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Relaxation channels of two-vibron bound states ine-helix proteins
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Relaxation channels for two-vibron bound states in an anharmeshigix protein are studied. According to
a recently established small polaron mofélPouthier, Phys. Rev. B8, 021909(2003], it is shown that the
relaxation originates in the interaction between the dressed anharmonic vibrons and the remaining phonons.
This interaction is responsible for the occurrence of transitions between two-vibron eigenstates mediated by
both phonon absorption and phonon emission. At biological temperature, the relaxation rate does not signifi-
cantly depend on the nature of the two-vibron states involved in the process. The lifetime for both bound and
free states is of the same order of magnitude and ranges between 0.1 and 1.0 ps for realistic parameter values.
By contrast, the relaxation channels strongly depend on the nature of the two-vibron states which is a conse-
guence of the breatherlike behavior of the two-vibron bound states.
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[. INTRODUCTION paper[16]. In this work, we have restricted our attention to
the formation of two-vibron bound stat€$VBS) only. In-
Since the pioneer works of Davydov and co-workigly ~ deed, although the influence of the anharmonicity in molecu-
soliton mechanisms for bioenergy transport in proteins havéar lattices has been the subject of intense research during the
received increasing attention during the last 25 y¢ar3]. last decade, this research was essentially restricted to classi-
The main idea is that the energy released by the hydrolysis afal lattices[17—19. In particular, the formation of discrete
adenosine triphosphate can be stored in tke@vibration  breathers, i.e., highly localized nonlinear vibrations, has been
(amide-) of a peptide group. The dipole-dipole coupling be- demonstrated. However, in spite of the great interest that
tween peptide groups leads to the delocalization of these vihese classical nonlinear objects have attracted, no clear evi-
brations and to the formation of vibrational excitons, i.e.,dence has been found for their existence in real lattices. By
vibrons. Therefore, the strong interaction between the vicontrast, TVBS have been observed in several low-
brons and the phonons of the protein yields a nonlinear dyeimensional molecular lattic§20—-28. These quantum ob-
namics which favors the occurrence of the so-called Davyjects correspond to the first quantum states which experience
dov’s soliton. the nonlinearity and can thus be viewed as the quantum
However, it has been pointed out that the solution of thecounterpart of breathers or soliton excitatiod<]. Their
Davydov’s problem is rather a small vibron polaron than acharacterization is thus essential and appears as a first step to
vibron soliton[4—-9]. Indeed, the vibron bandwidth in pro- understand the formation of multivibron solitons.
teins is smaller than the phonon cutoff frequency so that the In Ref.[16], we have shown that the anharmonicity modi-
nonadiabatic limit is reached. During its propagation, a vi-fies the vibron-phonon interaction which results in an en-
bron is dressed by a virtual cloud of phonons which yields ehancement of the dressing effect. Anharmonic vibrons are
lattice distortion essentially located on a single site andhus more sensitive to the dressing than harmonic vibrons.
which follows instantaneously the vibrogsmall polarom. Moreover, both nonlinear sources favor the occurrence of
Nevertheless, the dressing effect leads to an attractive intetwo kinds of bound states whose properties strongly depend
action between vibrons mediated by virtual phonons. Suclon the anharmonicity. In the harmonic situation, the two
an interaction is responsible for the formation of bound state®ound states appear as combinations of states involving the
and it has been suggested that proteins can support solitongpping of the two vibrons onto the same amide-I mode and
formed by bound states involving a large number of vibra-onto nearest neighbor amide-l modes. By contrast, the in-
tional quantd7-9. tramolecular anharmonicity reduces the hybridization be-
Although this formalism gives a comprehensive schemaween these two kinds of trapping so that low frequency
for the formation of solitons in proteins, it assumes the harbound states refer to the trapping of the two vibrons onto the
monic approximation for the amide-l vibration. However, same amide-l mode whereas high frequency bound states
this approximation failed when several vibrons are excitectharacterize their trapping onto nearest neighbor amide-I vi-
because the intramolecular anharmonicity acts as an addirations.
tional nonlinear source. As the dressing effect, the anharmo- In this study, the dynamical coupling between the dressed
nicity is responsible for the formation of bound staf@6—  anharmonic vibrons and the remaining phonons was disre-
15] and the fundamental question of the interplay betweemyarded. Therefore, the present paper is devoted to the char-
both sources of nonlinearity has been addressed in a receatterization of this coupling and to a detailed analysis of the
relaxation pathways. The TVBS lifetime is determined with a
special emphasis on the influence of the different nonlinear
*Electronic address: vincent.pouthier@univ-comte.fr sources.

1539-3755/2004/69)/04190612)/$22.50 69 041906-1 ©2004 The American Physical Society



V. POUTHIER AND C. FALVO PHYSICAL REVIEW EG69, 041906 (2004

At bi_olog_ical temperature, the lifetime of the Davydov’s —J3[0(Ny=1)0 4 1(Npy DB TNG+ Ny 11bns 1
soliton is still an open question. It has been shown that the
amide-| excitationjn vivo, corresponds to a localized state
[29,30. Instead of traveling in a coherent manner, it follows
a stochastic, diffusional path along the lattice. In other
words, the single-vibron Davydov soliton does not last longwhere N,=b/b, and A=30y5/wo—67,. In Eq. (1), H.c.
enough to be useful at biological temperatures and it hastands for the Hermitian conjugate and the different param-
been shown that two-vibron solitons are more stable anéters are expressed in terms of both the anharmonic param-
appear as good candidates for bioenergy trand@ir32.  eters and the small polaron binding eneky as
However, recent calculations performed by hetal. [9]

+H.c]+ X Qqala,, @
q

clearly show that the multivibron soliton lifetime is of about wo=wo—2A—B—(1+47)Eg,
a few picoseconds, i.e., the same order of magnitude as the . .
single-vibron soliton lifetime found by Cottingham and Sch- A=A+(1+87n)Eg, B=B+(1+4n)kEsg,

weitzer[33,34].

