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Fields and forces acting on a planar membrane with a conducting channel
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Modeling electric fields and forces around a channel in a planar membrane is still an open problem. Until
now, most of the existing theories have oversimplified the electric field distribution by placing the electrode
directly at the entry of the channel. However, in any relevant experimental setup the electrodes are placed far
away in the electrolyte solution. We demonstrate that long-range deformation of the electric field distribution
appears around the membrane, spanning on distances of the order of the distance between the membrane and
the electrode. The forces acting due to this distribution are in most of the cases negligible. They can be
important for channels with radii of the order of the thickness of the layer of structured water at the oil-water
interface.
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I. INTRODUCTION

One of the basic functions of a biological membrane is
control the permeation of specific substrates between s
rated compartments by modifying the properties of the me
brane channels. Examples of such channels and the det
description of the electric field distribution in such syste
are of great interest~Refs.@1,2#, and the references therein!.

In biotechnology, cell walls are permeabilized with sho
external electric pulses@3–5#. Such pulses induce fluctuatin
defects~pores! in the lipid matrix which allow the transfer o
giant molecules. Many models of the electroporation w
already developed, but until now a final model is not est
lished@6–20#. More complete reviews on this subject can
found, e.g., in Ref.@21#.

Many experiments were performed on planar lipid bila
ers @22#. Such membranes have typically a conductance
less than a few pS/mm2. A single defect of a few angstrom i
size would be easily detectable. Conducting channels mo
the electric field distribution and, consequently, the forc
acting on a membrane. In what follows, all conducting str
tures in the membrane will be described as channels.

An essential characteristic of a channel is its effect
resistance~i.e., the ratio between the potential differenc
applied to its two ends and the current through it!. This quan-
tity depends on the dimensions of the channel, its shape@23#
and the Faxen correction factor which takes into acco
frictional interactions between the charge carriers and
channel@24#. When studying protein channels in electroly
solution, the distribution of charges on the surface of
pore and the screening effects must be taken into acc
@25,26#. This can give as a consequence nonlinear effe
even for the so called large water-filled channels, i.e., dep
dence of the effective channel resistance on~i! the potential
difference applied to the channel@27–29#, ~ii ! the bulk con-
ductivity ~or the absolute electrolyte concentration! @27,29#.

*Electronic address: bivas@issp.bas.bg
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1539-3755/2004/69~4!/041901~12!/$22.50 69 0419
o
a-
-

led
s

t

e
-

-
f

fy
s
-

e
,

t
e

e
nt
ts
n-

Other effects such as a resistance asymmetry under reve
polarity have been observed experimentally and with co
putational methods@27–29#.

In the present work we consider the stationary case of
current flows. We also neglect the magnetic field effects d
to the current flows. Consequently, all forces under cons
eration are of electrostatic origin. Hence, first of all we ha
to calculate the electric field distribution between the tw
electrodes. This gives readily the electric field forces wh
depend on the channel radius.

Until now, it was usually assumed that the perturbation
the electric field due to the presence of a microscopic c
ducting channel is of short range. This implies that in t
direction parallel to the membrane the perturbation spans
a distance of the order of a few channel radii. The forces t
obtained depend only on the dimensions of the channel.
plying implicitly the idea that the electrodes are very near
membrane and that the channel is part of a circular cylin
with radius r 0 and heightd, Abidor et al. @8# derived the
electric field contribution to the energy of the pore, perm
ting to obtain the electric forceFAb(r 0) ~defined as the taken
with negative sign derivative of this energy with respect
the pore radiusr 0) acting on the edge of the pore and tendi
to open it:

FAb~r 0!5
pr 0

d
~«w2«d!~U0!2, ~1!

where«w and«d are the permittivities of the water and th
membrane, respectively, andU0 is the potential difference
applied to the electrodes. Later, Pastushenko and C
madzhev@9# took into account the redistribution ofU0 be-
tween the bulk electrolyte and the channel, but to derive th
results, once again they placed implicitly the electrodes n
the membrane, applying potential difference to them, eq
to the potential difference on the channel.

In the present paper we demonstrate that the electric fi
perturbation depends on the distance between the memb
and the electrodes, while for narrow channels~with radii,
©2004 The American Physical Society01-1
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considerably less than the thickness of the membrane! the
related forces depend on the dimensions of the channel.

II. ELECTRIC FIELD BETWEEN TWO ELECTRODES
SEPARATED BY A PLANAR MEMBRANE CONTAINING

A SINGLE CONDUCTING CHANNEL

First of all, we revisit certain earlier electric field calcul
tions for the idealization of the experimental setup shown
Fig. 1. It consists of a flat infinite dielectric layer of thickne
d, placed at a distanceL between two parallel flat electrode
at a voltageU0. The dielectric layer contains a conductin
axisymmetric channel of a mean radiusr 0, filled with the
electrolyte. The channel is not necessarily part of a circu
cylinder. If the area of the cross section changes along
axis, r 0 is the radius of a cylinder with the property that th
volume of a part of such a cylinder with the height of t
channel is equal to the volume of the channel. The effec
channel radius r 0 can be written as: r 0

5@(1/pd)*2d/2
d/2 S(z)dz#1/2, whereS(z) is the cross section

of the channel at distancez from the midplane of the mem
brane.

We assume a homogeneous conductivity throughout
aqueous space and no conductivity of the hydrophobic
electric layer. As a consequence the relation between
electric fieldE and the current densityj in the electrolyte is
j5sE, wheres is the bulk conductivity of the electrolyte
We restrict ourselves to the stationary case where the
charge density is zero. Under these conditions the elec

FIG. 1. Experimental setup for conductance recording of pla
model membranes. The two chambers are approximately;1 cm in
size and are separated by a Teflon sheet containing a hole
dimensions;0.1 mm. The cuvette is filled with electrolyte and
lipid bilayer is formed across the Teflon hole using one of the
tablished techniques~see, e.g., Ref.@2#!. Into the lipid membrane of
about d54 nm thickness a single conducting channel can be
serted. A transmembrane voltageU0 is applied via two electrodes a
a distanceL from the membrane.
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field E in the bulk of the electrolyte and its potentialU
satisfy the equations divE50 andE52gradU. The poten-
tial U(r) satisfies the Laplace equation and is caused by
surface charges on the borders of the electrolyte includ
those of the channel.

