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Fields and forces acting on a planar membrane with a conducting channel
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Modeling electric fields and forces around a channel in a planar membrane is still an open problem. Until
now, most of the existing theories have oversimplified the electric field distribution by placing the electrode
directly at the entry of the channel. However, in any relevant experimental setup the electrodes are placed far
away in the electrolyte solution. We demonstrate that long-range deformation of the electric field distribution
appears around the membrane, spanning on distances of the order of the distance between the membrane and
the electrode. The forces acting due to this distribution are in most of the cases negligible. They can be
important for channels with radii of the order of the thickness of the layer of structured water at the oil-water
interface.
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[. INTRODUCTION Other effects such as a resistance asymmetry under reversed
polarity have been observed experimentally and with com-
One of the basic functions of a biological membrane is toputational method§27—-29.
control the permeation of specific substrates between sepa- In the present work we consider the stationary case of the
rated compartments by modifying the properties of the memcurrent flows. We also neglect the magnetic field effects due
brane channels. Examples of such channels and the detailé@ the current flows. Consequently, all forces under consid-
description of the electric field distribution in such systemseration are of electrostatic origin. Hence, first of all we have
are of great interegRefs.[1,2], and the references thergin to calculate the electric field distribution between the two
In biotechnology, cell walls are permeabilized with shortelectrodes. This gives readily the electric field forces which
external electric pulsg$—5]. Such pulses induce fluctuating depend on the channel radius.
defects(pore$ in the lipid matrix which allow the transfer of ~ Until now, it was usually assumed that the perturbation of
giant molecules. Many models of the electroporation werdhe electric field due to the presence of a microscopic con-
already developed, but until now a final model is not estabducting channel is of short range. This implies that in the
lished[6—20]. More complete reviews on this subject can bedirection parallel to the membrane the perturbation spans on
found, e.g., in Ref[21]. a distance of the order of a few channel radii. The forces thus
Many experiments were performed on planar lipid bilay- obtained depend only on the dimensions of the channel. Ap-
ers[22]. Such membranes have typically a conductance oplying implicitly the idea that the electrodes are very near the
less than a few pS/mfnA single defect of a few angstrom in membrane and that the channel is part of a circular cylinder
size would be easily detectable. Conducting channels modifyith radiusr, and heightd, Abidor et al. [8] derived the
the electric field distribution and, consequently, the forceslectric field contribution to the energy of the pore, permit-
acting on a membrane. In what follows, all conducting struc-ting to obtain the electric forcE*"(r) (defined as the taken
tures in the membrane will be described as channels. with negative sign derivative of this energy with respect to
An essential characteristic of a channel is its effectivethe pore radius,) acting on the edge of the pore and tending
resistance(i.e., the ratio between the potential difference,to open it:
applied to its two ends and the current throughThis quan-
tity depends on the dimensions of the channel, its sh2pke -
and the Faxen correction factor which takes into account FAb(rO)zTO(aW—sd)(Uo)z, (1)
frictional interactions between the charge carriers and the
channel[24]. When studying protein channels in electrolyte
solution, the distribution of charges on the surface of thewheree,, andey are the permittivities of the water and the
pore and the screening effects must be taken into accoumtembrane, respectively, arndl, is the potential difference,
[25,26]. This can give as a consequence nonlinear effectapplied to the electrodes. Later, Pastushenko and Chiz-
even for the so called large water-filled channels, i.e., depemmadzhev{ 9] took into account the redistribution d&f, be-
dence of the effective channel resistance(igrihe potential tween the bulk electrolyte and the channel, but to derive their
difference applied to the chann@7-29, (ii) the bulk con-  results, once again they placed implicitly the electrodes near
ductivity (or the absolute electrolyte concentraji¢@7,29.  the membrane, applying potential difference to them, equal
to the potential difference on the channel.
In the present paper we demonstrate that the electric field
*Electronic address: bivas@issp.bas.bg perturbation depends on the distance between the membrane
"Electronic address: danelon@ipbs.fr and the electrodes, while for narrow channelsth radii,
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field E in the bulk of the electrolyte and its potentibl
satisfy the equations dZ=0 andE= —gradU. The poten-

tial U(r) satisfies the Laplace equation and is caused by the
surface charges on the borders of the electrolyte including
those of the channel.

As it was already pointed out, most of the theoretical
models calculate the electric forces by placing the electrode
directly at the channel entrance. However, in the real experi-
ments the electrode is kept at some macroscopic distance.
For example, the channel size is typically less than a few
nanometers, while the electrode is placed at a distance of a
few millimeters. A planar lipid bilayer can be treated as an
insulator, because a reasonably good preparation does not
show (on averaggany conducting defect within a bilayer.
The presence of a conducting channel will obviously lead to
an electric field perturbation. Relatively few attempts have
been made to account for such effef@6,31,9,10. Therein
it was assumed that the distance between the electrodes tends
to infinity and that the thickness of the dielectric layer tends
to zero. In this particular case it was shown that in each of
, , the half-spaces on both sides of the layer the electric field

