23.19 cm21 when A510 cm21. The
rate for the relaxation over the TVFS continuum decrea
whereas the rate for the decay into the TVBS-I increas
This latter rate becomes the most important whenA
510 cm21 so that the decay into TVBS-I represents alm
50% of the relaxation.

V. DISCUSSION

To discuss and interpret the previous numerical results
us first consider the behavior of the TVBS-I relaxation rate
low temperature. Since the zero wave vector TVBS-I lies
the bottom of the two-vibron energy spectrum, its decay
volves phonon absorption only. The rate is thus proportio
to the Bose-Einstein distribution which selects the freque
range of the phonons which are exchanged. In that con
transitions involving low frequency phonons take place
low temperature. Therefore, when the thermal energykBT is
lower than the energy gap between bound and free states
TVBS-I can just decay into the other TVBS-I, as shown
Fig. 1. Note that phonon emission participates in the de
of the other two-vibron states, i.e., TVBS-II and TVFS,
that the corresponding rate reaches a finite value at zero
perature~not considered in the numerical analysis!. As a con-
sequence, the low temperature behavior of the rate does
depend on the system nonlinearity and essentially origin
in the shape of the phonon distribution.

This is no longer the case at biological temperature
which an approximate expression of the relaxation rate
be determined. To proceed, we assume that the two-vib
bandwidth is smaller when compared with both the therm

FIG. 6. Relaxation rate~full circles! of the uCk50,s52& eigen-
state vsA at T5310 K and forEB510 cm21. Empty circles rep-
resent the rate for the decay into the TVBS-I and empty squ
correspond to the rate for the decay into all the otheruCk,s52&
eigenstates. Empty triangles characterize the rate for the decay
the TVFS continuum.
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energykBT and the phonon cutoff energy\Vc . Therefore,
the Bose-Einstein distribution can be linearized according
the temperature and the distribution function F(V) @Eq. ~14!#
can be written asF(V)'V/Vc . As a result, the relaxation
rate, Eq.~13!, connected to the two-vibron eigenstateuCks&
can be approximated as

Wks'
32J1

2EBkBT

Vc
3 (

k8s8
Zks→k8s8 . ~17!

At this step, Eq.~17! can be simplified because the sum ov
k8s8 leads to the occurrence of the closure relation@see Eq.
~15!#. Therefore, by using the identity

^Cksubn
†bnbn8

† bn8uCks&5
1

N
uCks~ un2n8u!u2, nÞn8,

~18!

the relaxation rate is finally expressed as

Wks'
128J1

2EBkBT

Vc
3 S 11

1

2 UCks~1!U2D . ~19!

Equation~19! yields a rather good approximation whic
allows us to interpret and to understand the numerical
sults. First of all, it accounts for the observed temperat
dependence of the relaxation rate. Indeed, Eq.~19! clearly
shows that the rate increases in a linear way as the temp
ture increases, in a perfect agreement with the numer
results displayed in Fig. 1. This feature originates in the l
earization of the Bose-Einstein distribution. Note that t
wave functionCk,s(m) depends on the temperature in
complicated manner through the dressing effect@16#. How-
ever, our results indicate that such a dependence rem
rather small when compared with the influence of the line
ized Bose-Einstein factor.

Then, the wave function dependence of the relaxation
allows us to understand the influence of the intramolecu
anharmonicity as shown in Figs. 2 and 6. For TVBS-I, Fig
clearly shows that the rate decreases as the anharmon
increases. In fact, since TVBS-I refer to the trapping of t
two vibrons onto the same amide-I vibration, the wave fun
tion Cks51(m) is maximum form50 and decreases withm
according to a quasiexponential way@16#. As a consequence
when the anharmonicity increases, the trapping proces
enhanced so that the extension of the wave function aro
m50 is reduced. Therefore,uCks51(0)u2 increases wherea
uCks51(1)u2, as the relaxation rate, decreases. In Fig. 6,
anharmonicity dependence of the rate for theuCk50s52&
eigenstate exhibits two regimes which originates in the
ture of the state itself. Indeed, as pointed out in Sec. I
uCk50s52& refers either to a free or to a bound state~TVBS-
II !, depending on the nonlinearity. Such a behavior is d
played in Fig. 6 since the change of regime correspond
the transition from a TVFS to a TVBS-II. As shown in Re
@16#, uCk50s52& corresponds to a TVFS for a small anha
monicity. In that case, the probabilityuCks52(m)u2 is almost
independent of the anharmonicity and scales as 1/N. Conse-
quently, the relaxation rate does not depend onA, as shown
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to
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RELAXATION CHANNELS OF TWO-VIBRON BOUND . . . PHYSICAL REVIEW E69, 041906 ~2004!
in Fig. 6. By contrast, when increasing the anharmonic
the state uCk50s52& becomes bounded. It refers to
TVBS-II which characterizes the trapping of the two vibro
onto two nearest neighbor amide-I vibrations. Therefo
when the anharmonicity increases, the trapping proces
enhanced so that the wave functionCks52(m) tends to lo-
calize aroundm51. The corresponding rate suddenly i
creases withA as clearly shown in Fig. 6.

