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Thermodynamic modeling of donor splice site recognition in pre-mRNA
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When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a
U1 small nuclear RNA with the don@b’) splice site. We model this interaction thermodynamically to identify
splice sites. Applied to a set of 65 annotated genes, our “finding with binding” method achieves a significant
separation between real and false sites. Analyzing binding patterns allows us to discard a large number of
decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise
of physical modeling to find functional elements in the genome.
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The vast majority of bioinformatics methods treat nucleicquence alone, so the ability to correctly identify the intron-
acids as simple strings of characters, abstracted of their conexon boundaries is crucial to gene finding. Accurately iden-
plex physical properties. To find biologically relevant areastifying splice sites and other such functional aréasilico
hidden in vast genomic sequences, such methods analyrzeould make this process more efficient and complete, and it
patterns of base frequencies extracted from large databasissconsidered one of the grand challenges of computational
of known signals. While such methods yield results for manybiology [5]. It is a curious fact that cells know nothing of
important problems, there are areas in which they have so fabstract statistics and yet are able to detect splice sites with
proved insufficient. terrific accuracy. How do cells do it?

One important example is RNA splicing. Before being Thermodynamics.
translated into proteins, RNA is processed in the nucleus. We approach splicing as cells must, from a physical per-
The spliceosome directs precursor messenger RNA to respective. Our method, which we call “finding with binding,”
move intervening sequencéstrons, and to splice the re- models the binding of the spliceosome to the pre-mRNA.
maining expressed sequengesong back together to form The spliceosome comprises five different small nuclear
mature mRNA[1]. The splicing is done with great specific- RNAs (snRNAS and well over one hundred different pro-
ity, even though the apparent splicing signals are ratheteins[1,6—1Q. The primary step in this process is when the
weak: at either end of the intron, only two bases are conspliceosome component called U1 snRNA binds to the“do-
served and only about 4 bits of additional information arenor” splice site at the starts’end of each intron, at and
contributed from neighboring positions. There are additionabround the donor’s conserv&lJ sequence. We hypothesize
signals from features like the “branch point” and the compo-that proper binding of the U1 is a good predictor of donor
sition and length of introns themselvE, but this informa-  splice sites and that the signal information at the splice sites
tion is not enough for current statistics-based metH8fiso  arises from natural RNA-RNA binding rulg41].
accurately detect the sites which cells find so routinely. To test our hypotheses, we first must find the optimal

One of the first, and simplest, statistical approaches to b&l1-donor bound conformation by minimizing the free en-
applied to splice site detection is the weight matrix methodergy. Fortunately, Turner and others have measured the inter-
(WMM) [4]. Data from known splice sites are compiled to action free energies fokU, GC, and wobbleSU base pairs;
estimate the probabilityp;(N;) of finding nucleotide N; for bulges, mismatches, and interior loops; and for hairpin
e {A,C,G,U} at positioni. The net splice site probability is loops[11]. While Turner’s standardized experimental condi-
approximated as the product of the nucleotide probabilitiestions (1 M NaCl, OM Mg**, and 37°GQ differ somewhat

from those at the spliceosome, the free energies of the Turner
model provide a reasonable starting point for calculation.

Pumm = H Pi(Ny). @ These physical properties “train” our method, unlike statisti-
cal methods which require databases of sequence data for
training.

More probable splice sites typically have high, val- What then is the optimal U1-donor bound state? Finding

ues, but the WMM neglects correlations between poSiynig conformation is quite similar to the problem of calculat-

tions. o . ing the optimal free energy of a single-strand RNA fold. The
. Ident|fy|n_g all the genes and _other functlona_l EIementsMFOLD program[11,12, among others, uses Turner’s free
hidden within a genome s the first step following its se-gqpqy harametrization to predict the optimum fold. We em-

guencing. The alternation .Of coding anq noncoding reQio”?ﬁ)loy MFOLD to perform the computation of interd€t3], with
makes eukaryotic genes difficult to predict from primary Se'only one minor alteration