As it was already pointed out, most of the theoretic
models calculate the electric forces by placing the electr
directly at the channel entrance. However, in the real exp
ments the electrode is kept at some macroscopic dista
For example, the channel size is typically less than a f
nanometers, while the electrode is placed at a distance
few millimeters. A planar lipid bilayer can be treated as
insulator, because a reasonably good preparation does
show ~on average! any conducting defect within a bilaye
The presence of a conducting channel will obviously lead
an electric field perturbation. Relatively few attempts ha
been made to account for such effects@30,31,9,10#. Therein
it was assumed that the distance between the electrodes
to infinity and that the thickness of the dielectric layer ten
to zero. In this particular case it was shown that in each
the half-spaces on both sides of the layer the electric fi
distribution coincides with that of a conducting charged d
with a radius r 0, equal to that of the channel, placed
dielectric medium with dielectric permittivity«w equal to
that of the electrolyte. On the surface, presenting the die
tric layer, there is a change of the sign of the electric pot
tial and of the electric field. Let a reference frame be plac
with origin in the center of the channel and with planeXY
parallel to the dielectric layer and the electrodes. Let (r ,z) be
the cylindrical coordinates of a point with coordinat
(x,y,z), i.e., the relationr 5Ax21y2 holds. Then a potentia
was obtained of the kind@10#:

U~r ,z!5sgn~z!
U0

p
arccotF r 0

RG , ~2!

where

R25 1
2 $@r 21z22~r 0!2#1A@r 21z22~r 0!2#214~r 0!2z2%.

~3!

From these equations it follows that forR@r 0 the field dis-
tribution in the electrolyte coincides with this of a poin
charge equal to the total charge of the disk. It can be sho
that if Ax21y21z2.10r 0, the deviation of the equipotentia
lines from these of a point charge is less than 1%. The p
turbation of the field due to the presence of the channel
creases as 1/Ax21y21z2, i.e., it is a long-range perturba
tion.

This model is suitable for the description of channels w
effective diameters much greater than the thickness of
membrane.

In the present work we deal with channel radii which a
much less than the thickness of the membrane, and neg
any particular molecular details characterizing the chan
In addition we also expect that the field distribution at so
distance, sufficiently greater than the mean radiusr 0 of the
channel, does not depend on the detailed shape of the c
nel. To verify this hypothesis, we calculated numerically t
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potential distribution for the case of a channel modeled
the inner half of a tore with a small diameter equal to t
thickness of the dielectric. The potential distribution is a s
lution of the Laplace equationDU50 with the following
boundary conditions for the upper half of the electrolyte:~1!
U50 on the part of the plane of symmetry~in the middle of
the membrane! inside the electrolyte,~2! U5U0/2 on the
positive electrode,~3! (]U/]n)50 on the borders of the
dielectric. Wheren is the normal to the border of the diele
tric in the point under consideration. The third boundary co
dition is a consequence of the fact that the ion curren
tangential to the borders of the dielectric.

The results of the numerical calculation presented in F
2 show that, for distances larger than some channel radii
equipotential lines have the form of a hemisphere. This is
agreement with the earlier analytical calculation of Newm
@30#.

The next step is to search for an explicit expression of
electric field distribution shown in Fig. 2. In the setup, show
in Fig. 1, we introduce a reference frameX8Y8Z8 with origin
O8 on the axis of the channel, with a planeX8Y8 coinciding
with the upper boundary of the membrane, and axisZ8 di-
rected to the positive electrode~see Fig. 3!. The cylindrical
coordinates in this last frame are denoted by (r 8,w8,z8). The
electric potentialU(r 8,z8) is axisymmetric~it does not de-
pend onw). Let Sp be an equipotential hemisphere, situat
in the electrolyte, with a centerO8, radiusR0, and z8.0
~see Fig. 3!. R0 is of the order of some channel radii an
much less than the distance between the membrane an
electrode~i.e., R0 /L!1). The distribution of the potentia
U(r 8,z8) in the electrolyte between the electrode and
hemisphere satisfies the following boundary conditions,~1!
U5U0/2 on the upper electrode,~2! U5UR0

/2 on Sp , ~3!

@]U(r 8,z8)/]z8#uz85050 for r 8.R0.
Consider now a potential, created by an infinite seque

of point charges placed on the axisZ8 with coordinates 0,
62L,64L, . . . ,62nL, . . . ~see Fig. 3!. Let the charge in
the point with the respectiven be (21)n11q, where q is

FIG. 2. Numerically calculated distribution of the potential fie
in the electrolyte to the side of the positively charged electrode.
electrodes are placed at a distanceL51 cm on the two sides of the
membrane. The channel has the form of the inner half of tore w
small diameter equal to the thicknessd540 Å of the membrane and
throat radius equal to 4 Å. The voltage applied to the upper~posi-
tive! electrode isU0/250.1 V, ~a! the domain of distances of th
order of the channel radius,~b! the domain of distances muc
greater than the channel radius and much less than the dis
between the membrane and the electrode.
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determined from the following equation:

q

4p«wR0
5

UR0

2
2

U0

2
1OS R0

L D , ~4!

where«w is the electric permittivity of the electrolyte. If the
constantU0/2 is added to the potential, created by the
charges, we obtain the solution of the Laplace equation,
isfying the above boundary conditions.

This result allows to calculate the functionU(r 8,0), r 8
>R0 permitting to estimate the range of the field perturb
tion in the lateral direction. The result thus obtained is

U~r 8,0!5
U0

2
1

qVS r 8

L D
4p«wr 8

~5!

with

VS r 8

L
D 512

r 8

L
(
n51

`
~21!n11

An21S r 8

2L
D 2

. ~6!