The paper is organized as follows. In Sec. Il, the dressed y3\? v3\? Va
anharmonic vibron point of view described in details in Ref. B=144) P Ji=J1+4 wo] 12w_0 '
[16] is first summarized. Then, the coupling Hamiltonian be-
tween these anharmonic polarons and the remaining phonons Y3 v3\? Ya
is determined. The TVBS relaxation rate is expressed in Sec. 32:43(_) : 3323[22( —) —12—|,
Il and studied numerically in Sec. IV. The results are finally “o @o “o
discussed in Sec. V. 32

7,=120( —3) _127% )
o wo

II. VIBRON-PHONON HAMILTONIANS AND TWO-

Note that the small polaron binding energy and the an-
VIBRON EIGENSTATES

harmonic parameteA appear as the relevant parameters to

A. The general vibron-phonon Hamiltonian characterize the nonlinearity of the system. In Ed),

According to the original Davydov’s model, the collective ©n(Ny) stands for the dressing operator expressed as

dynamics of the amide-l modes is described by a one- — _

dimensional lattice withN sites containing the £-O vibra- OnlNa) =exp(= Qo[ 1+ 27+ 277Nn]), ®
tions. Thenth amide-I mode is assumed to behave as a higlvhereQ,, is defined as

frequency anharmonic oscillator described by the standard

operatorsbﬁ and b, . This oscillator is characterized by its | Eg sin(q)
harmonic frequency, and by the cubic and quartic anhar- Qn:% MW
monic parametersy; and vy,, respectively. Finally, the K
dipole-dipole coupling between nearest neighbor amide-I  The Hamiltonian, Eq(1), describes the dynamics of an-
modes is introduced via the hopping constanthese O harmonic vibrons dressed by virtual phonons, i.e., anhar-
vibrations interact with the phonons of the lattice which monic small polarons. It takes into account the intramolecu-
characterize the dynamics of the external motions of the pepgar anharmonicity up to the second order and allows for a
tide groups. Within the harmonic approximation, the renormalization of the main part of the initial vibron-phonon
phonons correspond to a set Nflow frequency acoustic  coupling. However, this coupling remains through the dress-
modes labeleda} and described by the phonon operatafs  ing operatorsd ,(N,,) which depend on the phonon coordi-
and ay. The frequency of thejith mode is defined al;  nates in a highly nonlinear way. Therefore, to separate the
=Q|sin@/2)|, where Q. denotes the phonon cutoff fre- vibron degrees of freedom from the phonon coordinates, a
quency. mean field procedure is appli¢d—6]. The full Hamiltonian

As shown in Ref[16], a unitary transformation is per- [ is thus written asi=H+ Hp+AH, whereH, is the
formed to remove the intramolecular anharmonicity of each honon Hamiltonian and whenéleff=((I:|—Hp)) denotes

amide-l mode and a modified Lang-Firsov transformation i . o o
. . . . . he effective Hamiltonian of the dressed anharmonic vibrons.
applied to renormalize the vibron-phonon interaction. As a

result, the vibron-phonon Hamiltonian is defined (asthin AH=H—-H,—((H—H))) stands for the remaining part of

eal-Hc. (@)

the conventiori=1) the vibron-phonon interaction. The symHel-) represents a
thermal average over the phonon degrees of freedom at tem-
. ot At At Lt peratureT.
H= ; wobpby—Ab, by —Bbp, bbby 10y Finally, starting from a set of anharmonic vibrons strongly
coupled to the phonons of the protein, the previous proce-
~J1[0(Ny=1)0,, 1(Npy1)blby 1+ H.Cl dure yields a different point of view in which the system

consists in a set of interacting small polarons weakly coupled
to the remaining phonons. Due to this weak coupling, the
small polarons are supposed to be in stationary states accord-
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ing to the effective Hamiltoniafl .¢; and the phonons can be k value. For a giverk value, the protein exhibitsN+1)/2
viewed as a thermal bath responsible for their relaxation. It i¢igenstate§¥y,,), where the indexo=1,...,(N+1)/2.
thus assumed that the bath is not affected by the polaroridue to the nonlinear sources, there are two different eigen-
since this effect is explicitly taken into account through thestates, i.e., two-vibron free stat¢sVFS) and TVBS. The
definition of the small polarons, i.e., vibrons dressed by al VFS correspond to a delocalization of the separating dis-
lattice distortion. tancem. The wave functionV' (m) behaves as a plane wave
To conclude this section, let us mention that the phonor@nd the TVFS belong to an energy continuum. By contrast,
anharmonicity was disregarded in the present work. Howthe TVBS correspond to a localization of the separating dis-
ever, it is expected to play an important role since the prestance and characterize the trapping of the two quanta over
ence of several amide-l excitations leads to a large lattic@nly a few neighboring sites. We have shown that the protein
distortion when compared to the distortion induced by asupports two kinds of bound states, called TVBS-I and
single excitation. Nevertheless, such an effect needs a mofeVBS-Il. The TVBS-I, denoted¥, ,—,), are located below
appropriate theory and will be addressed in a forthcominghe TVFS continuum over the entire Brillouin zone whereas

work. for TVBS-II, two situations occur depending on the strength
of the small polaron binding energy. For small value&gf,
B. The effective vibron Hamiltonian and the two-vibron the band disappears inside the continuum wheris lower
eigenstates than a critical wave vectdk, whereas, for strong values of

) o . . Eg, the band is located below the continuum over the entire
The effective dressed anharmonic vibron Hamiltonian isgyjjiouin zone. As a result. the notatid¥’, ,_,) refers ei-
. . . o=
written as ther to a free state or to TVBS-II, depending on the situation.
In the harmonic situation, both TVBS-I and TVBS-II appear
Her= >, @oblb,—Ab'202—Bb!, b'b,. by, as combinations of states involving the trapping of the two
n vibrons onto the same amide-l mode and onto nearest neigh-
bor amide-I modes. By contrast, the intramolecular anharmo-

_ T
ol P(NnFNn+1)abn s +H.C nicity reduces the hybridization between these two kinds of

—J,[®(Ny+ Ny 1)*b %02, +H.c] trapping so that TVBS-I refer to the trapping of the two
vibrons onto the same amide-I mode whereas TVBS-II char-
—J3[P(N,+ Nn+1)bE[Nn+ Nhi1lbno1+H.C], acterize the trapping onto nearest neighbor amide-l vibra-
5) tions.

where ®(X)=exd —ST)(1+27+2%X)] and whereS(T) is

the coupling constant introduced by Ivic and co-workers as _ o )

