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Interaction between two spherical particles in a nematic liquid crystal
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We numerically investigate the interaction between two spherical particles in a nematic liquid crystal me-
diated by elastic distortions in the orientational order. We pay attention to the cases where two particles with
equal radiiR, impose rigid normal anchoring on their surfaces and carry a pointlike topological defect referred
to as a hyperbolic hedgehog. To describe the geometry of our system, we use bispherical coordinates, which
prove useful in the implementation of boundary conditions at the particle surfaces and at infinity. We adopt the
Landau-de Gennes continuum theory in terms of a second-rank tensor order pa@rfetethe description
of the orientational order of a nematic liquid crystal. We also utilize an adaptive mesh refinement scheme that
has proven to be an efficient way of dealing with topological defects whose core size is much smaller than the
particle size. When the two “dipoles,” composed of a particle and a hyperbolic hedgehog, are in parallel
directions, the two-particle interaction potential is attractive for large interparticle distBnaed proportional
to D73 as expected from the form of the dipole-dipole interaction, until the well-defined potential minimum at
D=2.46R, is reached. For the antiparallel configuration with no hedgehogs between the two particles, the
interaction potential is repulsive and behavesDa$ for D < 10R,, which is stronger than the dipole-dipole
repulsion(~D3) expected theoretically as an asymptotic behavior for I&ge
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[. INTRODUCTION uid crystal can be measured directly in experimgag19.
) ) ) ) The long-range nature of the interaction is attributed to the
Colloidal dispersion$1] can be found and are extensively fact that some of the elastic modes in liquid crystals are
used in our daily life such as foods, paints, and drugs. Theynassless or of Goldstone type, and many analytical studies
are therefore of technological importance and one of the imconcerning the interaction between particles in a liquid crys-
portant subjects of fundamental science as well. Colloidatal have been carried out so f§20-37. In the case of a
particles are either flocculated or uniformly dispersed in anematic liquid crystal, Lopatnikov and Namif20] pointed
host fluid, depending on the interaction between particles oout the possibility of dipole-dipole particle interactions, i.e.,
droplets. Since for practical use, the properties of colloidathe two-particle potential is anisotropic and proportional to
dispersions crucially depend on the collective behavior of thd™3 with D being the interparticle distance. Later, Ra-
suspended particles or dispersed droplets, it is quite impoimaswamyet al.[21] and Ruhwand| and Terentj¢22] found
tant to understand the two-particle interactions in a colloidathat the interaction between spherical particles with weak
dispersion. The already known colloidal interactions includesurface anchoring is quadrupolar with the potential being
van der Waals, electrostatic, depletifh2] and fluctuation-  Proportional toD™. Lubenskyet al. [23] showed by a phe-
induced forceg3]. nomenological argument that particles carrying a“to_pologjlcal
Recently, colloidal dispersions in anisotropic host fluidsdefect called a hyperbolic hedgehfig 6] act as a “dipole
such as liquid crystal§g4—17] have been attracting growing and the long-range interaction between them is of the same

interest as a different class of composite materials compare@™ astound dby LOpalin";OX atnd Naéntlr?ﬂg]thmentlonei
to conventional colloids with isotropic hosts. One of the in- 2POVE. Lev and co-wor ef4] stressed that the symmetry

; ; P . of the particle shape serves as a crucial factor determining
teresting and important features of such liquid crystal colloi the type of the long-range interaction. The effect of confine-

dal dispersions i_s that elastic distortions O.f the host quuidment and confinement-induced director distortions has also
crystal can mediate a long-range interaction between Palaen investigate25]. Other types of liquid crystal phases

tlr(]:Ies |mrt:1e_rsed in {1839, V‘l’)h'Ch IS dlfferelnt |n”th(vja Te;_se such as smectif26—2§, columnar{29], and cholesteri¢30]
t_at suc !nteracylons are a sent in usual coflolda 'Sper[')hases or the surface-induced paranematic order above the
sions with isotropic host fluids. The elastic distortions of the