FIG. 1. Experimental setup for conductance recording of planagjistrihytion coincides with that of a conducting charged disk
model membranes. The two chambers are approm_m_at&ly:m in \with a radiusr,, equal to that of the channel, placed in
size and are separated by a Teflon sheet containing a hole wit ielectric medium with dielectric permittivitg,, equal to

dimensions~0.1 mm. The cuvette is filled with electrolyte and a . :
lipid bilayer is formed across the Teflon hole using one of the es-that of the elecirolyte. On the surface, presenting the dielec-

tablished techniquesee, e.g., Ref2]). Into the lipid membrane of ric layer, there is a change of the sign of the electric poten-

aboutd=4 nm thickness a single conducting channel can be indial and of the electric field. Let a reference frame be placed

serted. A transmembrane voltadg is applied via two electrodes at with origin in the Cen.ter of the channel and with plaxX¥
a distance. from the membrane. parallel to the dielectric layer and the electrodes. lrex) be

the cylindrical coordinates of a point with coordinates
considerably less than the thickness of the membréme  (X,y,2), i.e., the relatiom = yx“+y< holds. Then a potential
related forces depend on the dimensions of the channel. Wwas obtained of the kinfiLO]:

Channel

Planar lipid
bilayer

o
R

Il. ELECTRIC FIELD BETWEEN TWO ELECTRODES
SEPARATED BY A PLANAR MEMBRANE CONTAINING
A SINGLE CONDUCTING CHANNEL

, @

U
U(r,z)=sgnz) ?arcco

where
First of all, we revisit certain earlier electric field calcula-

tions for the idealization of the experimental setup shown in R2— HIr2+ 22— (ro) 21+ \[r2+ 22— (ro) 21>+ 4(ro) 222

Fig. 1. It consists of a flat infinite dielectric layer of thickness 3

d, placed at a distande between two parallel flat electrodes

at a voltageU,. The dielectric layer contains a conducting From these equations it follows that fB&>r the field dis-
axisymmetric channel of a mean radiug filled with the tribution in the electrolyte coincides with this of a point
electrolyte. The channel is not necessarily part of a circulacharge equal to the total charge of the disk. It can be shown,
cylinder. If the area of the cross section changes along itthat if \’x?+y?+z?>10r,, the deviation of the equipotential
axis, rq is the radius of a cylinder with the property that the lines from these of a point charge is less than 1%. The per-
volume of a part of such a cylinder with the height of the turbation of the field due to the presence of the channel de-
channel is equal to the volume of the channel. The effectivereases as ;[)5(2+y2+ 22, i.e., it is a long-range perturba-
channel radius r, can be written as: ry tion.

=[(1/7-rd)f‘1’§,28(z)dz V2 whereS(z) is the cross section This model is suitable for the description of channels with
of the channel at distancefrom the midplane of the mem- effective diameters much greater than the thickness of the
brane. membrane.

We assume a homogeneous conductivity throughout the In the present work we deal with channel radii which are
aqueous space and no conductivity of the hydrophobic dimuch less than the thickness of the membrane, and neglect
electric layer. As a consequence the relation between thany particular molecular details characterizing the channel.
electric fieldE and the current densityin the electrolyte is  In addition we also expect that the field distribution at some
j=0cE, whereo is the bulk conductivity of the electrolyte. distance, sufficiently greater than the mean radisf the
We restrict ourselves to the stationary case where the bulkhannel, does not depend on the detailed shape of the chan-
charge density is zero. Under these conditions the electrinel. To verify this hypothesis, we calculated numerically the
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FIG. 2. Numerically calculated distribution of the potential field Dielectric |
in the electrolyte to the side of the positively charged electrode. The el

electrodes are placed at a distahcel cm on the two sides of the i
membrane. The channel has the form of the inner half of tore with !
small diameter equal to the thickness 40 A of the membrane and :
throat radius equal to 4 A. The voltage applied to the ugpesi- !
tive) electrode isUy/2=0.1V, (a) the domain of distances of the .I +
order of the channel radiugp) the domain of distances much i
greater than the channel radius and much less than the distance
between the membrane and the electrode.

2L

FIG. 3. Sequence of charges, creating the potential in the long
distance range of the electrolyte above the membrane. The equipo-

potential distribution for the case of a channel modeled byential surfaces, determined by the equatiari=L corresponds to
the positive electrode and is kept at the poteritigi2. The condi-

the inner half of a tore with a small diameter equal to the

thickness of the dielectric. The potential distribution is a so-ional boundary between long and short distances is a hemisphere

lution of the Laplace equatiodU=0 with the following  -p "7 centero’ and radiusR, and potentialg /2. The upper
boundary conditions for the upper half of the electrolytg: boundary of the lipid membrane is indicated Ay

U=0 on the part of the plane of symmetfip the middle of . ) .

the membraneinside the electrolyte(2) U=U,/2 on the determined from the following equation:

positive electrode(3) (dU/dn)=0 on the borders of the

dielectric. Wheren is the normal to the border of the dielec- q Ur U R
tric in the point under consideration. The third boundary con- S N it Y o(—°> , (4)
dition is a consequence of the fact that the ion current is dmenRo 2 2 L

tangential to the borders of the dielectric.