(kg denotes the Boltzmann constant By comparing Eqgs(1) and (5), it is straightforward to
show that the coupling HamiltoniaAH corresponds to a

q\? Qq modulation of the different lateral contributions describing
cog 5| cot - (®  vibron hops, i.e., the terms proportionaldg, J,, andJ; in
2 2kgT ; ; A
Eq. (1). However, ina-helix proteins, it has been shown that
In Ref.[16], a detailed analysis of the two-vibron energy J2~J3~J1/wg [16]. As a result), andJ; are of about three
spectrum of the Hamiltoniakl; is presented. Within the orders of magnitude lesser thdpand can be neglected. The

number state methdd 2—15, the two-vibron wave function coupling HamiltoniamAH is thus written as
is first expanded asV') ==W¥(n,n,)|ny,n,) where|ny,ny)

C. The vibron-phonon coupling Hamiltonian

4Eg

SM=xa %

sin

il
2

denotes a local basis vector characterizing two vibrons lo- AH=-J; E [@E(Nn+ )0, s(Npys)
cated onto the sitem; andn,, respectively. Note that the no==x1
restriction n,=n, is applied due to the indistinguishable —(®E(Nn+1)®n+5(Nn+a)>]b§bn+,s- (8)

character of the vibrons so that the dimension of the two-

vibron subspace iSl(N+1)/2. Then, by taking advantage of

the lattice periodicity, the wave function is expanded as dn addition, the small polaron binding energy is about one

Bloch wave as order of magnitude smaller than the phonon cutoff frequency
so that the dressing operator, Eg), can be linearizeB,9].

B 1 ik(ny +m/2) As a consequence, by neglecting the rather small parameter
W(ny,np=n;+m)= N nE et vi(m), (7)) 5 in Eq. (3) [16], the coupling between the anharmonic po-
! larons and the remaining phonons is finally expressed as

where the total momentuinis associated with the motion of

the center of mass of the two vibrons. The wave function

W (m) refers to the degree of freedom which character- AH~— AJ(n,n+ 5)b§bn+5, 9

izes the distance between the two vibrons. Skiza good no==1

quantum number, the Hamiltonidth.; appears as block di-
agonal and the Schdinger equation can be solved for each where
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Eg sin(g)e 'an As shown in Eq.(12), the TVBS relaxation rate is ex-
—i INO, [Sina2)| pressed in terms of the Fourier transform of the correlation
q

function of the couplingAJ. The characteristic time of this

rate is the correlation time. of the phonon bath which

. (100  corresponds to the time for which the correlation functions

vanish. In a general way;; is about 1 ps for phonons in

low-dimensional molecular latticegl4]. We thus assume

that this correlation time is sufficiently small in order to ne-
lect the spatial correlations in the phonon bath. As a result,

AJ(n,n+8)=J3,>,
q

X(1-e "%al-H.c.

Therefore, within the anharmonic polaron point of view, the
main contribution of the coupling with the phonons corre-
sponds to a random modulation of the single-vibron hoppin : . ) : .
constant. As shown in the following sections, this coupling ist"® correlation functions of the couplinlg) which appear in
responsible for dephasing mechanism only and does not agd- (12) are nonzero ifn=n’+¢" and n"=n+4 only.
low for energy relaxation. In other words, the interaction Nerefore, by performing both the time integration and the
with the phonon bath does not modify the polaron numbefh€mal average in Eq12), the relaxation rate is finally
(equal to two but induces transitions between the di1"ferentexpressed as
two-polaron eigenstates. The lifetime connected to such pro- 2
cesses refers to the time for the decay of a given two-vibron W, = 32JiEg Z Zior okt o T (01 07 — k)
bound state into all the other two-vibron states but does not Q2 T e 7 b
account for the decay into the ground state with zero vibra-
tional excitation(known as the lifetime for energy relax- XN(wyr g1 = 0kg, )+ Fokg, — oK)
ation).
X[l+n(wk(rb_wk’(r’)]}! (13)

lll. TWO-VIBRON BOUND STATE RELAXATION RATE wheren({)) denotes the Bose-Einstein phonon distribution

Due to the coupling HamiltonianH [Eq. (9)], TVBS do  at temperaturd and where the coupling distributidf({2),
not represent exact eigenstates of the whole polaron-phondmhich measures the probability for the exchange of a phonon
system. More precisely, this coupling is responsible for thewith frequency() during the process, is defined as
occurrence of transitions between two-vibron states mediated

by the emission or the absorption of acoustic phonons. & /1_ ﬁ if Q>0
Therefore, by using the Golden rule formula, the rate for the F(Q)=1 Q¢ Q¢ . (14
transition from a TVBS\PK%) with frequencywkgb to an- 0 if Q<0

other statd ¥, ,.) with frequencyw,, is expressed as
In Eq. (13), Zy, k', Characterizes the strength of the cou-
pling between the two-vibron eigenstatds,,) and| ¥, )

_ 2
kabﬂk’v’_ZWaE’B Pa|<q’k<rb'a|AH|\Pk’“’ Bl due to the vibron-phonon interaction. This coupling is ex-

pressed as
X 5(wk(7‘b+Qa— wk,(,,—Q’B). (11)
_ t 2
Equation(11) describes a transition in the course of which Z"‘Hk’”’_n,g’il [(WiolorPn s Wi o)l (19)
the phonon bath evolves from an initial state with fre-
quency(},, to a final statgs) with frequency() ;. Since the After some algebraic manipulation&,,, .y, IS €x-
bath is assumed to be in thermal equilibrium at temperaturpressed in terms of the wave functions as
T, a statistics is realized over the initial state with the prob-
ability occupationP, and a sum over all the possible final :i s Wio(m) (Wi (M—1) el (' —km/2
bath states is performed. By inserting the expression of the " ~K' " "N |4 A(m) A(m—1)
coupling Hamiltoniam H [Eq. (9)], the total rate for leaving 5
the statg W, ) obtained by summing over all possible tran- Wyrpr(M+1) i(k’k)m/2>
sitions is expressed as A(m+1)
. 1 P (m) (Vi,(Mm=1) 0
Wi, =2Re 2, 2 | dtel(hnoe) N am ( A(m-1)
2
X (Wi |B3Bn ol Wi o (Wi [B] B+ 50| W) VoMt 1) ei(k'—k)mlz) (16)
A(m+1) '
X(AJ(n,n+8,t)AJ(n’,n"+5',0)), (12

where the conventio¥ . (—1)=0 is used.
where(:--) stands for an average over the phonon bath and As shown in Eq(13), the rate depends on the temperature
where the operatordJ depend on time according to a through the average number of phonons. Moreover, the tem-
Heisenberg representation with respect to the phonon Hamiperature is involved in the definition of the two-vibron wave
tonianH . functions due to the dressing effddi6]. The relaxation rate
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exhibits two contributions connected to the absorptienm
proportional ton(2)] and to the emissiofterm proportional
to 1+n(Q)] of an acoustic phonon, respectively. Note that
Eqg. (13) clearly shows that the relaxation rae, is ex-

pressed as the sum over the rate connected to the different
relaxation channel®Vy, ./, . As a result, each channel

can be characterized separately.