-isotropic-nematic phase transitiq831-33 have also been

host liquid crystal arise from the anphoring of thg MeSOgeniGynsidered as source for interactions induced by the host
molecules on the surfaces of the dispersed particles or dropy iq

lets, and the resulting interaction forces mediated by the lig- There can be another type of two-particle interaction in a

liquid crystal; a short-range repulsion due to the presence of
topological defects situated between the particles. When the
*Electronic address: fukuda@nanolc.jst.go.jp surface anchoring and the resultant elastic distortions in a
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nematic liquid crystal are strong enough, the dispersed par- The aim of the present paper is to investigate the interac-
ticles can carry topological defects in the surrounding direction between two spherical particles in a uniformly aligned
tor field such as a pointlike defect referred to as a hyperboli¢ematic liquid crystal numerically. To describe the geometry
hedgehod5,6], a Saturn ring that encircles a particle as theof the two-particle system, we employ bispherical coordi-
name implieq9,4(], and two surface defects called boojums nates[39,67,68, while the previous numerical studies on the
[6]. Topological defects have been one of the important subhasis of continuum theory used triangular grids to construct
jects of condensed matter physjéd—46§ and liquid crystals  the surfaces of the particles propef88—36, or simple regu-
have been known as one of the best systems where they cgf} square grids without taking any special care of the curva-
be observed46-49. Topological defects arising in liquid e of the particle surfacd87]. One of the great advantages
crystals in response to foreign inclusions provide an interests using bispherical coordinates is that the infinite region
g]r? dprZ?J?J]eerr?c(;r[]S,ltSSSOE\ﬁ %@agt?j;)éfrrixg g‘eegr:eé[(?\fd?e%_?g the outside the two spheres can be mapped onto a finite rectan-
’ gular region under a simple transformation. Furthermore, the

understanding of the profiles of the liquid crystal orientation?. ; . .
and the topological defects close to spherical or cyIindricaF'Sphe“Cal coordinate system makes the treatment of the dif-

inclusions. Poulin and co-workef§—7,13 argued that the erential equations governing the elasticity of the_llqwd crys-
long-range attraction between particle-hedgehog dipole | and _thg _boundary co_ndltlons both at the particle surfaces
[23,24 and the above-mentioned short-range repulsion duénd at infinity m_uch easier, more n_atural, and less computa-
to topological defects are responsible for the chainlike supefionally demanding compared to triangular or regular grids.
structure of the dispersed droplets with well-defined interparPue to the presence of topological defects, whose core size is
ticle distances. much smaller than the particle radii, a numerical investiga-
The elastic-distortion-mediated particle interactions bringtion of liquid crystal colloidal dispersions becomes quite dif-
about various types of superstructures, not only the lineaficult. However, as has already been shown in our previous
chains[5-7,12,1% as mentioned above but also anisotropicstudies[39,59-63 and the work of Patricio and co-workers
clusters[4,8,9, periodic latticeg[14,15, cellular structures [35,36, the use of an adaptive mesh refinement scheme en-
[11], and the fingerprint textures that mimic those of choles-ables one to avoid those numerical difficulties. We employ
teric liquid crystals[16]. Therefore, a detailed investigation the Landau—de Gennes theory of a nematic liquid crystal in
of the two-particle interactions in a liquid crystal is crucially terms of the second-rank tensor order parame@gr
important for the understanding of the mechanism underly39,48,59—63that allows one to describe topological defects
ing the formation of such superstructures. In spite of theyjthout introducing any singularities that are inevitable in
wealth of a_nalyt|cal stud|_es mentloned above thqt_elumdatghe director description in terms of the unit vector We
the properties of the partlcle interactions, the validity of th,efocus on the case where two spherical particles are accom-
analytical arguments is somewhat limited because of the iN5anied by hyperbolic hedgehogs; a situation which is similar

trinsic difficulties in the treatment of the elasticity of liquid ;1o experiments by Poulin and co-workgs7,13. To the
crystals, such as the nonlinear nature of the elastic energy Qf.<t of our knowledge, the only previous stud’y giving quan-

the presence of topological defects. Most of the previou% . . . ; .
. - iy . itative results of the interaction betweghree-dimensional
analytical studies implicitly or explicitly assume either that pherical particles is that of Staek al. [33,34. However,

the surface anchoring and the resultant elastic distortions ifj" . - ) .
g eir boundary conditions are different from ours since they

the host liquid crystal are weak enough to use a harmoni ol rather th it . . h
form of the elastic energy, or that the interparticle distance idMPosed radial rather than uniform orientation at the outer

much larger than the typical particle dimension. Therefore?oundary. Other studief35-3g deal with essentially two-
numerical calculations are inevitable for a detailed investigadimensional systems. Therefore we emphasize that this paper
tion of the two-particle interaction in a liquid crystal, in par- Presents the three-dimensional numerical study of the inter-
ticular in the cases where the interparticle distance is small giction between spherical particles in a uniformly aligned
where topological defects are present. There have been onfighatic liquid crystal. _