Finally, the approximated expression of the rate give
comprehensive explanation of the influence of the small
laron binding energy~see Figs. 3 and 5!. Indeed, Eq.~19!
clearly shows that the dependence of the rate with respe
EB is twofold. First, the rate depends linearly onEB . This
feature originates in the fact that the rate is proportiona
the intensity of the coupling between the dressed anharm
vibrons and the remaining phonons@see Eq.~11!#. Then, the
EB dependence is included in the wave function depende
of the rate. When increasing the small polaron binding
ergy, the trapping process involved in the formation of t
TVBS-I is enhanced so thatCks51(1) decreases. Therefore
the linear evolution of the TVBS-I relaxation rate with r
spect toEB is slightly damped, i.e., the rate evolves mo
slowly than the corresponding linear law~see Fig. 3!. As
previously, Fig. 5 clearly shows that the nature of the st
uCk50s52& exhibits a transition as a function of the sma
polaron binding energy. For smallEB values, this state is a
TVFS whose wave function does not significantly depend
the nonlinearity. Therefore, the rate evolves in a linear w
versusEB . By contrast, when the small polaron binding e
ergy is sufficiently important, this state becomes a TVBS
@16#. As a consequence, the trapping onto two nearest ne
bor sites is enhanced so thatCks52(1) increases to reac
unity. The corresponding relaxation rate suddenly evol
more rapidly than the previous linear law~see Fig. 5!.

As shown in Eq.~19!, the dependence of the relaxatio
rate on the nature of the corresponding two-vibron st
arises from the factor@11uCks(1)u2/2#. As a consequence
the global rate does not depend significantly on the fact
the state is a TVFS or a TVBS. In other words, the lifetim
of both kinds of states is about the same order of magnitu
Indeed,uCks(1)u2 refers to the probability to find the two
vibrons onto two nearest neighbor sites. In a TVFS, t
probability scales as 1/N and vanishes asymptotically asN
tends to infinity. For a TVBS, such a probability depends
the nature of the bound between the two vibrons and ran
between 0 and 1. For instance, for a strong nonlinearity,
for strong values of bothA and EB , TVBS-I refer to the
trapping of the two vibrons onto the same amide-I vibrat
whereas TVBS-II characterize the trapping onto two nea
neighbor sites. Therefore,uCks(1)u2 vanishes for TVBS-I
whereas it is equal to unity for TVBS-II. In that context,
we defineW5128J1

2EBkBT/Vc
3 , the relaxation rates are ex

pressed asWTVBS-I'WTVFS'W andWTVBS-II'3W/2.
In a marked contrast, the nature of the relaxation chan

drastically depends on the characteristics of the two-vib
states involved in the process. Such effects originate in
coupling between the two-vibron eigenstates mediated by
vibron-phonon interaction and characterized by the cons
Zks→k8s8 @see Eqs.~15! and~16!#. As shown in the definition
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of the coupling HamiltonianDH @Eq. ~9!#, this interaction
characterizes transitions between two-vibron states in
course of which a single vibron is transferred from a giv
site to its nearest neighbor.

To understand this feature, let us first consider the rel
ation channels connected to the decay of the TVBS-I. Wit
the strong nonlinear limit, the TVBS-I wave function is e
sentially localized aroundm50 so thatCks51(m) is almost
equal todm,0 . Therefore, it is straightforward to show tha
the coupling constant can be approximated asZks51→k8s8
'4uCks51(0)u2uCk8s8(1)u2/N. The corresponding relax
ation rate is thus written as

Wks51→k8s8'
W

N
uCks51~0!u2uCk8s8~1!u2. ~20!

The relaxation channels for the TVBS-I correspond to
decay into states which favor the trapping of the two vibro
onto two nearest neighbor amide-I vibrations, i.e., states
which uCk8s8(1)u2 is maximum. Within the strong nonlinea
limit, such states refer to TVBS-II. As a consequence, in
perfect agreement with the numerical results displayed
Figs. 1~a!, 2~c!, 3, and 4~b!, Eq. ~20! clearly shows that the
decay into TVBS-II is the main mechanism for the TVBS
relaxation. Note that bothuCks51(0)u2 anduCks52(1)u2 are
almostk independent so that the rate for the decay over
the TVBS-II states is equal toW. However, when the non
linearity slightly decreases, i.e., when either~or both! A or
EB decreases, the TVBS-I wave function delocalizes so t
Cks51(0) decreases and, in the same time,Cks51(1) in-
creases. As a result, the coupling between a given TVB
and the other TVBS-I is turned on which opens the cor
sponding relaxation channel. In the same way, the TVBS
wave function extends itself aroundm51 leading to the de-
crease ofCks52(1). As a consequence, the coupling be
tween TVBS-I and TVBS-II decreases, as observed in
numerical results.