The fact thatvroLD folds single RNA molecules, while
the U1 and the donor site are two distinct molecules, can be
*Corresponding author. Email address: aalberts@williams.edu taken into account quite simply by joining them. As
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FIG. 1. A schematic for the “finding with binding” method. We 10 |
model the association of a conserved 13 base region of the Ul
snRNA (AUACUUACCUGGQ( to possible precursor mRNA sites 0 1500
and compute the base-pairing conformation and free energy. Each 1 1200
possible pre-mRNA donor site includes the conserBusplus the -
n bases after it, then bases prior to it, and a three base contribution 190 2
to the artificial linker regior{shown is(m,n)=(3,4)]. The U1 and 1 600 8’
pre-mRNA sequences are concatenated into a single strand. Prohib-
iting base pairingx) in the five-base artificial linker region, we find 1300
the optimal fold and its free energy. Note that bulges can shift the 0

alignment of U1-mRNA pairing and th&U wobble base pairing -3 -10 -7 ' 2
(*) is included. Free Energy AG (kcal/mol)

diagrammed in Fig. 1, the donor string contains FIG. 2. Histograms of the free energy of U1-mRNA binding.
(in 5’ to 3" ordey a three-base linker contribution which is Binding energies for all 338 real and 16 961 decoy sites are given,
prohibited from folding,m bases, the conserve®U, andn as well as the select subset whds& consensus pairs with the
bases. Every pre-mRN#8 +m-+2+n)-mer was concatenated corresp_ondingAC in the U1 snRNA. Notice the_lt the_ se!ection pro-
to the relevant part of the conserved U1 snRNA Sequencgess rejects 64% of the decoy sequences, while rejecting only 2% of
(AUACUUACCUGGG. Because of the high Ul-donor 'c& seduences.The data shown are(fom)=(2,6).

complementarity and the unfavorability of folding each half o o
independently (e.g., AG=+1 kcal/mol for Ul folding N the Ul sequence. This simple check eliminates roughly

alone, MFOLD folds the concatenated sequence into a hairpirfWo-thirds of the decoy sites at the cost of as little as 2% of
structure. However, the free energy of this fold differs fromthe reals, as shown in Fig. 2. For the selection step, we found
the real U1-donor because of the hairpin loop formation penthat using(m,n)=(2, 6) gave the best results.
alty. Requiring the U1 to bind optimally to a donor subse-
To eliminate the loop entropy contributiowhich de- — duence forces the correct alignment to compete against alter-
pends on the loop lengthwe modified themrFoLp input ~ Nate alignments. Only good candidates advance for further
parameters, setting the loop entropy penalty to a constarfceening, creating a more favorable data set with vastly
value AG,o(N) = +5.4 kcal/mol, for all loop lengthal=3 fewer decoys. Any number of techniques, statistical or physi-
(note thatN < 3 is too short to constitute a hairpiilithough ~ ¢@l; can then be employed to score the remaining candidates.
we have taken the minimumGy,,, value [11] for allowed ~ We score the sequences both by their binding free ener-
hairpins, conformations with multiple hairpins are strongly 9i€S, and by the WMM of Eq1) which is trained statisti-
penalized and were not seen. We use the “prohibit folding’c@lly [16]. By cross-correlating these methods, we are also
option of MFOLD to prevent the middle five connector nucle- @ble to investigate the claim that nucleotide biases in se-
otides from pairing; however, the first and fifth do affect the duences might be interpreted as an effective free erfdidy
free energy via dangling-end and terminal-mismatch bolN Fig. 3, we compare RTIn(pymm) with AG. It is interest-
nuses. ing to see how poorly correlated the log of the WMM's
To validate our method, we used the test set of Burge andBoltzmann weight” is to the binding free energy. The scatter
Karlin [14], itself based on the Kulp/Reese set derived fromof the points is significant, with correlation coefficient
GenBank Release 985]. This set contains 65 genes, with
338 annotated real splice sites in codif@DS) regions. In
the same 330 kilobase CDS region, there are 16 961 appear-
ances of the consens@U sequence not annotated as splice
signals, which are labeled “decoy” sites. The optimal folds
and their free energie@vith altered loop entropies, as de-

scribed abovewere then calculated usingroLD. It is not _5:.. A P P S P S

known how much of the donor sequence is available to pair -llgree gner 0 A dI?kcai/Smol)O

