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When eukaryotic genes are edited by the spliceosome, the first step in intron recognition is the binding of a
U1 small nuclear RNA with the donors58d splice site. We model this interaction thermodynamically to identify
splice sites. Applied to a set of 65 annotated genes, our “finding with binding” method achieves a significant
separation between real and false sites. Analyzing binding patterns allows us to discard a large number of
decoy sites. Our results improve statistics-based methods for donor site recognition, demonstrating the promise
of physical modeling to find functional elements in the genome.
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The vast majority of bioinformatics methods treat nucleic
acids as simple strings of characters, abstracted of their com-
plex physical properties. To find biologically relevant areas
hidden in vast genomic sequences, such methods analyze
patterns of base frequencies extracted from large databases
of known signals. While such methods yield results for many
important problems, there are areas in which they have so far
proved insufficient.

One important example is RNA splicing. Before being
translated into proteins, RNA is processed in the nucleus.
The spliceosome directs precursor messenger RNA to re-
move intervening sequences(introns), and to splice the re-
maining expressed sequences(exons) back together to form
mature mRNA[1]. The splicing is done with great specific-
ity, even though the apparent splicing signals are rather
weak: at either end of the intron, only two bases are con-
served and only about 4 bits of additional information are
contributed from neighboring positions. There are additional
signals from features like the “branch point” and the compo-
sition and length of introns themselves[2], but this informa-
tion is not enough for current statistics-based methods[3] to
accurately detect the sites which cells find so routinely.

One of the first, and simplest, statistical approaches to be
applied to splice site detection is the weight matrix method
(WMM ) [4]. Data from known splice sites are compiled to
estimate the probabilitypisNid of finding nucleotideNi

P hA,C,G,Uj at positioni. The net splice site probability is
approximated as the product of the nucleotide probabilities,

pwmm = p
i

pisNid. s1d

More probable splice sites typically have higherpwmm val-
ues, but the WMM neglects correlations between posi-
tions.

Identifying all the genes and other functional elements
hidden within a genome is the first step following its se-
quencing. The alternation of coding and noncoding regions
makes eukaryotic genes difficult to predict from primary se-

quence alone, so the ability to correctly identify the intron-
exon boundaries is crucial to gene finding. Accurately iden-
tifying splice sites and other such functional areasin silico
would make this process more efficient and complete, and it
is considered one of the grand challenges of computational
biology [5]. It is a curious fact that cells know nothing of
abstract statistics and yet are able to detect splice sites with
terrific accuracy. How do cells do it?

Thermodynamics.
We approach splicing as cells must, from a physical per-

spective. Our method, which we call “finding with binding,”
models the binding of the spliceosome to the pre-mRNA.
The spliceosome comprises five different small nuclear
RNAs (snRNAs) and well over one hundred different pro-
teins [1,6–10]. The primary step in this process is when the
spliceosome component called U1 snRNA binds to the“do-
nor” splice site at the starts58endd of each intron, at and
around the donor’s conservedGU sequence. We hypothesize
that proper binding of the U1 is a good predictor of donor
splice sites and that the signal information at the splice sites
arises from natural RNA-RNA binding rules[11].

To test our hypotheses, we first must find the optimal
U1-donor bound conformation by minimizing the free en-
ergy. Fortunately, Turner and others have measured the inter-
action free energies forAU, GC, and wobble-GU base pairs;
for bulges, mismatches, and interior loops; and for hairpin
loops[11]. While Turner’s standardized experimental condi-
tions (1 M NaCl, 0 M Mg++, and 37°C) differ somewhat
from those at the spliceosome, the free energies of the Turner
model provide a reasonable starting point for calculation.
These physical properties “train” our method, unlike statisti-
cal methods which require databases of sequence data for
training.

What then is the optimal U1-donor bound state? Finding
this conformation is quite similar to the problem of calculat-
ing the optimal free energy of a single-strand RNA fold. The
MFOLD program [11,12], among others, uses Turner’s free
energy parametrization to predict the optimum fold. We em-
ploy MFOLD to perform the computation of interest[13], with
only one minor alteration.

The fact thatMFOLD folds single RNA molecules, while
the U1 and the donor site are two distinct molecules, can be
taken into account quite simply by joining them. As*Corresponding author. Email address: aalberts@williams.edu
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diagrammed in Fig. 1, the donor string contains
sin 58 to 38 orderd a three-base linker contribution which is
prohibited from folding,m bases, the conservedGU, andn
bases. Every pre-mRNAs3+m+2+nd-mer was concatenated
to the relevant part of the conserved U1 snRNA sequence
sAUACUUACCUGGCd. Because of the high U1-donor
complementarity and the unfavorability of folding each half
independently (e.g., DG= +1 kcal/mol for U1 folding
alone), MFOLD folds the concatenated sequence into a hairpin
structure. However, the free energy of this fold differs from
the real U1-donor because of the hairpin loop formation pen-
alty.