At this step, the diagonalization of the Hamiltonibiy;
realized in Ref.[16] allows us to calculate both the two-
vibron eigenstate$¥,,) and eigenenergies,,,. Then, by
using Eqgs(13)—(15), the TVBS relaxation rate can be com- 50 100 150 200 250 300
puted. This procedure is illustrated in the following section. T(K)

Rate (cm™)
N wW o [3,] » -~ (o]

Py

o
o &

n
o
2

IV. NUMERICAL RESULTS

pry
[~

(b)

iy
(=2}

In this section, the previous formalism is applied to com-
pute the TVBS relaxation rate in an anharmoaibelix pro-
tein. The intramolecular anharmonicity is described by a
single parameter, namely, the anharmonic constéanthich
ranges between 0 and 10 tM[16,35,34. The small po-
laron binding energyEg is taken as a parameter which ex-
tends from 0 to 15 cm*. The phonon cutoff frequendy is
fixed to 100 cm?! and the hopping constant is set o
=8 cm %, 0 50 100 150 200 250 300

The temperature dependence of the zero wave vector T (K)

TVBS-I relaxation ratg(full circles) is shown in Figs. (a)

and 1b) for two typical situations. The empty circles corre-  FIG. 1. Temperature dependence of the zero wave vector
spond to the rate for the relaxation over all the other TVBS-ITVBS-I relaxation rate(full circles) for A=8 cm ! and for Eg
whereas the empty squares represent the rate for the decay cm ! (@) andEg=12 cni' ! (b). Empty circles correspond to
into the set of the second eigenstalt#g,,_,). Note that as the rate for the relaxation over all the other TVBS-I whereas empty
remained in Sec. Il B, such states refer to either free or boungquares represent the rate for the decay into the set of the second
states(TVBS-Il), depending on the nonlinearity. eigenstate$V,—,) (see the tejt

WhenA=8 cm ! andEg=4 cm ! [Fig. 1(@], the relax-
ation rate exhibits a quasilinear dependence versus the teration over the other TVBS-I remains the main pathway at
perature, excepted at low temperature. More precisely, theew temperature, this is no longer true at high temperature.
linear regime is reached when the temperature is greater thdndeed, as shown in Fig.(H), the decay into the other
50 K whereas the rate shows a power law dependence at [oWWBS-I represents almost 100% of the relaxation Tat
temperature. The relaxation rate is equal to 0.049tmt =5 K. However, on increasing the temperature, the relax-
T=5 K and reaches 7.64 cm at T=315 K. At low tem-  ation over the other TVBS-I strongly decreases whereas the
perature, Fig. @) clearly indicates that the main mechanism rate for the relaxation over the statek,,_,) increases and
for the relaxation involves the decay of the zero wave vectobecomes the dominant contributigthe transition occurs
TVBS-I into the other TVBS-I. For instance, this channel around 130 K. At high temperature, i.eT=315 K, the re-
represents 99.8% of the relaxationTat5 K. As increasing laxation according to the second channel represents 85.60%
the temperature, the relaxation over the other TVBS-I dewhereas the decay into the other TVBS-I characterizes
creases and the rate for the relaxation over the stated).84% of the global rate. As a consequence, for such a
|W,,—-) increases very slightly. Indeed, @t=315 K, the strong nonlinear situation, the decay of the TVBS-I into the
relaxation over the other TVBS-I represents 55.54%. How-TVFS is no more than 5% at high temperature.
ever, the second channel, i.e., the relaxation over all the The behavior of the TVBS-I relaxation rate as a function
states 0=2, represents only 7.22% which indicates thatof the anharmonicity is displayed in Fig. 2. The calculations
37.24% of the relaxation involves the decay of the TVBS-lare performed at =310 K and for three different values of
into the TVFS continuum. the small polaron binding energy. Whé&y=4 cm ! [Fig.

WhenEg=12 cm ! [Fig. 1(b)], the relaxation rate for the 2(a)], the rate slightly decreases as the anharmonicity in-
zero wave vector TVBS-I exhibits almost the same temperaereases. It is equal to 8.28 ¢th when A=0 and to
ture dependence as in the previous case. Nevertheless, the6 cm ! when A=10 cm L. In marked contrast, the rate
rate is more important since it is equal to 0.19¢mat T for the decay into the other TVBS-I first increases to reach a
=5 K and reaches 19.58 ¢t at T=315 K. However, the maximum equal to 6.02 cit when A=2 cm . Then, it
main difference with the previous case originates in the nadecreases and is equal to 3.48 ¢nwhenA=10 cm . As
ture of the relaxation channels. Indeed, although the relaxshown in Fig. 2a), the rate for the decay into the second

=
N s

Rate (cm™)
=)

o N A OO D
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pary
o

N
»
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:w

n
o

e
(o]

pry

Rate (cm™)

WO = N W & O O ~N O ©
Rate (cm™)
®

0 2 4 6 8 10 12 14
(b)

16 § Es (em™)

o M

12 4 FIG. 3. TVBS-I relaxation ratéull circles) vs the small polaron
binding energy alf =310 K for A=8 cm 1. Empty circles corre-
spond to the rate for the relaxation over all the other TVBS-I
whereas empty squares represent the rate for the decay into the set