The results of the numerical calculation presented in Figwheres,, is the electric permittivity of the electrolyte. If the
2 show that, for distances larger than some channel radii, theonstantU,/2 is added to the potential, created by these
equotentlal _||neS have-the form -Of a hemlsp_here. This is |rthargeS, we obtain the solution of the Lap|ace equation, sat-
agreement with the earlier analytical calculation of Newmansfying the above boundary conditions.
[30]. _ N _ This result allows to calculate the functids(r’,0), r’

The next step is to search for an explicit expression of the- R | permitting to estimate the range of the field perturba-

in Fig. 1, we introduce a reference fratd€Y’Z’ with origin

O’ on the axis of the channel, with a plaKéY' coinciding ,
with the upper boundary of the membrane, and aXidi- qv(r )
rected to the positive electrodsee Fig. 3. The cylindrical Ug
coordinates in this last frame are denoted by, ¢',z"). The
electric potentialU(r’,z") is axisymmetric(it does not de-

pend ong). Let S, be an equipotential hemisphere, situated

in the electrolyte, with a cented’, radiusR,, andz’>0  Wwith
(see Fig. 3 Ry is of the order of some channel radii and
much less than the distance between the membrane and the ) [
electrode(i.e., Ry/L<1). The distribution of the potential V(—) —1— — z R — (6)
U(r’,z') in the electrolyte between the electrode and the L

hemisphere satisfies the following boundary conditidis, n+
U=Uy/2 on the upper electrodé€?) U=URO/2 onsy, (3

[oU(r",2')9z' ]|, —o=0 forr'>R,.

Consider now a potential, created by an infinite sequencé&he functionV(r’/L) is a decreasing function of the argu-
of point charges placed on the a¥d$ with coordinates 0, mentr’/L and satisfies the relatiofthis and all the other
+2L,*+4L,...,=2nL, ... (see Fig. 3 Let the charge in relations in the present work are obtained with the help of the
the point with the respectiva be (—1)""1q, whereq is  software Maplg

®)
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¢l

lim —————7=0. (7
r’/L—'°°exp{—ln(2)r}

We chose this kind of the exponent because the functions
V(x) and exp—In(2)x] have identical first and second term Ug,/2
of their development in a Taylor series arouxw 0. It can
be shown numerically, that the ratit(x)/exd —In(2)x] is in
the interval (0.8,1) for &x<<1 and tends to 1 whextends

d £y Dois Dielectric

to zero. Consequently, up to macroscopic distanrek Oy ro
(much greater than the mean radiysof the channegl the - £ Ug,/2
field near the pland, in the electrolyte(see Fig. 3is prac- B 5

tically equal to that of the chargg i.e., a long-range pertur-
bation of the electric field appears due to the presence of
channel. For the points near the plafg at distances from
the channel greater thadn the perturbation of the electric
field sharply decreases to zero. Because of the dependence ir
Eq. (7) this decrease is faster than the exponential one. As it E,
was explained above, the equipotential surfaces in the elec-
trolyte look like hemispheres for distances from the channel FIG. 4. Spherical electrodes, permitting the analytical calcula-
much greater than its radius. The deviation from a sphergon of the electric fields and the forces acting on the membrape.
will be essential when the functiov(r’'/L) becomes sub- andE, are the positive and the negative electrodes having the form
stantially less than 1. This will happen for distaneés-L of hemispheres with radli, with parallel equatorial planes situated
(for r’ <L this function is practically equal to)1Evidently, ~ at a distancel equal to the thickness of the membrane. The mem-
the positive eIectrodEp can be situated on some of these brane is m_serted |n_the gap bt_atween the hemispheres and contains a
spherelike equipotential surfaces at distance less than, but §fannel with an axis, determined by the centBgsand O, of the
the order ofL from the channel. The change of the form of &'€ctrodes and a mean radiug The channel is covered by two
the electrode to a true hemisphere with a radius, equal to thréefq'sghe.reﬁp ﬁnds"&’ W'tfh Centersgﬁ ar_]r(:]O” and rﬁd"R.O (ﬁo
average distance between the points of this equipotential sup =) R0 S Odt © order ot slomeh radflo. _aﬂese /tWO emisp elres
face and the channel, will keep the essential properties of t e supposed equipotentia’ with potent /2. respectively.
field in the electrolyte around the channel. The same is alsohe b_orders of the dielectric to the side of the positively and the
valid for the negative electrode Qegatlvely charged electrodes are denoted WiftandA,,, respec-
- . n: L tively.
In the following Sections the electric fields and forces

acting on a membrane between electrodes of this kind will be . .
9 whereR,=7R, is the excess resistance of each of the spaces

n

Electrolyte

calculated. between the electrode and the corresponding equipotential
hemisphere, covering the entrance of the channel;ands

Il. CALCULATION OF THE ELECTRIC FIELD the resistance of the short distance ranges of the channel plus
EOR SPHERICAL FORM OF THE ELECTRODES the resistance of the channel. The exact calculatio® gf

can be carried out if the structure of the channel is known.
Later on, the electrodeg, and E, are assumed to be  The calculated resistancé, and R,, are

hemispheres with cente@®, andO, on the axis of the chan-

nel and equatorial planes coinciding with the borders of the 1 1

membrangsee Fig. 4. Let S, andS, be hemispheres, con- R = L e 9
i 0 " e T2 Ry L)

centric with the electrodés;, andE,,, and let they have radii 7\ Ro

Ry of the order of some radii of the channel. They are as-
sumed equipotential with potentials Ug /2, respectively. where p is the bulk resistivity. The potentidlr can be