a few numerical investigations for this subject. One of the Ve describe our numerical system in Sec. Il. In Sec. Ill A
first numerical studies was carried out by Stark and coWe present our results for the dipoles composed of a particle
workers[33,34, who used a finite-element method together@nd a hyperbolic hedgehog in parallel directions, which is
with a continuum description of the orientational order in Similar to the configuration found in the experiments of Pou-
terms of the directon to discuss the interaction between two lin and co-workerg5-7,13. In Sec. Ill B we deal with di-
spherical particles in a nematic droplet. Similar studies hav@oles taking antiparallel directions with no hedgehogs be-
also been performed by Patricio and co-work@%,36 and tween th_e pgrtlcles.. In the latter case th.e pamcle; experience
Grollau et al. [37], who focused on the interaction between @ repulsive interaction. We conclude this paper in Sec. IV.
circular inclusions in a two-dimensional smec@icf35] or

nematic [36,37 liquid crystal. Very recently, molecular- Il. MODEL

dynamics simulations were carried out to calculate the inter- .
action between infinitely long parallel cylinders in a nematic”- Order parameter, free energy, and the boundary conditions
liquid crystal and the results were compared with those using For the description of the orientational order of a nematic
a continuum theory38]. Guzman argued in a recent paper liquid crystal, we use a second-rank traceless te@gaas in

[66] that between two particles carrying a Saturn ring, a thirdour previous studie39,59-63 instead of the directan that
disclination ring appears at short separations, which gives a unit vector and that was employed in some of the previ-
rise to an effective binding of the particles. ous numerical studies concerning nematic emulsions
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[33-35,55,56,6p We notice that by using the tensor order
parameterQ;, we do not have to deal with the cores of
topological defects as singularities in contrast to the director
description. Moreover, the tensor order parameter is consis-
tent with the mesoscopic symmetry of the nematic liquid
crystal, the equivalence of the head and ¢ail n and ),
and therefore can describe all of the topological defects ap-
pearing in a nematic liquid crystal, including those with half-
integer strength.

The free energy of the host nematic liquid crystal in terms
of Q;; is written as FIG. 1. lllustration of a typical mesh in real space generated by
an equally spaced mesh in thé u) space.

- {1 2 Lariors Tomon?
F= dr| —=ATrQ“ - =BTrQ°+ -C(TrQ%)
Q 2 3 4 surfaces and); is the scalar order parameter at the surfaces,
1 which we will set equal t®Q,,,,=1. We notice that since the
+ —Llain,-ainj} , (1) order parameter at the surfaces is fixed, the particle surfaces
2 do not contribute to the free energy of the system; therefore

where() is the volume occupied by the nematic liquid crys- Ed. (2) constitutes the total free energy of the system.
tal, or the region outside the two particles. The first three At infinity, we assume uniform alignment along thexis
terms represent the bulk energy in terms of the Landau—dand set Q;=Quulefef~(1/3)8;1=Qpuil 5,5, (1/3) 1,
Gennes expansion with UQIZIQiiji and TQBZQiijkai- where € is a unit vector along the direction. This setup
The indicesi,j, and k denote the Cartesian coordinates corresponds to placing particles with rigid homeotropic sur-
x,y, andz and summations over repeated indices are imface anchoring in a uniformly aligned nematic liquid crystal.
plied. The coefficientC must be positive forQ; to be
finite and well defined. We also notice that whén<0
and B>0, a uniaxial orientational configuratiorQ;
=Q[nin;—(1/3)4;] minimizes the bulk energy, with be- We consider the case where two spherical particles with
ing a unit vector corresponding to the director aQd-0  equal radiiR, are placed in an infinite nematic medium and
being the scalar order parameter representing the strengtthere the centers of the particles lie on #exis. We denote
of the orientational order. The last term of Eq) is the the distance between the centers of the particleB by2R,)
elastic energy with_, being the elastic constant. We adopt and the centers of the two particles are located=atD/2.
the simplified one-constant form of the elastic energy, i.e.For the description of the geometry of two nonintersecting
another term allowed from symmetri,d,Q;;dQy;, is not  particles, bispherical coordinates have proven quite useful
taken into account. and practical39,67,68. The relation between the usual cy-
Since there are many material parameters, it is convenietiindrical coordinate$p,z, ¢) and the bispherical coordinates
in the following discussion to rescale the order parameter ag, u, ¢) is written as