Within the strong nonlinear limit, the TVBS-II wave
function is essentially localized aroundm51 andCks52(m)
is almost equal todm,1 . Therefore, by following the previous
procedure, it is straightforward to show that the cou
ing constant is Zks52→k8s8'4uCks52(1)u2uCk8s8(0)
1Ck8s8(2)exp@i(k2k8)#/A2u2/N. This expression indicate
that TVBS-II decay into both TVBS-I and TVFS, but cann
relax over the other TVBS-II. As a result, the rate for t
decay of a given TVBS-II into a particular TVBS-I is ap
proximately given by

Wks52→k8s51'
W

N
uCks52~1!u2uCk8s51~0!u2. ~21!

At this step, by performing the sum over the wave vectork8
in Eq. ~21!, the rate for the decay over all the TVBS-I
equal toW. Since the global relaxation rate for the TVBS-
is equal to 3W/2, the rate for the relaxation over the TVF
continuum is equal toW/2. These results are in a rather goo
agreement with the numerical results shown in Fig. 5. Ho
ever, when the nonlinearity slightly decreases, both
TVBS-I and TVBS-II wave functions delocalize so th
6-9
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V. POUTHIER AND C. FALVO PHYSICAL REVIEW E69, 041906 ~2004!
Cks52(1) andCks51(0) decrease. In that context, the r
laxation rate for the decay of TVBS-II into TVBS-I de
creases, as shown in Figs. 5 and 6, whereas the rate fo
relaxation over TVFS increases. In the same way, the re
ation channel connected to the decay into the other TVB
opens because the wave functionCks52(m) does not vanish
any more form50 or m52.

At this step, let us mention that the previous results
dress the fundamental question of the manifestation of
quantum localization, i.e., of the existence of quant
breathers. Indeed, classical breathers describe time per
and spatially localized nonlinear vibrations. By contrast, d
to the translational invariance, the center of mass of the
vibrons in a TVBS is fully delocalized according to a Bloc
wave. However, the localized nature of a TVBS arises du
the trapping of the two quanta around few sites. In that c
text, although a TVBS does not describe a spatially locali
field, its degree of localization manifests itself through p
ticular correlation functions@37,38#. Our results clearly es
tablish that such correlation functions are involved in t
calculation of the relaxation rate@see for instance Eq.~18!#.
As a consequence, the dependence of the relaxation cha
versus the nature of the two-vibron states can be viewed
manifestation of the quantum localization of TVBS.

To conclude, let us note that the knowledge of the rel
ation rates allows us to characterize the population dynam
of the two-vibron states in real time. To illustrate this featu
let us consider the strong nonlinear limit in which the rela
ation schema is rather simple. Indeed, the rates are alm
wave vector independent so that the system can be mod
as a three-level system formed by the TVBS-I band,
TVBS-II band, and the TVFS band~see Fig. 7!. The first
relaxation channel corresponds to the decay of the TVB
band into the TVBS-II band according to the rateW. The
relaxation of the TVBS-II band exhibits two main channe
connected to the decay into the TVBS-I band with the rateW
and to the decay into the TVFS band with the rateW/2.
Finally, TVFS are allowed to relax into the other TVFS on
Let PI , PII , andPF denote the populations of these band
Therefore, the time evolution of these populations is g
erned by a master equation expressed as

FIG. 7. Three-level model for the population dynamics of t
two-vibron states within the strong nonlinear limit.
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ṖI52WPI1WPII ,

ṖII5WPI2
3W

2
PII ,

ṖF5
W

2
PII . ~22!

The system, Eq.~22!, which can be solved straightforwardly
allows us to follow the relaxation pathways in real time. F
instance, if we assume that the system is initially set in
TVBS-I band, Eq.~22! clearly shows that the populatio
PI(t) decays so that the population of the TVBS-II ba
increases. However, asPII(t) increases with time, it tends to
relax into the TVFS continuum. Therefore, we observe
relaxation of the TVBS-I band into the TVFS continuu
through the TVBS-II band. After a timet* 521.5/W, bothPI
and PII can be neglected whereasPF is equal to 0.99. At
biological temperature (T5310 K), with the realistic param-
etersA58 cm21, EB512 cm21, andJ58 cm21 we obtain
W521.36 cm21 and t* 55.3 ps.