The ensemble of points in the electrolyte betw&grandS,  expressed as
and betweerk,, and S, will be called long distance range,

while the points betwee8, and the channel and betwe8p Reh

and the channel will be called short distance range. Ury=—77 1 Uo. (10
Following the approach by Newm&8&0] the macroscopic B(__ — |+ Reh

ion currentl between the spherical electrodes is m\Ro L

U Let r be the distance between the cen@y of the upper
|l=— ° (8)  electrode and a point somewhere in the space between the
RptRentRn hemisphere€, andS,. The potentiall(r), Ry<r<L is
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consequence of this assumption and of &g), the bound-
—|+Ren U ary conditions for the solutions of the Laplace equations on
0 (11 the flat parts of the boundaries of the membrane are

q . d [(rg)| Ug
. . Ulr® === 1__d —-—. (15)
For r>R,, the functionU(r) must be independent from 2 r 2
the arbitraryR,. ConsequentlyR.,(rq,Rg) can be presented
in the form On the surface of the pore the boundary condition is
p 0 d
===+ . 2z [(rg)| U
Ren(ro.Ro) = | == o[+ REr0). (12 Ut 2)= T( LN do>) Uo. 6
r

We define a lengtl(rg) via the relation
These boundary conditions implicitly assume that inside the
L_ i+ ZRo (fo) (13) narrow channel the distribution of the potential is linear and
I(ro) ro cht? o/ that the perturbations of the electric field in the electrolyte
around the entrances of the channel are of short range
Then the potential distributiohl(r) in the electrolyte in the (~r0) and their effect can be neg|ected_ The exact distribu-
long distance range to the side of the positive electrode cafions of the electric field in these zones are calculated by
be presented as Neu, Smith, and KrassowsK&4] via numerical solution of
the Laplace equation.

1 The potential distribution functiot(r%z% inside the
I(ro) r U membrane is expanded in a Fourier series of the kind
U(r)= 1 13 (14
TR d d
I(ro) L T L G
ur®z%= g o |79 d

The calculation ongh(ro) can be done by appropriate

computer modeling32,33. * 2mn Uo
The lengthl (r,) is a microscopic one, of the order of the + > Ay(rdsin Tzd) - - 17
thickness of the membrane and the radius of the channel, n=1

while L is the macroscopic distance between the electrodes ) ) ) )
and the membrane. The inequalityr,)<L always holds. As shown in Appgndlx A, the values of the Fo_urler ampli-
That is why in what follows we will omit the factor ilf  tudesAq(r®) obtained from the Laplace equation and the
considering formally the distandeas equal to infinity. A4~ Presented above boundary conditions are
participates in the potential distribution inside the factor
[1/(rg) —1/L], this approximation will practically not influ-
ence the final results.

For the part of the space between the sph&igeandS,

)
An(r)=4(~1)"" 17

(see Fig. 4 the result for the potential distribution is anti- Zlnr )

symmetric with respect to the plane in the middle of the d © 2mn 2mn

dielectric. X o KO( q " )_P<Tr ) ,
Later on in this section we calculate the electric field dis- KO(TrO)

tribution for the case of a cylindrical channel with radiys

sufficiently smaller than the thicknessof the membrane. (18

The opposite case of pores with radii, much greater than the

thickness of the membrane is considered by Winterhalter andthere Ky(x) is the modified Bessel function of zero order,

Helfrich [10]. and P(x) is expressed by the modified Bessel functions
The potential inside the membrane must also satisfy the| ,(x) andl,(x) of the zero and first order and the modified

Laplace equatiod U =0. The dielectric layer is presented in Struve functions_o(x) andL,(x) of zero and first order as

Fig. 4. LetX9Y9z% be a frame of reference with origi@®  follows:

coinciding with the center of the channel and with plane

X9Y9 parallel to the dielectric. Letrf,¢% 2% be the cylin- 1 < Ky(t)
. . . . . 0

drical coordinates in this frame. Here the upper indeve- P(X)=— —2x|o(x)J -

fers to the coordinates inside the dielectric part of the mem- 2x X t

brane. Due to the rotational symmetry, the potential
distributionU(r9,z% does not depend on the coordinate
Because of the conditiony<<d, the long distance range is

assumed to span up to the boundaries of the channel. As a x(wao(x)+2)]]. (19

X dt—Ko(X)[ (—Xx2L 1(X) — 2x2+ 2) 1 o(X) + X1 1(X)
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In this way, the distribution of the potential field in the elec- The electric field in the electrolyte inside the channel is
trolyte as well as inside the dielectric are determined whenlirected along the axig. Its projectionE}(r,z), r<r, and

the membrane contains a narrow conducting channel and thed/2<z<d/2, on the axisZ, equal to the projection on the
electrodes have the form of hemispheres. These results widlame axis of the electric field on the surface of the channel
be used in the following section for the calculation of the Ef(ro,zd) approaching it from the side of the dielectric, is

forces, acting on the membrane. calculated from Eq(16):
dU(rg,z [(ro)| U
IV. FORCES ACTING ON THE MEMBRANE DUE EY(ro,2)=E%rq,2% = - WV(ro.2) _[1_ (_0)} ity
TO THE PRESENCE OF A CONDUCTING CHANNEL 9z ro | d