The functionV(r 8/L) is a decreasing function of the argu
ment r 8/L and satisfies the relation~this and all the other
relations in the present work are obtained with the help of
software Maple!:

e

h

ce FIG. 3. Sequence of charges, creating the potential in the l
distance range of the electrolyte above the membrane. The equ
tential surfaceEp determined by the equationz85L corresponds to
the positive electrode and is kept at the potentialU0/2. The condi-
tional boundary between long and short distances is a hemisp
Sp with centerO8 and radiusR0 and potentialUR0

/2. The upper
boundary of the lipid membrane is indicated byAp .
1-3
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I. BIVAS AND C. DANELON PHYSICAL REVIEW E 69, 041901 ~2004!
lim
r 8/L →`

VS r 8

L D
expF2 ln~2!

r 8

L G 50. ~7!

We chose this kind of the exponent because the funct
V(x) and exp@2ln(2)x# have identical first and second ter
of their development in a Taylor series aroundx50. It can
be shown numerically, that the ratioV(x)/exp@2ln(2)x# is in
the interval (0.8,1) for 0,x,1 and tends to 1 whenx tends
to zero. Consequently, up to macroscopic distance;L
~much greater than the mean radiusr 0 of the channel! the
field near the planeAp in the electrolyte~see Fig. 3! is prac-
tically equal to that of the chargeq, i.e., a long-range pertur
bation of the electric field appears due to the presence
channel. For the points near the planeAp at distances from
the channel greater thanL the perturbation of the electri
field sharply decreases to zero. Because of the dependen
Eq. ~7! this decrease is faster than the exponential one. A
was explained above, the equipotential surfaces in the e
trolyte look like hemispheres for distances from the chan
much greater than its radius. The deviation from a sph
will be essential when the functionV(r 8/L) becomes sub-
stantially less than 1. This will happen for distancesr 8;L
~for r 8!L this function is practically equal to 1!. Evidently,
the positive electrodeEp can be situated on some of the
spherelike equipotential surfaces at distance less than, b
the order ofL from the channel. The change of the form
the electrode to a true hemisphere with a radius, equal to
average distance between the points of this equipotential
face and the channel, will keep the essential properties of
field in the electrolyte around the channel. The same is a
valid for the negative electrodeEn .

In the following Sections the electric fields and forc
acting on a membrane between electrodes of this kind wil
calculated.

III. CALCULATION OF THE ELECTRIC FIELD
FOR SPHERICAL FORM OF THE ELECTRODES

Later on, the electrodesEp and En are assumed to b
hemispheres with centersOp andOn on the axis of the chan
nel and equatorial planes coinciding with the borders of
membrane~see Fig. 4!. Let Sp andSn be hemispheres, con
centric with the electrodesEp andEn , and let they have radi
R0 of the order of some radii of the channel. They are
sumed equipotential with potentials6UR0

/2, respectively.

The ensemble of points in the electrolyte betweenEp andSp
and betweenEn and Sn will be called long distance range
while the points betweenSp and the channel and betweenSn
and the channel will be called short distance range.

Following the approach by Newman@30# the macroscopic
ion currentI between the spherical electrodes is

I 5
U0

Rp1Rch1Rn
, ~8!
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whereRp5Rn is the excess resistance of each of the spa
between the electrode and the corresponding equipote
hemisphere, covering the entrance of the channel, andRch is
the resistance of the short distance ranges of the channel
the resistance of the channel. The exact calculation ofRch
can be carried out if the structure of the channel is know

The calculated resistancesRp andRn are

Rp5Rn5
r

2p S 1

R0
2

1

L D , ~9!

where r is the bulk resistivity. The potentialUR0
can be

expressed as

UR0
5

Rch

r

p S 1

R0
2

1

L D1Rch

U0 . ~10!

Let r be the distance between the centerOp of the upper
electrode and a point somewhere in the space between
hemispheresEp andSp . The potentialU(r ), R0,r ,L is

FIG. 4. Spherical electrodes, permitting the analytical calcu
tion of the electric fields and the forces acting on the membraneEp

andEn are the positive and the negative electrodes having the f
of hemispheres with radiiL, with parallel equatorial planes situate
at a distanced equal to the thickness of the membrane. The me
brane is inserted in the gap between the hemispheres and conta
channel with an axis, determined by the centersOp andOn of the
electrodes and a mean radiusr 0. The channel is covered by two
hemispheresSp andSn , with centersOp andOn and radiiR0 (R0

!L). R0 is of the order of some radiir 0. These two hemisphere
are supposed equipotential with potentials6UR0

/2, respectively.
The borders of the dielectric to the side of the positively and
negatively charged electrodes are denoted withAp andAn , respec-
tively.
1-4
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U~r !5

r

p S 1

R0
2

1

r D1Rch

r

p S 1

R0
2

1

L D1Rch

U0

2
. ~11!

For r .R0, the functionU(r ) must be independent from
the arbitraryR0. ConsequentlyRch(r 0 ,R0) can be presented
in the form

Rch~r 0 ,R0!5
r

p S 1

r 0
2

1

R0
D1R ch

0 ~r 0!. ~12!

We define a lengthl (r 0) via the relation

1

l ~r 0!
5

1

r 0
1

p

r
R ch

0 ~r 0!. ~13!

Then the potential distributionU(r ) in the electrolyte in the
long distance range to the side of the positive electrode
be presented as

U~r !5

1

l ~r 0!
2

1

r

1

l ~r 0!
2

1

L

U0

2
. ~14!

The calculation ofR ch
0 (r 0) can be done by appropriat

computer modeling@32,33#.
The lengthl (r 0) is a microscopic one, of the order of th

thickness of the membrane and the radius of the chan
while L is the macroscopic distance between the electro
and the membrane. The inequalityl (r 0)!L always holds.
That is why in what follows we will omit the factor 1/L,
considering formally the distanceL as equal to infinity. AsL
participates in the potential distribution inside the fac
@1/l (r 0)21/L#, this approximation will practically not influ-
ence the final results.