of the second eigenstaté®,,—,) (see the text

=10 cmi !, the first channel represents 21.92% of the relax-
© ation whereas the second channel characterizes 43.31% of
18 the decay. Such a behavior appears more pronounced when
the small binding energy is set Ey=12 cmi *. In that case,
Fig. 2(c) clearly shows that the decay of the TVBS-I into the
TVFES continuum is rather weak. Its contribution is less than
5% whenA is greater than 3.5 cit. For a small anharmo-
nicity, the rates for the decay into the other TVBS-I and into
the second eigenstates are of the same order of magnitude.
However, as increasing the anharmonicity, the second chan-
nel becomes dominant since the corresponding rate repre-
sents almost 90% of the global rate whr 10 cmi 2.
The dependence of the TVBS-I relaxation rate on the
FIG. 2. TVBS-I relaxation ratéfull circles) vs the intramolecu- small polaron binding energy is shown in Fig. 3 for
lar anharmonicity aff =310 K for Eg=4 cm ! (a), Eg=8 cm' ! =310 K andA=8 cm 1. The global rate evolves in a qua-
(b), andEg=12 cmi ! (c). Empty circles correspond to the rate for silinear way and varies from 1.98 crhwhenEg=1 cm !
the relaxation over all the other TVBS-I whereas empty squareso 23.19 cm* whenEg=15 cm 1. As shown in Fig. 3, the
represent the rate for the decay into the set of the second eigenstai@®re surprising results correspond to the behavior of the
|V ,—2) (see the text rates connected to the first and to the second channel. Indeed,
for small Eg values, the decay into the other TVBS-I is the
eigenstate$V,,,,) is rather small whatever the anharmo- dominant relaxation pathway. For instance, whép
nicity although it increases whehincreases. Consequently, =2 cm !, this first channel represents 67.66% of the relax-
in this low nonlinear regimeEg=4 cm 1), the main part of ation whereas the contribution of the second channel is
the relaxation of TVBS-I involves the decay into both the 2.13%. Therefore, 30.21% of the relaxation involves the de-
other TVBS-I and the TVFS continuum. cay of the TVBS-I into the TVFS continuum. However, as
When increasing the small polaron binding enefBigs.  Eg increases, the rate connected to the second channel in-
2(b) and Zc)], the TVBS-I relaxation rate behaves in a simi- creases and becomes the main contribution for stiégg
lar way with respect to the anharmonicity and slightly de-values. WherEg=14 cni !, the second channel represents
creases aé increases. However, the rate increases \Eigh  91.54% of the relaxation whereas the contribution of the first
since it is equal to 16.31 cnt whenEg=8 cm ' and A channel is 6.81%. Note that both channels contribute in a
=0 [Fig. 2b)] and reaches 22.73cm when Eg  similar way whenEg is about 7.5 cm®.
=12 cm } and A=0 [Fig. 2(c)]. In a marked contrast, the The correlation between the relaxation channels and the
relaxation pathways are strongly modified when the smalhature of the two-vibron eigenstates is illustrated in Fig. 4 for
polaron binding energy is increased. Indeed, wHesp T=310 K andA=8 cm ’. The upper panel represents the
=8 cmi ! [Fig. 2b)], the rate for the decay into the other corresponding two-vibron energy spectrum whereas the
TVBS-I decreases asincreases. By contrast, the rate for the lower panel displays the wave vector dependence of the re-
decay into the second eigenstatds,,_,) increases. This laxation rates. More precisely, open circles characterize the
second channel becomes slightly more efficient than the firstate Wy, .,,—; for the decay of the zero wave vector
channel when the anharmonicity exceeds 7 émWhenA  TVBS-I into the TVBS-I with wave vectok. In the same

12
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0 2 4 6 8 10
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0.04
o FIG. 5. Relaxation ratéfull circles) of the |¥_,,-») eigen-

state vsEg at T=310 K and forA=8 cm 1. Empty circles repre-
sent the rate for the decay into the TVBS-I and empty squares
correspond to the rate for the decay into all the othBy ,_,)
eigenstates. Empty triangles characterize the rate for the decay into
the TVFS continuum.

0.00 =

10 (b) nel becomes the dominant relaxation pathway at the end of
= oullll||||“""“I“mIll"mmwumm !l Hlm"""m“""' the Brillouin zone. WherEg=10 cn ! [Fig. 4(b)], the re-
g l sults are slightly different sincEg is strong enough so that
g-‘o L L1 L - the TVBS-II band is localized below the continuum over the
g 2071 entire Brillouin zone. As a result, the second channel is
W 5 clearly the main mechanism for the relaxation whatever the
<0 value of the wave vector.
0.20 In Fig. 5, the influence of the small polaron binding en-
ergy on the relaxation rate of tH&,_,,_,) eigenstate is
o~ 0.15 1 shown at biological temperaturelT €310 K) and for A
'g =8 cm 1. As in the previous figures, full circles character-
o 0.10 ize the global rate, empty circles represent the rate for the
é decay into the TVBS-I, and empty squares correspond to the
0.05 - rate for the decay into all the othe¥ ,_,) eigenstates. In
addition, empty triangles characterize the rate for the decay
0.00 " y : y r . into the TVFS continuum. The figure clearly shows that the
02 40 12 3 system exhibits two regimes depending on the valuggf
k For the small values ofEg, i.e., typically Eg

FIG. 4. Correlations between the relaxation channels and the<8'5 cm %, the rate increases in a quasilinear way Vi

nature of the two-vibron eigenstates for=310 K, A=8 cn't, It IS equﬂ to 1.65 cm’ WheinlEle cm * and reaches
andEg=4 cm L, (a) andEg=10 cni * (b). The upper panel rep- 13.67 cm = when Eg=8.0 cni =. As shown in Fig. 5, the
resents two-vibron energy spectrum whereas the lower panel digelaxation into both the TVBS-I and the oth¢W, ,_,)
plays the wave vector dependence of the relaxation rates. Opefigenstates can be neglected. In other words, the main relax-
circles characterize the raW/,; ..,—; Whereas open squares cor- ation pathway corresponds to the decay of {N&,-,)
respond to the raté/y 1 x,—». eigenstate into the TVFS continuum. Whéi becomes
greater than a critical value, the global rate behaves in a
way, open squares correspond to the decay of the zero wawkfferent manner with respect to the small polaron binding
vector TVBS-I into the state¢¥,_,), i.e., Wy 1 ,xs—2- energy. It increases more rapidly than the previous linear
WhenEg=4 cm ! [Fig. 4a)], the TVBS-Il band occurs regime to reach 38.75 cm for Eg=15 cni t. Moreover,
at the end of the first Brillouin zone only. For the first relax- the rate for the relaxation into the TVBS-I increases Vith
ation channel, i.e., the relaxation over the other TVBS-I, thewhereas the rate for the relaxation into TVFS slightly de-
rate decreases as the modulus of the wave vector increaseseases. For strongg, the decay into TVBS-I represents
In other words, the decay into low wave vector TVBS-I is 64% of the relaxation whereas the decay into TVFS corre-
the dominant relaxation pathway. Although such an effect issponds to 33%. Note that although the rate for the decay into
not correlated to the energy spectrum, this is no longer tru¢he |V, ,_,) eigenstates slightly increases around the transi-
for the k dependence of the rate connected to the secontion, it decreases &sg increases and can be neglected for a
channel. Indeed, Fig.(d) clearly shows that the second strong nonlinearity.
channel opens at the end of the first Brillouin zone only, i.e., Finally, the relaxation rate of thg¥,_,,_,) eigenstate
when the TVBS-II band occurs. Therefore, this second chanversus the anharmonicity is shown in Fig. 6 fb+=310 K
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30 energykgT and the phonon cutoff energi().. Therefore,
the Bose-Einstein distribution can be linearized according to
the temperature and the distribution functiof)5([Eq. (14)]

can be written a$(Q)~Q/Q.. As a result, the relaxation
rate, Eq.(13), connected to the two-vibron eigenstéie, )

can be approximated as

25 1
—~ 20 1

15

Rate (cm™

10 - 2
323%EgksT
WkUFNV 2 Zko’—»k’o” . (17)