Qjj=sQ; with s=2\6B/9C. The free energyl) then reads,
in terms ofQy;,

B. Description of the geometry and the numerical grid

_asinu - asinh{
cosh{-cosu’ coshi—-cosu’

p p=0, (3

F 1_— 6_— 1_—
csd J, dr[ETTrQZ—ZTrQ3+ Z(TrQZ)Z where a=+/(D/2)?~Rj in our setup. The surfaces of two
spheres are simply represented h{=+{, with ¢,
=cosh(D/2R,). The region outside the spheres is mapped
onto a rectangle in thé/,u) space given by £<{<{,
) and O< u<, where{=u=0 corresponds to infinity. The
where 7=A/Cs’=27AC/8B? is the reduced temperature, ; ayis is represented by=0 or 7 and the plang=0 in
and_we define the nematic coherence length &S (z, ) space corresponds &= 0 in real space. The geom-
=\L,/Cs’=\27,C/8B% We notice that the first-order etry of a typical mesh generated by an equally spaced
nematic-isotropic transition occurs at1/8 and aniso-  mesh in the(, 1) space is illustrated in Fig. 1. Note that
tropic phase becomes unstable wher 0. In what fol-  51though we deal with simple cases of spherical particles
lows we omit the overbar o@; unless confusions occur. with equal radii, one can treat more general geometries
In the simulations presented below, we are only interesteduch as two spheres with unequal radii, one sphere and a
in the nematic phase and set(3V6-8)/12<0, where planar wall, or one sphere inside a larger sphere by appro-
Qi =QuulNinj=(1/3)8;] with Qyyx=1 minimizes the bulk priately choosing the upper and lower bounds{of
energy. The grids with equal spacings in thedirection give un-

We impose rigid homeotropic anchoring at the surfaces ogqual spacing on the particle surfaces in the (pat) space
two particles and fix the order parameter @s=QJ »;¥; as can be seen in Fig. 1. Therefore, following Ré8], we
—(1/3)8;], wherew is a unit vector normal to the particle introduce an additional variablé as a function ofu which

1 J— J—
*5 E0Qi Qi } : 2
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FIG. 2. The numerical grids in the real space in the case of Fig.
3(b) below.

serves as the local polar angle on the right-hand-side sphere
and satisfies
p=Rysin6, z=iD+R,cosf (4)

at the surface of the right-hand-side sphere. From E3)s.
and (4), the relation betweep and 6 is straightforward:

— asinu )
f=sin (Ro(coshgo—cosm ’

a sinh
w=cos*t coshgo——go : (5)

§D+Rocos¢9

In our calculations, we first prepare a rectangular mesh com-
posed of 65<65 grid points with equal grid spacings in the
(¢, 0) space. Since as noted in the Introduction we are inter-
ested in the situations where topological defects are present, FiG. 3. The orientation profiles of a nematic liquid crystal
the numerical resolution of the mesh prepared as above maghown by gray-scale plots @, for (a) D=5.0Ry, (b) D=3.0R,,

not be sufficiently high for the description of the topological and(c) D=2.3R, in the “parallel-dipole” configurations. Theaxis
defect cores. Therefore, as in our previous stufB8s569—63 s along the horizontal direction and in the black regions, the nem-
we employ an adaptive mesh refinement scheme, where tic liquid crystal aligns along theaxis, whileQ,,=0 in the white
the course of the relaxation of the order parameter describe@gion.

below, finer grids are generated by bisections in thg))

space around the topological defect cores with strong spatial C. Evaluation of the free energy

variation of the order parameté€);. In Fig. 2, we show one . .
of the typical numerical meshe]s in our calculations corre-_ From EQ. (3), It can be SQO.W” that the Jacosblan
sponding to Fig. @) below. The grids are equally spaced at ?%:Y,2/d(¢, . ¢) is equal to a’sin u/(cosh{-cosp)”.

the particle surfaces and finer grids are generated around thioreover, keeping in mind the choice=(316-8)/12 in
cores of the topological defects. Sec. Il A andQ;j=Quuimin;—(1/3) ;] with Quyy=1 mini-