For the part of the space between the spheresEn andSn
~see Fig. 4! the result for the potential distribution is ant
symmetric with respect to the plane in the middle of t
dielectric.

Later on in this section we calculate the electric field d
tribution for the case of a cylindrical channel with radiusr 0
sufficiently smaller than the thicknessd of the membrane.
The opposite case of pores with radii, much greater than
thickness of the membrane is considered by Winterhalter
Helfrich @10#.

The potentialU inside the membrane must also satisfy t
Laplace equationDU50. The dielectric layer is presented
Fig. 4. Let XdYdZd be a frame of reference with originOd

coinciding with the center of the channel and with pla
XdYd parallel to the dielectric. Let (r d,wd,zd) be the cylin-
drical coordinates in this frame. Here the upper indexd re-
fers to the coordinates inside the dielectric part of the me
brane. Due to the rotational symmetry, the poten
distributionU(r d,zd) does not depend on the coordinatew.
Because of the conditionr 0!d, the long distance range i
assumed to span up to the boundaries of the channel.
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consequence of this assumption and of Eq.~14!, the bound-
ary conditions for the solutions of the Laplace equations
the flat parts of the boundaries of the membrane are

US r d,6
d

2D56F12
l ~r 0!

r d G U0

2
. ~15!

On the surface of the pore the boundary condition is

U~r 0 ,z!5
2zd

d S 12
l ~r 0!

r d D U0

2
. ~16!

These boundary conditions implicitly assume that inside
narrow channel the distribution of the potential is linear a
that the perturbations of the electric field in the electroly
around the entrances of the channel are of short ra
(;r 0) and their effect can be neglected. The exact distri
tions of the electric field in these zones are calculated
Neu, Smith, and Krassowska@34# via numerical solution of
the Laplace equation.

The potential distribution functionU(r d,zd) inside the
membrane is expanded in a Fourier series of the kind

U~r d,zd!5H 2zd

d
2

l ~r 0!

r 0
F r 0

r d

2zd

d

1 (
n51

`

An~r d!sinS 2pn

d
zdD G J U0

2
. ~17!

As shown in Appendix A, the values of the Fourier amp
tudes An(r d) obtained from the Laplace equation and t
presented above boundary conditions are

An~r d!54~21!n11
r 0

d

3F PS 2pn

d
r 0D

K0S 2pn

d
r 0D K0S 2pn

d
r dD2PS 2pn

d
r dD G ,

~18!

whereK0(x) is the modified Bessel function of zero orde
and P(x) is expressed by the modified Bessel functio
I 0(x) and I 1(x) of the zero and first order and the modifie
Struve functionsL0(x) andL1(x) of zero and first order as
follows:

P~x!5
1

2x H 22xI0~x!E
x

`F2
K0~ t !

t2 G
3dt2K0~x!@~2x2pL1~x!22x212!I 0~x!1xI1~x!

3~pxL0~x!12!#J . ~19!
1-5
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In this way, the distribution of the potential field in the ele
trolyte as well as inside the dielectric are determined wh
the membrane contains a narrow conducting channel and
electrodes have the form of hemispheres. These results
be used in the following section for the calculation of t
forces, acting on the membrane.

IV. FORCES ACTING ON THE MEMBRANE DUE
TO THE PRESENCE OF A CONDUCTING CHANNEL

To calculate the forces, acting on a membrane due to p
ence of a conducting channel we will use the Maxwell str
tensor@35#, as it was done by Winterhalter and Helfrich@10#
and Neu, Smith, and Krassowska@34#.

The definition of the Maxwell stress tensorT in a point of
a medium with electric permittivity« and electrostatic field
E is @35#

T5«~EE2 1
2 uEu2I!, ~20!

where with I is denoted the unit tensor and withAB is de-
noted the tensor product of the vectorsA andB. The forces,
appearing in dielectric media due to presence of electric fi
can be described by the Maxwell tensor in the following w
@35#. Let us consider some part of the dielectric and an
finitesimal areads of its boundary (ds5nds, wheren is the
normal to the surface in the patch under consideration,
this normal is directed outward the volume!. The forcedf,
acting on this area, is

dF5T•ds, ~21!

where the dot denotes the vector product of a tensor wi
vector. This is the force due to the electric field inside t
volume. Evidently, if on the boundary there are no char
and the permittivity« is the same inside and outside th
volume, the field outside the volume will create a force a
ing on the same infinitesimal area that is with the sa
modulus and the opposite direction. As it was noted abo
the Laplace equation is valid inside the dielectric and ins
the electrolyte. Consequently, the forces due to the elec
field act on the boundary between these two media. In e
librium of the system, they have to be compensated by
chanical stresses, created by the membrane in order to a
its deformation. To calculate the electric forces, acting on
infinitesimal element with areads of this boundary, two in-
finitesimally close and parallel to it surface elements with
same area in the electrolyte and in the dielectric have to
considered. The vector, presenting the surface element in
electrolyte is directed from the electrolyte to the dielect
while the vector presenting the surface element in the die
tric has the opposite direction. The force on the elementds is
equal to the sum of the forces, acting on the two infinite
mally close to it elements. The ratiof5dF/ds determines the
surface force density, acting in a point of the boundary
tween the electrolyte and the dielectric.

The borders between the dielectric and the electrolyte
the surface of the channel and the points of the flat surfa
or the membrane that are at distances greater thanr 0 from
the axis of the channel.
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The electric field in the electrolyte inside the channel
directed along the axisZ. Its projectionEz

w(r ,z), r<r 0 and
2d/2,z,d/2, on the axisZ, equal to the projection on the
same axis of the electric field on the surface of the chan
Ez

d(r 0 ,zd) approaching it from the side of the dielectric,
calculated from Eq.~16!:

Ez
w~r 0 ,z!5Ez

d~r 0 ,zd!52
]U~r 0 ,z!