51 Qg ot

0

At this step, Eq(17) can be simplified because the sum over
A (cm™) k'o’ leads to the occurrence of the closure relafisee Eq.
(15)]. Therefore, by using the identity

FIG. 6. Relaxation ratéfull circles) of the |¥,_,,-,) eigen-
state vsA at T=310 K and forEg=10 cm 1. Empty circles rep-

1
T T _ _n’V[2 ’
resent the rate for the decay into the TVBS-I and empty squares (Wil Prbrby, by [ W) = N [Wie(In=n"P[% n#n’,

correspond to the rate for the decay into all the othy ,_,) (18
eigenstates. Empty triangles characterize the rate for the decay into
the TVFS continuum. the relaxation rate is finally expressed as

N 1281%EgksT

_ _q - . X 1
and forEg=10 cm . As in Fig. 5, the different rates ex WkU~T(1+ E‘xpk”(l)
Cc

hibit two regimes depending on the anharmonicity. For a

small anharmonicity, i.eA<4 cm 2, the global rate is al-

most independent of the anharmonic parameter and it is Equation(19) yields a rather good approximation which
equal to 17.00 cm®. In addition, the decay into the TVFS allows us to interpret and to understand the numerical re-
continuum appears as the main mechanism for the relaxatiosults. First of all, it accounts for the observed temperature

In a marked contrast, for a strong anharmonicity, i&., dependence of the relaxation rate. Indeed, @§) clearly

>4 cm !, the rate increases as the anharmonic paramet&hows that the rate increases in a linear way as the tempera-

increases and reaches 23.19¢nwhen A=10 cmi 1. The ture increases, in a perfect agreement with the numerical

rate for the relaxation over the TVFS continuum decreasegesults displayed in Fig. 1. This feature originates in the lin-
whereas the rate for the decay into the TVBS-I increasesearization of the Bose-Einstein distribution. Note that the

This latter rate becomes the most important whan wave function¥, ,(m) depends on the temperature in a

=10 cm ! so that the decay into TVBS-I represents almostcomplicated manner through the dressing effd€]. How-

50% of the relaxation. ever, our results indicate that such a dependence remains
rather small when compared with the influence of the linear-
ized Bose-Einstein factor.

Then, the wave function dependence of the relaxation rate
To discuss and interpret the previous numerical results, leallows us to understand the influence of the intramolecular

us first consider the behavior of the TVBS-I relaxation rate aanharmonicity as shown in Figs. 2 and 6. For TVBS-I, Fig. 2

low temperature. Since the zero wave vector TVBS-I lies atlearly shows that the rate decreases as the anharmonicity

the bottom of the two-vibron energy spectrum, its decay inincreases. In fact, since TVBS-I refer to the trapping of the
volves phonon absorption only. The rate is thus proportionatwo vibrons onto the same amide-| vibration, the wave func-
to the Bose-Einstein distribution which selects the frequencyion ¥, _1(m) is maximum form=0 and decreases with
range of the phonons which are exchanged. In that contexgccording to a quasiexponential wihb]. As a consequence,
transitions involving low frequency phonons take place atwhen the anharmonicity increases, the trapping process is
low temperature. Therefore, when the thermal endgglyis  enhanced so that the extension of the wave function around
lower than the energy gap between bound and free states, the=0 is reduced. Therefor¢W,,_,(0)|? increases whereas

TVBS-I can just decay into the other TVBS-I, as shown in|¥,,_,(1)|?, as the relaxation rate, decreases. In Fig. 6, the

Fig. 1. Note that phonon emission participates in the decagnharmonicity dependence of the rate for {he._q,—»)

of the other two-vibron states, i.e., TVBS-Il and TVFS, soeigenstate exhibits two regimes which originates in the na-

that the corresponding rate reaches a finite value at zero terture of the state itself. Indeed, as pointed out in Sec. Il B,

peraturginot considered in the numerical analysiss a con- |V, _,-,) refers either to a free or to a bound staf&/BS-

sequence, the low temperature behavior of the rate does nbi), depending on the nonlinearity. Such a behavior is dis-
depend on the system nonlinearity and essentially originatgslayed in Fig. 6 since the change of regime corresponds to
in the shape of the phonon distribution. the transition from a TVFS to a TVBS-II. As shown in Ref.
This is no longer the case at biological temperature fof16], |¥_,-») corresponds to a TVFS for a small anhar-
which an approximate expression of the relaxation rate camonicity. In that case, the probabilit¥,—,(m)|? is almost

be determined. To proceed, we assume that the two-vibroimdependent of the anharmonicity and scales & Tonse-

bandwidth is smaller when compared with both the thermabfjuently, the relaxation rate does not dependAp@as shown