(22)

To calculate thg forces, acting ona membrane due to Pre$s each point of the dielectric the projectitﬁﬁ’(rd 2% of the
ence of a conducting channel we will use the Maxwell stress ’

: : . electric fieldE(r9,z% on a ray, starting from the axis of the
tensor{35], as it was done by Winterhalter and Helfrigt0] ' ! .
and Neu, Smith, and Krassowskad]. channel, parallel to the membrane, and passing through the

The definition of the Maxwell stress tensbin a point of point under consideratiofiater on we will refer to projection

. . ) o e f this ki h ial f th X
a medium with electric permittivity and electrostatic field of this kind as the radial component of the vegtisr

E is [35] Ju(r%,z%

Ed(rd,z%=— (23

d
T=e¢(EE—3|EJ2), (20 or
where withl is denoted the unit tensor and wikB is de- On the surface of the channel this component, calculated

noted the tensor product of the vectérandB. The forces, from Egs.(17) and(18), is
appearing in dielectric media due to presence of electric field

can be described by the Maxwell tensor in the following way l(ro) | 20 4mry &
[35]. Let us consider some part of the dielectric and an in- EY(r,,z%) = — L L
finitesimal areals of its boundary §s=nds, wheren is the To To d a=
normal to the surface in the patch under consideration, and
this normal is directed outward the volumé&he forcedf, - 5
acting on this area, is cmn
o1 d © 2mn
dF=T-ds, (22) X9 (=" n . (an ) 1( d ro)
where the dot denotes the vector product of a tensor with a Lol d fo
vector. This is the force due to the electric field inside the -
volume. Evidently, if on the boundary there are no charges
and the permittivitye is the same inside and outside the _p 2mn _2mn Uo 04
volume, the field outside the volume will create a force act- a o) | g4 d’ (24
ing on the same infinitesimal area that is with the same

modulus and the opposite direction. As it was noted above,
the Laplace equation is valid inside the dielectric and insidgynere
the electrolyte. Consequently, the forces due to the electric
f_ielt_j act on the boundary between these two media. In equi- P'(x)= ip(x) (25)
librium of the system, they have to be compensated by me- dx
chanical stresses, created by the membrane in order to avoid
its deformation. To calculate the electric forces, acting on a@ndK1(x) is the modified Bessel function of first order.
infinitesimal element with areds of this boundary, two in- Let e,, and ey be the dielectric permittivity of the water
finitesimally close and parallel to it surface elements with thesolution (the electrolyt¢ and the dielectri¢the membrane
same area in the electrolyte and in the dielectric have to b&he surface force densifyacting in each point of the surface
considered. The vector, presenting the surface element in th the channel due to the electric field has two components.
electrolyte is directed from the electrolyte to the dielectricOne of themf, is along theZ axis and tends to change the
while the vector presenting the surface element in the dieledhickness of the membrane. In the present work we will con-
tric has the opposite direction. The force on the elenderis ~ Sider the case of a membrane with constant thickness and
equal to the sum of the forces, acting on the two infinitesi-area. For such an object the forces, acting along’tais of
mally close to it elements. The ratie- dF/ds determines the the membrane, do not influence its properties. The other
surface force density, acting in a point of the boundary becomponent is a radial one. As it is shown in Appendix B, this
tween the electrolyte and the dielectric. radial component,(rq,z%) is

The borders between the dielectric and the electrolyte are 1
the surface of the channel and the points of the flat surfaces dy d 2, 1 d dv12
or the membrane that are at distances greater thgrom fr(ro,2) =7 (ew—ea)Bz(ro, ) "+ 24 Br(ro, Z)]%
the axis of the channel. (26)
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WhereEg(rO,zd) andE,(ry,z% are obtained from Eq$22) Due to the existence of these two components of the electric
and (24), respectively. The general foré&"(r,), acting on field in the dielectric, the density of the force field, acting on
the channel, will be obtained by integrationfe{r,,z) over  each of the surfaces of the membrane, contains a radial com-

the surface of the channel: ponentf,(rd,dIZ), tending to close the channel. As it is
o shown in Appendix C, for narrow channels this radial com-
Fch(ro):ff,(ro,zd)ds,:zwrof f,(ro,2%)dZ". ponent is
s —di2
2
o el deelegeled o
r‘=l=—2= ré- r¢=1.
As it is shown in Appendix B, for realistic values of the radii ' 2 2 Fd=r 2] 74 2

ro. satisfying the inequalityy<d, the forceF¢"(r,) can be

resented as .
P Let us consider a crown of the boundary of the membrane

o Ty ,. o 5 with a radiugr9, thicknessdr® and a center on the axis of the
F(ro)=—5 (ew—ea)(Uo) "+ a4 ea(Uo) channel in the plane of the surface. The fodde® acting on
this crown and tending to decrease its radius is

o ro\? U2 28 279, (r9,d/2)drd. If the crown changes its radius with
d 2d(Uo)", (28) ord because of the conservation of the area of the mem-
brane the channel will change its radiug with &r
wherea is a numerical factor of the order of 1. =(r%rq)ér?. Consequently, the effective fored5, acting