]z
52F12

l ~r 0!

r 0
G U0

d
.

~22!

In each point of the dielectric the projectionEr
d(r d,zd) of the

electric fieldE(r d,zd) on a ray, starting from the axis of th
channel, parallel to the membrane, and passing through
point under consideration~later on we will refer to projection
of this kind as the radial component of the vector! is

Er
d~r d,zd!52

]U~r d,zd!

]r d
. ~23!

On the surface of the channel this component, calcula
from Eqs.~17! and ~18!, is

Er
d~r 0 ,zd!52

l ~r 0!

r 0 S zd

r 0
2

4pr 0

d (
n51

`

3H ~21!n11nF PS 2pn

d
r 0D

K0S 2pn

d
r 0D K1S 2pn

d
r 0D

2P8S 2pn

d
r 0D G sin

2pn

d
zdJ D U0

d
, ~24!

where

P8~x!5
d

dx
P~x! ~25!

andK1(x) is the modified Bessel function of first order.
Let «w and «d be the dielectric permittivity of the wate

solution ~the electrolyte! and the dielectric~the membrane!.
The surface force densityf acting in each point of the surfac
of the channel due to the electric field has two compone
One of themf z is along theZ axis and tends to change th
thickness of the membrane. In the present work we will co
sider the case of a membrane with constant thickness
area. For such an object the forces, acting along theZ axis of
the membrane, do not influence its properties. The ot
component is a radial one. As it is shown in Appendix B, th
radial componentf r(r 0 ,zd) is

f r~r 0 ,zd!5
1

2
~«w2«d!@Ez

d~r 0 ,zd!#21 1
2 «d@Er

d~r 0 ,zd!#2,

~26!
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whereEz
d(r 0 ,zd) andEr(r 0 ,zd) are obtained from Eqs.~22!

and ~24!, respectively. The general forceFch(r 0), acting on
the channel, will be obtained by integration off r(r 0 ,z) over
the surface of the channel:

Fch~r 0!5E
S
f r~r 0 ,zd!ds52pr 0E

2d/2

d/2

f r~r 0 ,zd!dzd.

~27!

As it is shown in Appendix B, for realistic values of the rad
r 0, satisfying the inequalityr 0!d, the forceFch(r 0) can be
presented as

Fch~r 0!5
pr 0

d
~«w2«d!~U0!21a

pr 0

4d
«d~U0!2

1OS S r 0

d D 2D «d~U0!2, ~28!

wherea is a numerical factor of the order of 1.
The same approach will be used for the calculation of

forces acting on the flat part of the boundaries of the me
brane. Let us consider a point with cylindrical coordina
(r d,w,d/2), r .r 0 on the surface of the membrane, taken
definiteness to the side of the positive electrode. From
side of the electrolyte the electric field has only a rad
component Er

w(r d,d/2), equal to the radial componen
Er

d(r d,d/2), r .r 0, of the electric field when approaching th
point from the side of he dielectric. It can be calculated fro
Eq. ~14!:

Er
wS r d,

d

2D5Er
dS r d,

d

2D52

]US r d,
d

2D
]r d

52
l ~r 0!

~r d!2

U0

2
.

~29!

From the side of the dielectric the electric field has in ad
tion a componentEz

d(r d,d/2), r .r 0, along theZ axis that
can be calculated from Eq.~17!:

Ez
dS r d,

d

2D52
]U~r d,z!

]z U
z5

d
2

52S 12
l ~r 0!

r 0 H r 0

r d
2

4pr 0

d (
n51

`

n

3F PS 2pn

d
r 0D

K0S 2pn

d
r 0D K0S 2pn

d
r dD

2PS 2pn

d
r dD G J D U0

d
. ~30!
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Due to the existence of these two components of the elec
field in the dielectric, the density of the force field, acting
each of the surfaces of the membrane, contains a radial c
ponent f r(r

d,d/2), tending to close the channel. As it
shown in Appendix C, for narrow channels this radial co
ponent is

f r S r d,
d

2D52
1

2
«dEr S r d,

d

2DEzS r d,
d

2D . ~31!

Let us consider a crown of the boundary of the membra
with a radiusr d, thicknessdrd and a center on the axis of th
channel in the plane of the surface. The forcedFs acting on
this crown and tending to decrease its radius
2pr df r(r

d,d/2)drd. If the crown changes its radius wit
dr d, because of the conservation of the area of the me
brane the channel will change its radiusr 0 with dr 0

5(r d/r 0)dr d. Consequently, the effective forcedF0
s , acting

on the channel and having the same effect as the forcedFs is

dF0
s5

r 0

r d
f r S r d,

d

2Ddrd. ~32!

The total effective forceF0
s acting on the channel an

equivalent to the action of the electric forces on the surfa
of the membrane is

F0
s52E

r 0

`

dF0
s , ~33!

where the multiplier 2 takes into account both surfaces~to
the side of the positive electrode and to the side of the ne
tive one! delimiting the membrane. As it is shown in Appen
dix C, this force is

F0
s52~p2b!«dS r 0

d D 2

~U0!21OF S r 0

d D 3G«d~U0!2,

~34!

whereb is a numerical factor of the order of 0.1. The la
result shows that contrary to the case of large pores@10#, for
the narrow pores this force is of higher order with respec
the ratior 0 /d and can be neglected.