2) . (19

V. DISCUSSION
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in Fig. 6. By contrast, when increasing the anharmonicity,of the coupling Hamiltoniam®AH [Eg. (9)], this interaction
the state|¥,_o,—,) becomes bounded. It refers to a characterizes transitions between two-vibron states in the
TVBS-II which characterizes the trapping of the two vibronscourse of which a single vibron is transferred from a given
onto two nearest neighbor amide-l vibrations. Thereforesite to its nearest neighbor.
when the anharmonicity increases, the trapping process is To understand this feature, let us first consider the relax-
enhanced so that the wave functigf,,_,(m) tends to lo- ation channels connected to the decay of the TVBS-I. Within
calize aroundm=1. The corresponding rate suddenly in- the strong nonlinear limit, the TVBS-I wave function is es-
creases WithA as clearly shown in Fig. 6. sentially localized arounth=0 so that¥,,,_,(m) is almost
Finally, the approximated expression of the rate gives aqual tod,,o. Therefore, it is straightforward to show that
comprehensive explanation of the influence of the small pothe coupling constant can be approximatedZas_ 1,y
laron binding energysee Figs. 3 and)5Indeed, Eq(19)  ~4|¥,,_1(0)|?|¥y, (1)]¥N. The corresponding relax-
clearly shows that the dependence of the rate with respect tation rate is thus written as
Eg is twofold. First, the rate depends linearly &g . This
feature originates in the fact that the rate is proportional to
the intensity of the coupling between the dressed anharmonic
vibrons and the remaining phonofsee Eq(11)]. Then, the
Eg dependence is included in the wave function dependenc€&he relaxation channels for the TVBS-I correspond to the
of the rate. When increasing the small polaron binding endecay into states which favor the trapping of the two vibrons
ergy, the trapping process involved in the formation of theonto two nearest neighbor amide-I vibrations, i.e., states for
TVBS-I is enhanced so tha,,_,(1) decreases. Therefore, which|¥,., (1)|? is maximum. Within the strong nonlinear
the linear evolution of the TVBS-I relaxation rate with re- limit, such states refer to TVBS-Il. As a consequence, in a
spect toEg is slightly damped, i.e., the rate evolves more perfect agreement with the numerical results displayed in
slowly than the corresponding linear lagsee Fig. 3. As  Figs. 1a), 2(c), 3, and 4b), Eq. (20 clearly shows that the
previously, Fig. 5 clearly shows that the nature of the statelecay into TVBS-II is the main mechanism for the TVBS-I
|y —0,—2) exhibits a transition as a function of the small relaxation. Note that bothW,_;(0)|? and|¥,_,(1)|? are
polaron binding energy. For smdly values, this state is a almostk independent so that the rate for the decay over all
TVFS whose wave function does not significantly depend orthe TVBS-II states is equal t&v. However, when the non-
the nonlinearity. Therefore, the rate evolves in a linear wayinearity slightly decreases, i.e., when eiti{er both A or
versusEg . By contrast, when the small polaron binding en- Eg decreases, the TVBS-I wave function delocalizes so that
ergy is sufficiently important, this state becomes a TVBS-1I¥,-,(0) decreases and, in the same tirdg,,_,(1) in-
[16]. As a consequence, the trapping onto two nearest neiglereases. As a result, the coupling between a given TVBS-I
bor sites is enhanced so thdt ,_,(1) increases to reach and the other TVBS-I is turned on which opens the corre-
unity. The corresponding relaxation rate suddenly evolvesponding relaxation channel. In the same way, the TVBS-II
more rapidly than the previous linear lasee Fig. 5. wave function extends itself aroumd= 1 leading to the de-
As shown in Eq.(19), the dependence of the relaxation crease of¥,,_,(1). As aconsequence, the coupling be-
rate on the nature of the corresponding two-vibron statéween TVBS-I and TVBS-II decreases, as observed in the
arises from the factdrl+|W¥,(1)|%/2]. As a consequence, nhumerical results.
the global rate does not depend significantly on the fact that Within the strong nonlinear limit, the TVBS-II wave
the state is a TVFS or a TVBS. In other words, the lifetimefunction is essentially localized arouna=1 and¥,,-,(m)
of both kinds of states is about the same order of magnitudes almost equal t&, ;. Therefore, by following the previous
Indeed,| W, (1)|? refers to the probability to find the two procedure, it is straightforward to show that the coupl-
vibrons onto two nearest neighbor sites. In a TVFS, thisng constant is Z,—o o' ~4|¥p—2(1)|? ¥/, (0)
probability scales as W and vanishes asymptotically &  + W, (2)exdi(k—k’)]/v2|?/N. This expression indicates
tends to infinity. For a TVBS, such a probability depends onthat TVBS-II decay into both TVBS-I and TVFS, but cannot
the nature of the bound between the two vibrons and rangaglax over the other TVBS-Il. As a result, the rate for the
between 0 and 1. For instance, for a strong nonlinearity, i.edecay of a given TVBS-Il into a particular TVBS-I is ap-
for strong values of bottA and Eg, TVBS-I refer to the proximately given by
trapping of the two vibrons onto the same amide-I vibration
whereas TVBS-II characterize the trapping onto two nearest W
neighbor sites. ThereforéW, (1)|? vanishes for TVBS-I WkUZZHk’FlmW|wk0:2(1)|2|q"<’021(0)|2' (22)
whereas it is equal to unity for TVBS-II. In that context, if
we defineW= 128]'fEBkBT/Q§, the relaxation rates are ex- At this step, by performing the sum over the wave ve&tor
pressed a¥Vrygs.~Wryes~W and Wyygs. =~ 3W/2. in Eq. (21, the rate for the decay over all the TVBS-I is
In a marked contrast, the nature of the relaxation channelgqual toW. Since the global relaxation rate for the TVBS-II
drastically depends on the characteristics of the two-vibrons equal to 3V/2, the rate for the relaxation over the TVFS
states involved in the process. Such effects originate in theontinuum is equal tdV/2. These results are in a rather good
coupling between the two-vibron eigenstates mediated by thagreement with the numerical results shown in Fig. 5. How-
vibron-phonon interaction and characterized by the constargver, when the nonlinearity slightly decreases, both the
Zvo—k' o |S€E EQs(15) and(16)]. As shown in the definition TVBS-1 and TVBS-Il wave functions delocalize so that

w 2 2
Wkrer—»k’o'/%N“Pko’:l(O” |q,k’(r/(1)| . (20)
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The system, Eq.22), which can be solved straightforwardly,

allows us to follow the relaxation pathways in real time. For
TVBSH instance, if we assume that the system is initially set in the

TVBS-I band, Eq.(22) clearly shows that the population

FIG. 7. Three-level model for the population dynamics of the P,(t) decays so that the population of the TVBS-II band

two-vibron states within the strong nonlinear limit. increases. However, &%,(t) increases with time, it tends to
relax into the TVFS continuum. Therefore, we observe the
relaxation of the TVBS-I band into the TVFS continuum
through the TVBS-II band. After a timg = 21.5W, bothP,