The same approach will be used for the calculation of the>n the channel and having the same effect as the Fcéds
forces acting on the flat part of the boundaries of the mem-
brane. Let us consider a point with cylindrical coordinates
(r9 ¢,d/2), r>r, on the surface of the membrane, taken for dFS=r—0f (rd 9) drd (32)
definiteness to the side of the positive electrode. From the O pd ' 72 '
side of the electrolyte the electric field has only a radial
component E'(r¢,d/2), equal to the radial component _ . _
EY(r9,d/2), r>r,, of the electric field when approaching the The total effective forceF; acting on the channel and

point from the side of he dielectric. It can be calculated fromeduivalent to the action of the electric forces on the surfaces
Eq. (14): of the membrane is

d
d d au<rd,§) I(rg) U -
evf o 9} _paf 0 9] __ o) Uo ngzf dFg, (33)
r\’ o2 o2 ord (rd)2 2 ro
(29
) ) ) o ) _where the multiplier 2 takes into account both surfa@es

From the side of the dielectric the electric field has in addi-the sjde of the positive electrode and to the side of the nega-
tion a componenEy(r?,d/2), r>r,, along theZ axis that tive ong delimiting the membrane. As it is shown in Appen-

can be calculated from E@17): dix C, this force is
d U (rd,z
Eg rd=|=- # 2 3
2 0z ZIE s r.O 2 ro 2
2 Fo=—(m—PB)eg q (Up)“+0O q edq(Up)*,

(34)
B [(rg) r_o_ Aary

d d nzln

o r where B is a numerical factor of the order of 0.1. The last
result shows that contrary to the case of large ppté§ for

the narrow pores this force is of higher order with respect to

P(zlnr ) the ratiory/d and can be neglected.
d © 2mn Keeping the terms containing first order with respect to
X 2 Ko d r the ratiory/d we obtained the following expression for the

Ko(Tfo) total forceF'°Y(r,), appearing due to the existence of a nar-

B row conducting channel with a radiug and tending to open
it:
- P(Zinrd) ﬁ. (30)
d d tot 7Tr0 2 ’7Tr0 2
Fio%rg)~ T(Sw_Sd)(Uo) + Hsd(uo) . (39
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V. DISCUSSION In the long distance range the smearing of the charges in
the diffuse layer has a twofold effect. The first one is the
local increase of the ion concentratiGand consequently the
specific conductivity near the dielectric. The numerical es-
timations of this increase for the mentioned above concen-
tration ranges of the KCI solutions give a 2.5% change of the
specific conductivity in the electrolyte. Consequently this ef-

ect can be neglected. The second effect is the redistribution
of the potential 2J(r) [U(r) determined from Eq(11)],

I?alpplied to the membrane at a distamdeom the axis of the

channel, between the diffuse layers and the dielectric. The

potential drop on each of the double layerg ég,0(r)]/D.

Consequently, to take into account this effect, the thickdess

The first term on the right-hand side of E@5) repro-
duces the well known result of Abidat al.[8]. To estimate
the second one the values&f andey must be taken. In the
volume g,,~ 80, Wheregg is the dielectric permittivity of
the vacuum, while: 4 is in the interval 2,—6¢,. With these
values of the permittivities the calculated by us correctio
given by the second term on the right-hand side of(Bg) is
negligible. Consequently, in the frames of the assumptio
that the bulk resistivityp and the dielectric permittivity,,
are homogeneougot depending on the placéhroughout
all the electrolyte, including the interior of the channel, the
results of Abidoret al. [8] can be applied for narrow chan-

nels with radii greater than several times the dimension on the dielectric must be replaced with the quantityl

one water molecule, in spite of the splay of the electric field+(8dD)/(8Wd)]' In the mentioned above concentration of
' P play . the solute in the electrolyte, the Debye length is considerably
around the channel and the long-range perturbation of th

- : €maller than the thickness of the membrane. If the dielectric
electric field near the membrane. It is necessary to note that

in the real case the translational and rotational freedom oPerm'tt'V'ty ey Of the water in the double layer is equal to

) ; o that in the volume, this correction is of the order of several
water molecules is substantially reduced inside a narrow

channel relative to the bulk watg6,37. As a consequence pgrc_:e_nt _and can pg neglected too. In thg case when the per-
the water in the channel is highly structured and its permit-m'tt'vIty n the wcmﬂy of the membrane is mhomoggneous,
o . the equation of Poisson has to be solved once again.
tivity is much less than that in the volume. Unfortunately, we

did not find in the literature measured or simulated values of

this quantity. What is known is that in the Helmholtz layer VI. CONCLUDING REMARKS

inside the diffuse part of the electric double layer the dielec- The results of the present work can be useful when com-
tric permittivity is ~6e, [38]. This is of the order of the pytation of the electric field around the channel is carried
dielectric permittivity in the region of the hydrophilic heads gy, If the electrodes are hemispherical with radii consider-
of a lipid bilayer. For the case of equal permittivities of the gply greater than the typical dimension of the channel, but
dielectric part of the membrane and the water in the channel,ych less than the distance between the membrane and the

the first addend on the right-hand side of E2p) is zero and  electrodes, the electric field distribution around the channel
the second one becomes dominant. Evidently, in such a cag@|| be the same as in the real case. This will facilitate stud-

additional investigation of the domain with inhomogeneousies of this kind.