For simplicity, we assume rotational symmetry aboutzhe Mizing the bulk energy, we find that the free energy density
axis, which renders our numerical problem an effectivelyof @ uniform undistorted nematic liquid crystal is(4-
two-dimensional one. Since thedirection is parallel to the —V6)/36. Therefore from Eq(2) the (dimensionlessfree
orientation of the nematic liquid crystal at infinity, as pre- energy of a nematic liquid crystal due to the elastic distortion
scribed in Sec. Il A, this assumption leads to the situation®y the particles reads
where two particles are located along the orientation of the
nematic at infinity. The treatment of the order parameter is E= F
the same as that in our previous stu@0,63, where the - Cs“Rg
order parameter at a certain azimuthal anglées expressed p _ s )
by Qij(p.z,#)=Ti(d)Ty(4)Qu(p.z,$=0), with Ty(¢) be- o f " 4 f q (&) sin u {l 102
) . e w 3| Z7TrQ
ing the operator of rotation by an angie whose explicit % 0 Ry/ (cosh{-cosu)’| 2
form is given in Ref.[63]. The properties of the order pa- - =
ramete_r on the symmetry axis are _also essentially the same as  _ ETrQe‘ + lTrQ"’ N 4 -6 . EE%&_I(Qija_inj] ®
those in Ref[63]; Q;=0 wheni#j and Q,=Q,y. Due to 4 4 36 2
TrQ=0, Q,, is the only independent component of the order
parameter on the symmetry axis. where the factor 2 is due to the rotational symmetry about
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the z axis. W_e have also defined the reduced nematic coher- )

ence lengthég=¢r/Ry and the spatial derivativé,=Ryd,.
We evaluate the discretized version of E8). using the trap-
ezoidal rule[69] generalized to the two-dimension@l, u)
space as in our previous stuf3]. For the evaluation of the
first-order derivatives),Q;;, see the Appendix.

D. Relaxation of the order parameter

To obtain the equilibrium profiles of the orientational or-

der parameteQ; for a given interparticle distancB, we

first prepare an initial configuration and let it relax via a

simple equation of motion fo@;;:

()
5, (1)

F<7Qij -

Jd

EQij(r) ==
36 2

TQikaj +TrQQ;

- GRVAQ; + mi,-), (7

which is referred to as modél in the notation of Hohenberg
and Halperin[70]. HereT is a kinetic coefficient inversely
proportional to the rotational viscosity andis a Lagrange

multiplier ensuring TQ=0. In the bispherical coordinates,

the LaplacianV? is given by

p = (RYrg)sin Oy

>

(2 tant
i=1,2

p +Igsin by

1 ! ! + ek (M +
Z— (zg +14iCOS O) Ro

o) =

+tan

—_— a -1
z-z4 2{ z—[zg + (RY/rg)cos 0]

ol
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(cosh{ — cosu) 2 6_2
—a2 {(coshg cos ,u){ PYe t9M2
& d _(1-cosh{cosu) 9
sm2 (9¢2} smhg ar sin u Em

tS)

The numerical evaluation of the first and second-order de-
rivatives appearing in Eq8) is carried out using the same
technique as in our previous study, whose detail is presented
in Ref.[63].

On the axis of rotational symmetiyg axis, sm,u 0), the
only independent component deQ, is V°Q,, because
V2Qu=V?Q,,=~(1/2)V?Q,, and V?Q;; =0 for i # j [63]. For
the calculation oV?Q,,, the argument presented in RE8]
can be directly used and we obtain

_ (cosh{-cosu)

P
V2Q, 4z axis= 5 {(coshé - COSM)[F

a

+2i] h
a,uz sin gag Q,,

As the initial condition, we set the order parameter at the
pointr to Q;;(r)=Qpud i(r)n;(r)=(1/3) &;] with Quui=1 in
the bulk andQ;;(r)=0 close to the initial position of the
topological defect cores. We follow the spirit of R¢R3]
and choose the directar(r) asn(r)-e*=cosO(r), n(r)-e”
=sin O(r) andn(r)-e?=0, wheree?, €°, ande? are the unit
vectors in the cylindrical coordinates and

9

p+ (RE/rg)sin O
z-[zg + (RY/rg)cos ]

_1 p—Igsin by
Z— (zg + 14COS )

-1

5o 3]

LB (e (Rt

X oS Hdi(4 Cogﬁdi - 3)}) .