Keeping the terms containing first order with respect
the ratior 0 /d we obtained the following expression for th
total forceFtot(r 0), appearing due to the existence of a n
row conducting channel with a radiusr 0 and tending to open
it:

Ftot~r 0!'
pr 0

d
~«w2«d!~U0!21

pr 0

4d
«d~U0!2. ~35!
1-7
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V. DISCUSSION

The first term on the right-hand side of Eq.~35! repro-
duces the well known result of Abidoret al. @8#. To estimate
the second one the values of«w and«d must be taken. In the
volume«w'80«0, where«0 is the dielectric permittivity of
the vacuum, while«d is in the interval 2«0–6«0. With these
values of the permittivities the calculated by us correct
given by the second term on the right-hand side of Eq.~35! is
negligible. Consequently, in the frames of the assump
that the bulk resistivityr and the dielectric permittivity«w
are homogeneous~not depending on the place! throughout
all the electrolyte, including the interior of the channel, t
results of Abidoret al. @8# can be applied for narrow chan
nels with radii greater than several times the dimension
one water molecule, in spite of the splay of the electric fi
around the channel and the long-range perturbation of
electric field near the membrane. It is necessary to note
in the real case the translational and rotational freedom
water molecules is substantially reduced inside a nar
channel relative to the bulk water@36,37#. As a consequence
the water in the channel is highly structured and its perm
tivity is much less than that in the volume. Unfortunately, w
did not find in the literature measured or simulated values
this quantity. What is known is that in the Helmholtz lay
inside the diffuse part of the electric double layer the diel
tric permittivity is '6«0 @38#. This is of the order of the
dielectric permittivity in the region of the hydrophilic head
of a lipid bilayer. For the case of equal permittivities of th
dielectric part of the membrane and the water in the chan
the first addend on the right-hand side of Eq.~35! is zero and
the second one becomes dominant. Evidently, in such a
additional investigation of the domain with inhomogeneo
permittivity must be carried out in order to obtain the corre
force acting on the channel.

Another effect that must be taken into account in the f
description of the phenomena around the channel is
smearing of the surface charges on the dividing surface
tween the electrolyte and the membrane. LetD be the Debye
length @39#:

D5A «wkT

2e2~zn!2Nc
, ~36!

where «w is the dielectric constant of the water,k is the
Botzmann constant,T is the temperature,e is the electronic
charge,zn is the valency of the electrolyte~for simplicity,
only symmetrical electrolytes will be considered!, N is the
Avogadro number, andc is the concentration of the electro
lyte. In all the considerations so far it was assumed implic
that this length is much smaller than the radiusr 0 of the
channel. In the typical experiments for measurements of
current flows through membrane channels@2# the used elec-
trolyte is a water solution of KCL with concentration b
tween 0.1 and 1 M. The Debye length for such an electro
is between 3 and 10 Å. It is comparable with the typic
channel radius. In the short distance range, the nume
solution of the Poisson equation is a possibility to take t
smearing into account.
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In the long distance range the smearing of the charge
the diffuse layer has a twofold effect. The first one is t
local increase of the ion concentration~and consequently the
specific conductivity! near the dielectric. The numerical e
timations of this increase for the mentioned above conc
tration ranges of the KCl solutions give a 2.5% change of
specific conductivity in the electrolyte. Consequently this
fect can be neglected. The second effect is the redistribu
of the potential 2U(r ) @U(r ) determined from Eq.~11!#,
applied to the membrane at a distancer from the axis of the
channel, between the diffuse layers and the dielectric.
potential drop on each of the double layers is@«ws(r )#/D.
Consequently, to take into account this effect, the thicknesd
of the dielectric must be replaced with the quantityd@1
1(«dD)/(«wd)#. In the mentioned above concentration
the solute in the electrolyte, the Debye length is considera
smaller than the thickness of the membrane. If the dielec
permittivity «w of the water in the double layer is equal
that in the volume, this correction is of the order of seve
percent and can be neglected too. In the case when the
mittivity in the vicinity of the membrane is inhomogeneou
the equation of Poisson has to be solved once again.

VI. CONCLUDING REMARKS

The results of the present work can be useful when co
putation of the electric field around the channel is carr
out. If the electrodes are hemispherical with radii consid
ably greater than the typical dimension of the channel,
much less than the distance between the membrane an
electrodes, the electric field distribution around the chan
will be the same as in the real case. This will facilitate stu
ies of this kind.

The long-range distance perturbation of the electric fi
around a channel prompts that in a membrane with a m
than one channel a long-range repulsion interaction will
pear between them.

One of the main conclusions of the obtained results h
is that when the bulk resistivity and the dielectric permitti
ity are homogeneous throughout all the electrolyte~the re-
gion of the channel included!, and when the Debye length i
much less than the radius of the channel, the forces, ac
on a narrow channel are practically equal to those calcula
by Abidor et al. @8#. The theoretical description of the rea
situation when these assumptions are not valid, rests in
open question.
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APPENDIX A: ELECTRIC POTENTIAL IN THE
DIELECTRIC PART OF THE MEMBRANE

The potentialU(r d,zd) from Eq.~17! satisfies the Laplace
equation. The function 2zd/d, defined in the interval
(2d/2,d/2) and considered as periodic with periodd can be
decomposed in a Fourier series in the following way:
1-8
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2zd

d
5 (

n51

`
2

pn
~21!n11sinS 2pn

d
zdD . ~A1!

Writing the Laplace equation in cylindrical coordinat
(r d,wd,zd), taking into account that the potential is axisym
metric, and using Eq.~A1!, we obtained that the amplitude
An(r d) satisfy the equation

1

r d

]

]r d
r d

]

]r d
An~r d!2S 2pn

d D 2

An~r d!2
~21!n11

pn

2r 0

~r d!3
50.

~A2!

The general solution of this equation is

An~r d!5C1
nI 0S 2pn

d
r dD1C2

nK0S 2pn

d
r dD

2
4~21!n11r 0

d
PS 2pn

d
r dD , ~A3!

whereC1 and C2 are arbitrary coefficients, andK0(x) and
P(x) are defined after Eq.~18! and via Eq.~19!. The func-
tion P(x) is presented graphically in Fig. 5. Whenx tends to
infinity it tends to zero as 1/x3. The function diverges atx
50 as21/x.