Note that in a recent paper devoted to the TVBS rel
ation in a molecular nanowire, it has been pointed out th
for a one-dimensional phonon bath, a given TVBS ess
tially decays into the other TVBS@14#. The origin of the
difference with the present work is twofold. First, in Re
@14#, the vibron dynamics was described according to a H
bard model for bosons which yields a single TVBS ba
~almost identical to the TVBS-I!. Then, the coupling with the
thermal bath was assumed to be responsible for a ran
modulation of the frequency of each molecule, i.e.,DH
'(Dvnbn

†bn , in marked contrast with the modulation of th
vibron hopping constant considered in this paper@see Eq.
~9!#.

To summarize, the present paper was devoted to the c
acterization of the two-vibron relaxation mechanisms in
anharmonica-helix protein. According to the small polaro
model developed in Ref.@16#, it has been shown that th
relaxation originates in the interaction between the dres
anharmonic vibrons and the remaining phonons. This in
action is responsible for the occurrence of transitions
tween two-vibron eigenstates mediated by both phonon
sorption and phonon emission. At biological temperature,
have established that the relaxation rate does not depend
nificantly on the nature of the two-vibron states involved
the process. Note that TVBS-II decay more rapidly than b
TVBS-I and TVFS, the ratio between the corresponding ra
being of about 1.5. By contrast, we have shown that
relaxation channels strongly depend on the nature of the t
vibron states. More precisely, the spatially localized nature
the TVBS, i.e., their breatherlike character, is responsible
the specification of a given relaxation pathway. In that co
text, TVBS-I, which correspond to the trapping of the tw
quanta around the same amide-I vibration, tend to decay
TVBS-II which refer to the trapping of the two quant
around two nearest neighbor amide-I vibrations. By contr
TVBS-II decay into both TVBS-I and TVFS, the first chan
nel being two times more efficient than the second one.
6-10
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RELAXATION CHANNELS OF TWO-VIBRON BOUND . . . PHYSICAL REVIEW E69, 041906 ~2004!
Finally, let us mention some experimental results. In cr
talline acetanilide~ACN!, a crystal which can be viewed as
protein model, Edler and Hamm@39# have clearly shown,
using femtosecond IR spectroscopy, that both the ami
self-trapped state~i.e., the single-polaron state! and the free
exciton state decay on a 2 pstime scale. Similar results wer
obtained for the N-H band in ACN for which it has bee
shown that the self-trapped state decays on a 1 pstime scale
@40#. Moreover, Hamm and co-worker@36# have performed
IR pump-probe and dynamic hole burning experiments
characterize the ultrafast response of the amide-I mode
N-methylacetamide and three small globular peptides.
authors have reported that the vibrational decay of
amide-I mode of all investigated peptides occurred in ab
1.2 ps. In a marked contrast, the lifetime connected to
vibrational energy relaxation, i.e., the time for which t
single-polaron excited state returns back to the ground s
is much longer. In ACN, Hamm and co-workers have det
mined a vibrational lifetime for the amide-I and N-H singl
polaron state equal to 35 ps@39# and 18 ps@40#, respectively.
Note that Austin and co-workers have reported a vibratio
lifetime of about 1565 ps for the amide-I mode in ACN a
80 K @41#. In myoglobin, vibrational energy lifetime mea
surement was carried out by Austin and co-workers by us
B
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ir pump-probe spectroscopy. These authors have shown
myoglobin supports a long-lived mode in the blue side of
amide-I vibration with an energy lifetime of about 15 p
@42#. In addition, they have shown recently that myoglob
exhibits a self-trapped state located at 1626 cm21 with an
energy lifetime equal to 30 ps at 50 K@43#.

As a consequence, although the lifetime connected to
energy relaxation of single-polaron state in proteins basic
ranges between 10 and 30 ps, recent experiments clearl
tablish that this self-trapped state relaxes very quickly o
few picoseconds time scale. Although the two-vibron d
namics studied in the present paper may slightly differ fro
the single-vibron dynamics, our results appear to be in
rather good agreement with these recent experimental d
Indeed, for realistic values of the parameters, our calcu
tions show that the TVBS relaxation rate ranges between
and 40 cm21 so that the corresponding relaxation tim
ranges between 0.1 and 1.0 ps at biological temperat
These results corroborate the recent theoretical calculat
performed by Ivicet al. @9# who found that the lifetime of
the multivibron soliton is equal to 0.1 ps at room tempe
ture, i.e., the same order of magnitude as the single-vib
soliton lifetime determined by Cottingham and Schweitz
@33,34#.
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