with the U1, so a range of differefiin, n) values from(0, 2) gy

to (6,10 were analyzed. FIG. 3. Comparing RTIn(pymm andAG at T=37 °C allows

Figure 2 shows the results of folding real and decoy sitesys to evaluate the claim that biases in sequences represent a free
arranged by free energy. Clearly, real sites bind to the UL anergy. The log of the WMM'’s “Boltzmann weight” shows signifi-
a lower average free energy than decoy sites. Real and deceint scatter when plotted against the binding free energy. The
distributions do still overlap. Next, we examine the folding best-fit slopes are inconsistent with the hypothesis fhal, can
of the bound pairs and reject all sites in which ®¥ in the effectively estimate binding free energies. The data shown are for
potential donor site does not pair with the correspondi®y  all 338 real and 16 961 decoy sequences.
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FIG. 5. The probability of base pairing is position dependent for
real (circle and decoy(box) sequencetfilled, all; open, after se-
FIG. 4. The receiver operating curves for the weight matrix €cting. Selecting for proper base pairing at 16&) decreases the
method (WMM), the finding with binding free energy method Number of decoy sequences at a cost of relatively few real sites. The
(AG), and the combined methdg. (2)] are shown for all data, physical selectlon_ procedure improves the results of statistics-based
and after selecting for pairing at ti@U. Interestingly, the accuracy aPProachegsee Fig. 4. Data are given fotm,n)=(2,6).
of the combo method did not improve with selection so we do not
present values for the combo-select method.

False Positive Rate

eters, reshaping Eq2) as an ellipse, or employing other

=0.79 for the reals and=0.69 for the decoys. Furthermore, selection criteria, that this could improve. For example, the
instead of being related with a slope=1, one findsm  |OWeStAG may not be optimal for splicing. AnfG < u will
=0.388+0.016 for the reals anch=0.498+0.004 for the have a significanp,, but tighter binding may slow later
decoys. reactions. Indeed, in this data set, the consensus sequence is

To make predictions about the reality of a sequence, &0 more likely than a number of other sequences with one to
cutoff is chosen. Reducing the cutoff probability score, orthree mutations. The fact that a number of identical se-
increasing the free energy cutoff, increases the number afuences appear in both the real set and decoy set indicates a
both real and decoy sites identified. The WMM method cor-greater role for the bases farther away from the splice site
responds to choosing horizontal lines in Fig. 3; the free enand for the secondary structufs].
ergy method corresponding to choosing vertical lines. We Because its engine is an RNA folding algorithm, the find-
also combined these methods, employing a quadratic disng with binding method naturally accommodates the effects
criminant analysis cutoff rule which can be visualized as aof secondary structure. It is even possible to calculate the
circle in Fig. 3, in which the algorithm marks as real all free energy of refolding the pre-mRNA to expose the binding
candidate sequences satisfying sites. We hypothesize that differences in preexisting second-

2 ary structure may separate sites with identical primary se-
[AG - AG,i,]> + {— RT |n<M)} <C?% (2 guence. The interactions between donor and branch sites can
Pwmm,min also be included via polymer physics modeling.

for different cutoff valuesC. A physical modeling approach also provides detailed pre-

In finding with binding, the cutoff energy can be under- dictions about base pairingee, for example, Fig.)5lt is
stood in physical terms. Each splice site can be occupied bE}OF a surprise to see strong ewdence_that there must be _base-
either zero or one U1 molecules. This condition is reminis-P&iring at the consensus sequence in order for the spliceo-
cent of Pauli exclusion. The probability of occupying a par-Some to function. Bulges and mismatches are costly, making
ticular binding site can be estimated with Fermi-Dirac statis-t difficult to resume base pairing after a duplex is disrupted.

tics as Furthermore, since our method predicts exactly how the Ul
and mRNA base pair, a more thorough analysis of these
3 1 binding patterns could suggest exactly which contacts help

Poce= exp{(AG - w)/RT}+1’ G the spliceosome recognize real splice sites.

The present results demonstrate that physical modeling
where u is the chemical potential of U1 factors with a loga- enhances splice site detection, complementing mature statis-
rithmic dependence on the Ul concentration. Equat®ns  tics methodg3] and providing mechanistic insights. Asso-
often approximated as a step function. ciation of nucleic acids is central to many other important

To assess the accuracy of our methods, we measure tiéological processes, including gene expression. We believe
(true positive ratg = (true positiveg(all realy and (false it will be advantageous to include the physical interactions
positive rat¢ = (false positiveg(all decoys$. In Fig. 4, re- between the biopolymers and to approach many genomic
sults are shown for the WMM, the finding with binding free problems from a physical perspective. While this is more
energy method, and the E@) combination method. Scoring difficult when proteins are involved, predicting the affinities
with free energies alone does not perform as well as WMMpf nucleic acids can and should be done.
though it is possible, by improving thermodynamic param- What is most promising is that physical methodologies
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