To determine the coefficientsC1
n and C2

n the boundary
conditions have to be used. The Bessel functionI 0(x) tends
to infinity when x tends to infinity, while the amplitude
An(r d) have to tend to zero in this limit. ConsequentlyC1

n

50.
From Eqs.~16! and ~17! it follows that

(
n51

`

An~r 0!sinS 2pn

d
zdD50. ~A4!
04190
Consequently,An(r 0)50. The calculation of the coefficien
C2

n in a way assuring this requirement gives for the amp
tudesAn(r d) the expression presented by Eq.~18!.

APPENDIX B: FIELDS AND FORCES ON THE SURFACE
OF THE CHANNEL

Without loss of generality we will consider a point of th
channel with cylindrical coordinates (r 0,0,zd). The Maxwell
tensorsTch,d andTch,w when approaching the point from th
side of the dielectric and the side of the electrolyte are

FIG. 5. Graphical presentation of the functionP(x) from
Eq. ~19!.
Tch,d5«dS 1
2 $@Er

d~r 0 ,zd!#22@Ez
d~r 0 ,zd!#2% 0 Er

d~r 0 ,zd!Ez
d~r 0 ,zd!

0 2 1
2 $@Er

d~r 0 ,zd!#21@Ez
d~r 0 ,zd!#2% 0

Er
d~r 0 ,zd!Ez

d~r 0 ,zd! 0 2 1
2 $@Er

d~r 0 ,zd!#22@Ez
d~r 0 ,zd!#2%

D
~B1!

and

Tch,w5«wS 1
2 @Ez

d~r 0 ,zd!#2 0 0

0 2 1
2 @Ez

d~r 0 ,zd!#2 0

0 0 2 1
2 @Ez

d~r 0 ,zd!#2
D , ~B2!

whereEr
d(r 0 ,zd), Ez

d(r 0 ,zd), andEz
w(r 0 ,zd) are defined by Eqs.~24! and ~22!.

Using Eq.~20! and the approach described after that equation, we calculated the radial componentf r(r 0 ,zd) of the force
density acting on this point. The final result is

f r~r 0 ,zd!5 1
2 ~«w2«d!$@Ez

d~r 0 ,zd!#2%1 1
2 «d$@Er

d~r 0 ,zd!#2%. ~B3!

In this way, Eq.~26! is deduced.
1-9
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For narrow cylindrical channels withr 0!d the resistance
R ch

0 (r 0) from Eq. ~12! is

R ch
0 ~r 0!5

r

p

d

~r 0!2
. ~B4!

In this limit the quantityl (r 0) from Eq.~13! is expressed via
r 0 andd as

l ~r 0!'
~r 0!2

d
. ~B5!

The integration off r(r 0 ,zd) on the surface of the mem
brane permits to obtain the general forceFch(r 0) as this is
done in Eq.~27!. Using Eq.~B5!, the result of the integration
is

Fch~r 0!5
pr 0

d
~«w2«d!~U0!2

1p«dr 0E
2d/2

d/2

@Er~r 0 ,zd!#2dzd. ~B6!

We denote withg(r 0 /d,zd/d) the function:

gS r 0

d
,
zd

d
D 5

zd

r 0
2

4pr 0

d (
n51

`

35 ~21!n11nF PS 2pn

d
r 0D

K0S 2pn

d
r 0D K1S 2pn

d
r 0D

2P8S 2pn

d
r 0D G sinS 2pn

d
zdD 6 . ~B7!

Let I (r 0 /d) be defined in the following way:

I S r 0

d D5
4~r 0!3

d4 E
2d/2

d/2 FgS r 0

d
,
zd

d D G2

dzd. ~B8!

ThenFch(r 0) from Eq. ~B6! can be presented in the follow
ing way:
04190
Fch~r 0!5
pr 0

d
~«w2«d!~U0!21I S r 0

d D pr 0

4d
«d~U0!2.

~B9!

The thickness of the lipid bilayer is of the order of 40 Å. Th
radius of the channel must be at least several times the
mension of one water molecule. The minimal radii of t
water channel, reported in the literature, are of the orde
1.3 Å @33#. Consequently in all the realistic cases the va
of the ratior 0 /d is superior to 0.03. The numerically calcu
lated values of the functionI (r 0 /d) for values of its argu-
ment, belonging to the interval~0.03–0.2!, are presented in
Fig. ~6!. They are of the order of 1, and the functionI (x) can

FIG. 7. Graphical presentation of the functionJ(r 0 /d) from
Eq. ~C5!.

FIG. 6. Graphical presentation of the functionI (r 0 /d) from
Eq. ~B8!.
1-10
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be fitted in this interval of values of its argumentx by the
quadratic polynomial:

I ~x!52.0211x118x2. ~B10!

ReplacingI (r 0 /d) in Eq. ~B9! with the mean valuea of this
function, we obtain Eq.~28!.
04190
APPENDIX C: FIELDS AND FORCES ON THE SURFACE
OF THE MEMBRANE OUT OF THE CHANNEL

Without a loss of generality we consider a point of t
boundary of the membrane on its surface out of the chan
to the side of the positive electrode with cylindrical coord
nates (r d,0,d/2), r d.r 0. The electric field around this poin
in the electrolyte and in the dielectric are given by Eqs.~29!
and ~30!. The Maxwell tensors when approaching the po
from the side of the dielectric,Ts,d and from the side of the
electrolyte,Ts,w, are
interval
e

Ts,d5«dS 1

2 H FEr
dS r d,

d

2D G2

2FEz
dS r d,

d

2D G2J 0 Er
dS r d,

d

2DEz
dS r d,

d

2D
0 2

1

2 H FEr
dS r d,

d

2D G2

1FEz
dS r d,

d

2D G2J 0

Er
dS r d,

d

2DEz
dS r d,

d

2D 0 2
1

2 H FEr
dS r d,

d

2D G2

2FEz
dS r d,

d

2D G2J D
~C1!

and

Ts,w5«wS 1

2 FEz
dS r d,

d

2D G2

0 0

0 2
1

2 FEz
dS r d,

d

2D G2

0

0 0 2
1

2 FEz
dS r d,

d

2D G2
D . ~C2!