permittivity must be carried out in order to obtain the correct  The |ong-range distance perturbation of the electric field

force acting on the channel. _ _ around a channel prompts that in a membrane with a more
Another effect that must be taken into account in the fu"than one channel a |Ong_range repulsion interaction will ap-

description of the phenomena around the channel is thgear between them.
smearing of the surface charges on the dividing surface be- one of the main conclusions of the obtained results here
tween the electrolyte and the membrane. Dete the Debye s that when the bulk resistivity and the dielectric permittiv-

length[39]: ity are homogeneous throughout all the electrolittee re-
gion of the channel includedand when the Debye length is
enkT much less than the radius of the channel, the forces, acting
D= m’ (36) on a narrow channel are practically equal to those calculated

by Abidor et al. [8]. The theoretical description of the real
situation when these assumptions are not valid, rests in an

where ¢,, is the dielectric constant of the watdk,is the :
open question.

Botzmann constanfl is the temperatureg is the electronic
charge,z, is the valency of the electrolytéor simplicity,
only symmetrical electrolytes will be considejedl is the ACKNOWLEDGMENT

Avogadro number, and is the concentration of the electro-  \\e thank Lionel Laudebatlaboratoire de Gaie Elec-
lyte. In all the considerations so far it was assumed implicitlytrique, UniversitePaul Sabatier, Toulouse, Frander per-
that this length is much smaller than the radiysof the  forming the numerical calculations presented in Fig. 2.
channel. In the typical experiments for measurements of the

current flows through membrane channg$the used elec- APPENDIX A: ELECTRIC POTENTIAL IN THE

trolyte is a water solution of KCL with concentration be- DIELECTRIC PART OF THE MEMBRANE

tween 0.1 and 1 M. The Debye length for such an electrolyte

is between 3 and 10 A. It is comparable with the typical The potentiald(r¢ z%) from Eq.(17) satisfies the Laplace
channel radius. In the short distance range, the numericaiquation. The function 2/d, defined in the interval
solution of the Poisson equation is a possibility to take thig —d/2,d/2) and considered as periodic with peridean be
smearing into account. decomposed in a Fourier series in the following way:
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2zd_§ 2 g 2™ AL 011
T_nzl %( ) SIN| _d z" . ( )
" o N . 0.0
Writing the Laplace equation in cylindrical coordinates
(r9,¢9,2%), taking into account that the potential is axisym-
metric, and using EqAl), we obtained that the amplitudes
A,(r9) satisfy the equation /-\_M i
No’
10 40 Ao 2mn 2A g (=DM 2rg o o o2
dopd! (M) = =g~ | An(r?) T e O -o.
(A2)
The general solution of this equation is =031
2N 2mn
A rd :Cnl <—rd +CnK (_rd) -0.4 T T T T T T T T T 1
(r)=C1lo| g 2700 d o 1 2 3 4 5 6 7 &8 9§ 1o
X
4-1)" g _[2mn
- P rd], (A3)
d d FIG. 5. Graphical presentation of the functid(x) from

Eq. (19).
whereC,; and C, are arbitrary coefficients, andy(x) and

P(x) are defined after Eq18) and via Eq.(19). The func- _ : -
tion P(x) is presented graphically in Fig. 5. Whariends to ConsequentlyA,(ro) =0. The calculation of the coefficient

infinity it tends to zero as %P. The function diverges at 2 in a way assuring this requirement gives for the ampli-
=0 as— 1/x. tudesA,(r9) the expression presented by E#8).

To determine the coefficient€] and CJ the boundary
conditions have to be used. The Bessel functig(x) tends
to infinity when x tends to infinity, while the amplitudes
A,(r% have to tend to zero in this limit. Consequen@]
=0.

From Egs.(16) and(17) it follows that

APPENDIX B: FIELDS AND FORCES ON THE SURFACE
OF THE CHANNEL

Without loss of generality we will consider a point of the
o channel with cylindrical coordinates {,0z%). The Maxwell
D An(ro)sin(zlnzd) —0. (A4) t(?nsorsTCh'd :?de"*."W when approaching the point from the
n=1 d side of the dielectric and the side of the electrolyte are

FENro,29 12— [Ed(ro,2)1%} 0 Ed(ro,29)Ed(ro,2%
Tehd—¢g, 0 — H{EYro, 22+ [EX(ro,2%1% 0
EX(ro,z)EN(ro,2% 0 — HIEXro,29) 12— [EX(ro,2%]1%
(B1)
and
1EXro, 2972 0 0
TehW=¢,, 0 — 3[ES(ro,2%1? 0 : (B2)
0 0 — 3[ES(ro,2%1?

whereEY(rg,2%), Ed(ro,2%, andEY(r,,2¢% are defined by Eqg24) and(22).
Using Eq.(20) and the approach described after that equation, we calculated the radial comiagéngaf) of the force
density acting on this point. The final result is
f(ro,2)=3(ew—sa{[EZ(ro,2) 1%+ 3 eal[Er(ro,2") 1%} (B3)
In this way, Eq.(26) is deduced.
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For narrow cylindrical channels witty<<d the resistance

R2(ro) from Eq.(12) is

_rp d
71'(ro)z.