To eliminate the loop entropy contribution(which de-
pends on the loop length), we modified theMFOLD input
parameters, setting the loop entropy penalty to a constant
value DGloopsNd= +5.4 kcal/mol, for all loop lengthsNù3
(note thatN,3 is too short to constitute a hairpin). Although
we have taken the minimumDGloop value [11] for allowed
hairpins, conformations with multiple hairpins are strongly
penalized and were not seen. We use the “prohibit folding”
option of MFOLD to prevent the middle five connector nucle-
otides from pairing; however, the first and fifth do affect the
free energy via dangling-end and terminal-mismatch bo-
nuses.

To validate our method, we used the test set of Burge and
Karlin [14], itself based on the Kulp/Reese set derived from
GenBank Release 95[15]. This set contains 65 genes, with
338 annotated real splice sites in coding(CDS) regions. In
the same 330 kilobase CDS region, there are 16 961 appear-
ances of the consensusGU sequence not annotated as splice
signals, which are labeled “decoy” sites. The optimal folds
and their free energies(with altered loop entropies, as de-
scribed above) were then calculated usingMFOLD. It is not
known how much of the donor sequence is available to pair
with the U1, so a range of differentsm,nd values froms0,2d
to s6,10d were analyzed.

Figure 2 shows the results of folding real and decoy sites,
arranged by free energy. Clearly, real sites bind to the U1 at
a lower average free energy than decoy sites. Real and decoy
distributions do still overlap. Next, we examine the folding
of the bound pairs and reject all sites in which theGU in the
potential donor site does not pair with the correspondingAC

in the U1 sequence. This simple check eliminates roughly
two-thirds of the decoy sites at the cost of as little as 2% of
the reals, as shown in Fig. 2. For the selection step, we found
that usingsm,nd=s2,6d gave the best results.

Requiring the U1 to bind optimally to a donor subse-
quence forces the correct alignment to compete against alter-
nate alignments. Only good candidates advance for further
screening, creating a more favorable data set with vastly
fewer decoys. Any number of techniques, statistical or physi-
cal, can then be employed to score the remaining candidates.

We score the sequences both by their binding free ener-
gies, and by the WMM of Eq.(1) which is trained statisti-
cally [16]. By cross-correlating these methods, we are also
able to investigate the claim that nucleotide biases in se-
quences might be interpreted as an effective free energy[17].
In Fig. 3, we compare −RT lnspwmmd with DG. It is interest-
ing to see how poorly correlated the log of the WMM’s
“Boltzmann weight” is to the binding free energy. The scatter
of the points is significant, with correlation coefficientr

FIG. 1. A schematic for the “finding with binding” method. We
model the association of a conserved 13 base region of the U1
snRNA sAUACUUACCUGGCd to possible precursor mRNA sites
and compute the base-pairing conformation and free energy. Each
possible pre-mRNA donor site includes the consensusGU plus the
n bases after it, them bases prior to it, and a three base contribution
to the artificial linker region[shown issm,nd=s3,4d]. The U1 and
pre-mRNA sequences are concatenated into a single strand. Prohib-
iting base pairing(x) in the five-base artificial linker region, we find
the optimal fold and its free energy. Note that bulges can shift the
alignment of U1-mRNA pairing and thatGU wobble base pairing
s•d is included.

FIG. 2. Histograms of the free energy of U1-mRNA binding.
Binding energies for all 338 real and 16 961 decoy sites are given,
as well as the select subset whoseGU consensus pairs with the
correspondingAC in the U1 snRNA. Notice that the selection pro-
cess rejects 64% of the decoy sequences, while rejecting only 2% of
real sequences. The data shown are forsm,nd=s2,6d.

FIG. 3. Comparing −RT lnspwmmd and DG at T=37 °C allows
us to evaluate the claim that biases in sequences represent a free
energy. The log of the WMM’s “Boltzmann weight” shows signifi-
cant scatter when plotted against the binding free energy. The
best-fit slopes are inconsistent with the hypothesis thatpwmm can
effectively estimate binding free energies. The data shown are for
all 338 real and 16 961 decoy sequences.
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=0.79 for the reals andr =0.69 for the decoys. Furthermore,
instead of being related with a slopem=1, one findsm
=0.388±0.016 for the reals andm=0.498±0.004 for the
decoys.