Using Eq.~20! and the approach described after that equation we calculated the radial componentf r(r
d,d/2), of the force

density acting on this point. The final result is

f r S r d,
d

2D52«dEr
dS r d,

d

2DEzS r d,
d

2D . ~C3!

Using Eqs.~C3! and ~B5!, the forceF0
s from Eq. ~33! can be presented in the form

F0
s~r 0!52«d~U0!2

pr 0

d2 Er 0

` ~r 0!2

~r d!2S 12
r 0

d H r 0

r d
2

4pr 0

d (
n51

`

nF PS 2pn

d
r 0D

K0S 2pn

d
r 0D K0S 2pn

d
r dD2PS 2pn

d
r dD G J D drd.

~C4!

We denote withJ(r 0 /d) the following integral

JS r 0

d2D 52
4p2r 0

d E
r 0

`S r 0

r dD 2H (
n51

`

nF PS 2pn

d
r 0D

K0S 2pn

d
r 0D K0S 2pn

d
r dD2PS 2pn

d
r dD G J drd. ~C5!

Repeating the estimations of the preceding Appendix, we calculated numerically the value of this integral in the
0.03<r 0 /d<0.2. The results are presented on Fig. 7. In this interval the values ofJ(r 0 /d) are of the order of 0.1 and can b
fitted by a polynomial of second degree:

J~x!50.1010.71x2 . ~C6!

Doing in Eq. ~C4! the integration with respect tor d and replacingJ(r 0 /d) with some mean valueb, we obtain
Eq. ~34!.
1-11



tt.

io

en

ar

io-

m.

I. BIVAS AND C. DANELON PHYSICAL REVIEW E 69, 041901 ~2004!
@1# S.M. Bezrukov, L. Kullman, and M. Winterhalter, FEBS Le
476, 224 ~2000!.

@2# E.M. Nestorovichet al., Proc. Natl. Acad. Sci. U.S.A.99,
9789 ~2002!.

@3# U. Zimmermann, Biochim. Biophys. Acta694, 227 ~1982!.
@4# E. Neumannet al., EMBO J.1, 841 ~1982!.
@5# J. Teissie, Cell. Mol. Biol. Lett.7, 96 ~2002!.
@6# B.V. Deryagin and Y.V. Gutop, Colloid J. USSR24, 370

~1962!.
@7# R. Benz, F. Beckers, and U. Zimmermann, J. Membr. Biol.48,

181 ~1979!.
@8# I.G. Abidor et al., Bioelectrochem. Bioenerg.6, 37 ~1979!.
@9# V.F. Pastushenko and Y.A. Chizmadzhev, Gen. Physiol. B

phys.1, 43 ~1982!.
@10# M. Winterhalter and W. Helfrich, Phys. Rev. A36, 5874

~1987!.
@11# R.W. Glaseret al., Biochim. Biophys. Acta940, 275 ~1988!.
@12# A. Barnett, Biochim. Biophys. Acta1025, 10 ~1990!.
@13# C. Wilhelm et al., Biophys. J.64, 121 ~1993!.
@14# J.C. Weaver and Y.A. Chizmadzhev, Bioelectrochem. Bio

erg.41, 135 ~1996!.
@15# W. Sung and P.J. Park, Physica A254, 62 ~1998!.
@16# H. Isambert, Phys. Rev. Lett.80, 3404~1998!.
@17# M. Winterhalter, Colloids Surf., A149, 161 ~1999!.
@18# R.P. Joshi, Q. Hu, R. Aly, K.H. Shoenbach, and H.P. Hjalm

son, Phys. Rev. E64, 011913~2001!.
@19# K.C. Melikov et al., Biophys. J.80, 1829~2001!.
@20# D.P. Tielemanet al., J. Am. Chem. Soc.125, 6382~2003!.
@21# Electromanipulation of Cells, edited by U. Zimmermann and
04190
-

-

-

G. A. Neil ~CRC Press, Boca Raton, 1996!.
@22# Planar Lipid Bilayers: Methods and Application, edited by W.

Hanke and W.-R. Schlue~Academic Press, London, 1993!.
@23# B. Hille, Ionic Channels of Excitable Membranes, 2nd ed.

~Sinauer Associates, Sunderland, MA, 1992!.
@24# H. Faxen, Ark. Mat., Astron Fys.17, 1 ~1922!.
@25# P.C. Jordan, Biophys. J.51, 297 ~1987!.
@26# C. Corryet al., Chem. Phys. Lett.320, 35 ~2000!.
@27# W. Im and B. Roux, J. Mol. Biol.322, 851 ~2002!.
@28# S. Bransburg-Zabaryet al., Biophys. J.83, 3001~2002!.
@29# C. Danelon, A. Suenaga, M. Winterhalter, and I. Yamato, B

phys. Chem.104, 591 ~2003!.
@30# J. Newman, J. Electrochem. Soc.113, 501 ~1966!.
@31# N. von der Heydt and I. von der Heydt, Z. Phys. B37, 249

~1980!.
@32# O.S. Smartet al., J. Mol. Graphics14, 354 ~1996!.
@33# O.S. Smartet al., Biophys. J.72, 1109~1997!.
@34# J.C. Neu, K.C. Smith, and W. Krassowska, Bioelectroche

Bioenerg.60, 107 ~2003!.
@35# L. D. Landau and E. M. Lifshits,Electrodynamics of Continu-

ous Media, Course of Theoretical Physics~Pergamon, New
York, 1960!, Vol. 8.

@36# M.S.P. Sansomet al., Biophys. J.73, 2404~1997!.
@37# D.P. Tieleman and H.J.C. Berendsen, Biophys. J.74, 2786

~1998!.
@38# J.O’M. Bockris, M.A.V. Devanathan, and K. Mu¨ller, Proc. R.

Soc. London274, 55 ~1963!.
@39# See, e.g., P. C. Hiemenz,Principle of Colloids and Surface

Chemistry~Marcel Dekker, New York, 1986!.
1-12