(B4)

In this limit the quantityl (ry) from Eq.(13) is expressed via
ro andd as

2
|(ro)m(r3) .

(B5)

The integration off (ro,z% on the surface of the mem-
brane permits to obtain the general fofe'(r,) as this is
done in Eq(27). Using Eq.(B5), the result of the integration
is

r
F(rg) = 32 (ew—ea)(Uo)?

d/r2
+wsdroﬁdlz[Er(ro,zd)]zdzd. (B6)

We denote withg(ro/d,z%d) the function:

2n
o5
) (—1)in d 27an
( « 27mn ) g '®
o\ g e
2mn (27Tn g
-P'|— inl — B7
r rol | sin r z (B7)

Let I(ro/d) be defined in the following way:

(ro>_4(ro)3 drz (ro Zd)
)™ d* f—d/zg d'd

ThenF°"(r,) from Eq.(B6) can be presented in the follow-
ing way:

2

dz.

(B8)
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0.0
0.00

0.15 0.20 0.25

/d

FIG. 6. Graphical presentation of the functid(r,/d) from
Eq. (B8).

0.10
ro

0.05

ro ’ﬂ'ro 2
d) ad ‘Sd(UO) .

(B9)

F(r0)= 2 (e~ ea) (Ug) -+

The thickness of the lipid bilayer is of the order of 40 A. The
radius of the channel must be at least several times the di-
mension of one water molecule. The minimal radii of the
water channel, reported in the literature, are of the order of
1.3 A[33]. Consequently in all the realistic cases the value
of the ratiory/d is superior to 0.03. The numerically calcu-
lated values of the functioh(ry/d) for values of its argu-
ment, belonging to the interv&D.03-0.2, are presented in
Fig. (6). They are of the order of 1, and the functilix) can

0.15 ~
0.10 4 /
N
©
N
(=)
| .
N
=
0.05 ~
0.00 T T T T 1
0.00 0.05 0.10 0.15 0.20 0.25

ro/d

FIG. 7. Graphical presentation of the functidir,/d) from

Eq. (C5).
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be fitted in this interval of values of its argumextby the =~ APPENDIX C: FIELDS AND FORCES ON THE SURFACE
quadratic polynomial: OF THE MEMBRANE OUT OF THE CHANNEL

Without a loss of generality we consider a point of the
boundary of the membrane on its surface out of the channel,
[(X)=2.0—11x+ 18x2. (B10)  to the side of the positive electrode with cylindrical coordi-
nates ¢9,0d/2), r®>r,. The electric field around this point
in the electrolyte and in the dielectric are given by E@$)
and (30). The Maxwell tensors when approaching the point
Replacingl (r,/d) in Eq. (B9) with the mean valuer of this  from the side of the dielectricT®¢ and from the side of the

function, we obtain Eq(28). electrolyte, 7>V, are
1 d\? d\]? d d
F B e Tt O = A dl .d 9| edl a2
ZHEf<r'2” [EZ(“z)H ° Ef(“Z)EZ(“z)
1 d\|? d\|?
0o 0 _EHE?(rd’E +|E rd'E)H °
d 1 2 2
dl .d 2| edf a2 0 2l ed pd 2| | R d
el e e
(C)
and ,
1 d
- df .d — 0 0
Z[EZ(W”
1 d\|?
TSV=¢, 0 - 5[ Eg( rdi” 0 : (C2)
1 d\|?
0 0 —Z|E9rd =
5 Ez(r >

Using Eq.(20) and the approach described after that equation we calculated the radial compg¢n&ai2), of the force
density acting on this point. The final result is

d d d
fr(rd,i) = —edES( rd=§) Ez( rd=§)- ©3

Using Egs.(C3) and(B5), the forceFg from Eq. (33) can be presented in the form

P<27Tn )
2 o — 'o
sie L 2o © (rq) _To r_0_4er d 2mn o\ (270 g
FS(ro)=—g4(Uo) peal My a) @ d ngln s Ko| =g | =Pl dr.
Ko TI’O
(CH
We denote with](ry/d) the following integral
P(Zﬂ'n
2 © _ro
ro 472rg (= 1g d 27n 27n §
J(¥>:— ] frg(l’_d) ngln > Kol =g !PT drd. (C5)
KO Tro

Repeating the estimations of the preceding Appendix, we calculated numerically the value of this integral in the interval
0.03<r,/d=0.2. The results are presented on Fig. 7. In this interval the valugg gfd) are of the order of 0.1 and can be
fitted by a polynomial of second degree:

J(x)=0.10+0.71x%. (C6)

Doing in Eq. (C4) the integration with respect to and replacingJ(ro/d) with some mean valug3, we obtain
Eq. (34).
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