To make predictions about the reality of a sequence, a
cutoff is chosen. Reducing the cutoff probability score, or
increasing the free energy cutoff, increases the number of
both real and decoy sites identified. The WMM method cor-
responds to choosing horizontal lines in Fig. 3; the free en-
ergy method corresponding to choosing vertical lines. We
also combined these methods, employing a quadratic dis-
criminant analysis cutoff rule which can be visualized as a
circle in Fig. 3, in which the algorithm marks as real all
candidate sequences satisfying

fDG − DGming2 + F− RT lnS pwmm

pwmm,min
DG2

, C2, s2d

for different cutoff valuesC.
In finding with binding, the cutoff energy can be under-

stood in physical terms. Each splice site can be occupied by
either zero or one U1 molecules. This condition is reminis-
cent of Pauli exclusion. The probability of occupying a par-
ticular binding site can be estimated with Fermi-Dirac statis-
tics as

pocc=
1

exphsDG − md/RTj + 1
, s3d

wherem is the chemical potential of U1 factors with a loga-
rithmic dependence on the U1 concentration. Equations3d is
often approximated as a step function.

To assess the accuracy of our methods, we measure the
(true positive rate) 5 (true positives)/(all reals) and (false
positive rate) 5 (false positives)/(all decoys). In Fig. 4, re-
sults are shown for the WMM, the finding with binding free
energy method, and the Eq.(2) combination method. Scoring
with free energies alone does not perform as well as WMM,
though it is possible, by improving thermodynamic param-

eters, reshaping Eq.(2) as an ellipse, or employing other
selection criteria, that this could improve. For example, the
lowestDG may not be optimal for splicing. AnyDG,m will
have a significantpocc, but tighter binding may slow later
reactions. Indeed, in this data set, the consensus sequence is
no more likely than a number of other sequences with one to
three mutations. The fact that a number of identical se-
quences appear in both the real set and decoy set indicates a
greater role for the bases farther away from the splice site
and for the secondary structure[18].

Because its engine is an RNA folding algorithm, the find-
ing with binding method naturally accommodates the effects
of secondary structure. It is even possible to calculate the
free energy of refolding the pre-mRNA to expose the binding
sites. We hypothesize that differences in preexisting second-
ary structure may separate sites with identical primary se-
quence. The interactions between donor and branch sites can
also be included via polymer physics modeling.

A physical modeling approach also provides detailed pre-
dictions about base pairing(see, for example, Fig. 5). It is
not a surprise to see strong evidence that there must be base-
pairing at the consensus sequence in order for the spliceo-
some to function. Bulges and mismatches are costly, making
it difficult to resume base pairing after a duplex is disrupted.
Furthermore, since our method predicts exactly how the U1
and mRNA base pair, a more thorough analysis of these
binding patterns could suggest exactly which contacts help
the spliceosome recognize real splice sites.

The present results demonstrate that physical modeling
enhances splice site detection, complementing mature statis-
tics methods[3] and providing mechanistic insights. Asso-
ciation of nucleic acids is central to many other important
biological processes, including gene expression. We believe
it will be advantageous to include the physical interactions
between the biopolymers and to approach many genomic
problems from a physical perspective. While this is more
difficult when proteins are involved, predicting the affinities
of nucleic acids can and should be done.

What is most promising is that physical methodologies

FIG. 4. The receiver operating curves for the weight matrix
method (WMM ), the finding with binding free energy method
sDGd, and the combined method[Eq. (2)] are shown for all data,
and after selecting for pairing at theGU. Interestingly, the accuracy
of the combo method did not improve with selection so we do not
present values for the combo-select method.

FIG. 5. The probability of base pairing is position dependent for
real (circles) and decoy(box) sequences(filled, all; open, after se-
lecting). Selecting for proper base pairing at theGU decreases the
number of decoy sequences at a cost of relatively few real sites. The
physical selection procedure improves the results of statistics-based
approaches(see Fig. 4). Data are given forsm,nd=s2,6d.
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can be applied to a wide variety of related problems, such as
the recognition events of the following: the U2-branch splice
site, alternative splicing[19], retrotransposons[19,20], short
interfering RNAs [19,21,22], Shine-Dalgarno sequences
[1,19], and the snoRNA-rRNA associations which guide me-
thylation and pseudouridylation[1,19,23].
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