P ,-2(1) andW¥,,_,(0) decrease. In that context, the re-

I i f h f TVBS-II i TVBS-I| - .
axation rate for the decay o Sl into S-l de ﬁ\gd P, can be neglected where&s is equal to 0.99. At

creases, as shown in Figs. 5 and 6, whereas the rate for t | . g
relaxation over TVFS increases. In the same way, the relaxt-)IOIOgICaI temperatureT(=310 K), with the realistic param-
' ’ tersA=8 cm !, Eg=12 cm !, andJ=8 cm ! we obtain

ation channel connected to the decay into the other TVBS-I},,” 1 .
b th funci q i ish =21.36 cm * andt* =5.3 ps.
opens because the wave functié,—(m) does not vanis Note that in a recent paper devoted to the TVBS relax-

any more form=0 or m=2._ ) ation in a molecular nanowire, it has been pointed out that,
At this step, let us mention that the previous results ady,r 5 gne-dimensional phonon bath, a given TVBS essen-
dress the fund_amgntal _questlon of the_ manifestation of thﬁally decays into the other TVB$14]. The origin of the
quantum localization, i.e., of the existence of quantumgitference with the present work is twofold. First, in Ref.
breathers. Indeed, classical breathers describe time periodi¢4], the vibron dynamics was described according to a Hub-
and spatially localized nonlinear vibrations. By contrast, duéhard model for bosons which yields a single TVBS band
to the translational invariance, the center of mass of the twealmost identical to the TVBS} Then, the coupling with the
vibrons in a TVBS is fully delocalized according to a Bloch thermal bath was assumed to be responsible for a random
wave. However, the localized nature of a TVBS arises due tenodulation of the frequency of each molecule, i.AH
the trapping of the two quanta around few sites. In that con~XAw,bb,, in marked contrast with the modulation of the
text, although a TVBS does not describe a spatially localizedibron hopping constant considered in this pafeze Eq.
field, its degree of localization manifests itself through par-(9)].
ticular correlation function$37,38. Our results clearly es- To summarize, the present paper was devoted to the char-
tablish that such correlation functions are involved in theacterization of the two-vibron relaxation mechanisms in an
calculation of the relaxation rafsee for instance Eq18)].  anharmonica-helix protein. According to the small polaron
As a consequence, the dependence of the relaxation channg&l@del developed in Ref.16], it has been shown that the
versus the nature of the two-vibron states can be viewed asrglaxation Originates in the interaction between the dressed
manifestation of the quantum localization of TVBS. anharmonic vibrons and the remaining phonons. This inter-
To conclude, let us note that the knowledge of the relax&ction is responsible for the occurrence of transitions be-

ation rates allows us to characterize the population dynamic¥/een two-vibron eigenstates mediated by both phonon ab-
of the two-vibron states in real time. To illustrate this feature,Sorptlon a”‘?' phonon emission. A,t biological temperature, we
let us consider the strong nonlinear limit in which the relax—have established that the relaxation rate does not depend sig-

ation schema is rather simple. Indeed, the rates are almo lflcantly on the nature of the two-vibron states involved in

wave vector independent so that the system can be modelelq‘/3 process. Note that TVBS-Il decay more rapidly than both
as a three-level system formed by the TVBS-I band, th BS-I and TVFS, the ratio between the corresponding rates

. ! eing of about 1.5. By contrast, we have shown that the
TVBS-Il band, and the TVFS bantbee Fig. J. The first relaxation channels strongly depend on the nature of the two-

relaxa'uon channel corresponds to the decay of the TVBS-;ip o, states. More precisely, the spatially localized nature of
band into the TVBS-Il band according to the raté The o TyBS j.e., their breatherlike character, is responsible for
relaxation of the TVBS-Il band exhibits two main channelsihe specification of a given relaxation pathway. In that con-
and to the decay into the TVFS band with the r&#2.  quanta around the same amide-I vibration, tend to decay into
Finally, TVFS are allowed to relax into the other TVFS only. TVBS-II which refer to the trapping of the two quanta
Let P,, P,, andPg denote the populations of these bands.around two nearest neighbor amide-I vibrations. By contrast,
Therefore, the time evolution of these populations is gov-TVBS-II decay into both TVBS-I and TVFS, the first chan-
erned by a master equation expressed as nel being two times more efficient than the second one.
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Finally, let us mention some experimental results. In crysir pump-probe spectroscopy. These authors have shown that
talline acetanilidd ACN), a crystal which can be viewed as a myoglobin supports a long-lived mode in the blue side of the
protein model, Edler and Hamfi89] have clearly shown, amide-| vibration with an energy lifetime of about 15 ps
using femtosecond IR spectroscopy, that both the amide{¥42]. In addition, they have shown recently that myoglobin
self-trapped staté.e., the single-polaron statand the free  exhibits a self-trapped state located at 1626 &rwith an
exciton state decaynoa 2 pstime scale. Similar results were energy lifetime equal to 30 ps at 50[K3].
obtained for the N-H band in ACN for which it has been As a consequence, although the lifetime connected to the
shown that the self-trapped state decaysadl pstime scale  energy relaxation of single-polaron state in proteins basically
[40]. Moreover, Hamm and co-workéB6] have performed ranges between 10 and 30 ps, recent experiments clearly es-
IR pump-probe and dynamic hole burning experiments tdablish that this self-trapped state relaxes very quickly on a
characterize the ultrafast response of the amide-l modes &éw picoseconds time scale. Although the two-vibron dy-
N-methylacetamide and three small globular peptides. Theamics studied in the present paper may slightly differ from
authors have reported that the vibrational decay of thehe single-vibron dynamics, our results appear to be in a
amide-l mode of all investigated peptides occurred in aboutather good agreement with these recent experimental data.
1.2 ps. In a marked contrast, the lifetime connected to théndeed, for realistic values of the parameters, our calcula-
vibrational energy relaxation, i.e., the time for which thetions show that the TVBS relaxation rate ranges between 10
single-polaron excited state returns back to the ground statend 40 cm! so that the corresponding relaxation time
is much longer. In ACN, Hamm and co-workers have deterranges between 0.1 and 1.0 ps at biological temperature.
mined a vibrational lifetime for the amide-I and N-H single- These results corroborate the recent theoretical calculations
polaron state equal to 35 p39] and 18 pg40], respectively. performed by Ivicet al. [9] who found that the lifetime of
Note that Austin and co-workers have reported a vibrationathe multivibron soliton is equal to 0.1 ps at room tempera-
lifetime of about 155 ps for the amide-l mode in ACN at ture, i.e., the same order of magnitude as the single-vibron
80 K [41]. In myoglobin, vibrational energy lifetime mea- soliton lifetime determined by Cottingham and Schweitzer
surement was carried out by Austin and co-workers by using33,34].
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