Equation(10) is just the superposition of the “ansatz” con-

figurations of the disclination rings given in E(R3) of Ref.
[23]. zg=(-1)"*'D/2 is thez coordinate of the center of the
ith spherical particle withi=1 or 2, andr;=/p?+(z-zg)?
is the distance of the point from the center of theth
particle.ry and 64 with i=1,2 specify the position of the
two disclination rings and the position of their coreszis
=Zg+rg COS Oy, p=rg Sin 6y. We set the variational pa-
rameterk to 0.32 as inRef. [23]. We notice thatd; =0 or

(10)

ous studie§60,71] we found that a hyperbolic hedgehog
defect takes a structure of a small ring rather than a point.
Therefore, keeping this finding in mind, we choogg
=(1/90 or (1-1/90= depending on the configurations
we want to investigaténotice that in this paper we do not
consider a Saturn ringIn most of our numerical calcula-
tions we sety;=1.22 fori=1,2. WhenD < 2.44 and one of

the hedgehog defects is located between the two particles,
we usery =D/2 for that defect. Finally it should be noted

7 corresponds to considering a hyperbolic hedgehog pointhat although Eq. (10) successfully reproduces the

defect andfy=7/2 a Saturn ring. However, in our previ-

asymptotic behavior of the director at infinif23], it does
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FIG. 4. The dimensionless free energy of a nematic liquid crys-
tal F as a function of the distand® between the centers of the FIG. 5. Log-log plot of the dimensionless foréeas a function
particles in the case of the “parallel-dipole” configuration. The insetof D in the case of the “parallel-dipole” configuration. The dashed
is a magnified plot aroun®/Ry=2.45. line corresponds to 0.018D/R,) ™. Only the data for the attractive
force (-f>0) are shown.
not satisfy the boundary conditions at the particle surfaces
(rigid normal anchoring This mismatch is reconciled by

the relaxation equatiof”). liquid crystaIEdefined in Eq(6) as a function of the inter-

particle distanc®. We notice that this free energy is the sum
of the self-energies of two particlégnergy of an isolated

[ll. RESULTS AND DISCUSSIONS particle) and the interaction energy arising from the elastic
distortion of the liquid crystal. The dashed line is 0.003 61

. . . ) -0.004 86D/R;)3, which indicates that when the interpar-
dlmer;smnless nematic coherence length is set{ds5 ijcle distance is large enough, the interaction is attractive and
X 10°. We have checked the stability of a hedgehog coniis potential energy is proportional td=3. This corresponds
figuration in the case of one particle using the same simulag, the |ong-range dipole-dipole interaction discussed theo-
tion scheme as in our previous stup§0,63 and found that  retically [23,24. We also show in Fig. 5 the log-log plot of
for §&=5x10"3 the hedgehog configuration is indeed stablethe dimensionless force acting on one particle

(at least metastableUsing the parameters in Rdf72], B :—RO(dE/dD) as a function ofD [73]. When >0 the

=360 kJ m?, C=300 kJ m?3, andL,/C=10* A?, we have . . -

o 3 force is attractive and we show in Fig. 5 only data for attrac-
ér=15nm and the choic€z=5X 10" corresponds 10 tak- (e forces. The dashed line in Fig. 5 corresponds to
Ing Ry=3 um. 0.015GD/Ry) . Therefore Fig. 5 demonstrates that the long-

range attractive force is proportional B4, consistent with
A. Parallel dipoles the above argument that the interaction potential is propor-

tional to D3, We also notice that thi®~* dependence of the
long-range interaction force was observed experimentally

We first notice that in all the following simulations the

In Fig. 3 we show several typical orientation profiles for
different interparticle distancds, where the particles carry a
hyperbolic hedgehog defect and the orientation of the twd 18l . . . .
dipoles composed of a particle and a hedgehog is parallel, WhenD is small, the interaction becomes repulsive and

This configuration is similar to a part of the experimentally 1€ potenti?llminimum is four;]d db = 2.48R,. TT:S rs]hort-b i
observed chain-like structures in a uniformly aligned nematid2n9€ repulsion arises from the presence of the hyperbolic

liquid crystal [5-7,12. In the initial condition presented in edgehog defect situated between the particles and its defor-
Eq. (10), we chooséy =(1-1/90 . For largeD [Fig. 3a)] mation to a larger ring. The balance between the long-range
. ’ | . ) !

the configurations of a nematic liquid crystal around ead{Jlipole-dipole attraction and the short-range repulsion due to

particle are almost independent and uncorrelated; they af® topological defect results in the potential minimum men-
those around an isolated particle, while for sma[De[i:igs tioned above. This type of interaction potential is the reason

3(b) and 3c)], deviations of the orientation profiles from for the phainllike sup(_erstru_ctures made up of partic;les with
those of two isolated particles are clearly found. Moreoverwe"'def'ned interparticle distances observed experimentally

in Fig. 3(c) with D=2.3R, we also observe that the hedgehogTS_Zla'

situated between the particles opens up to form a larger ring

(we notice again that the hedgehog defect originally takes the

form of a small ring[60,71). This behavior may be observed In this section we discuss the configuration where the two

in an experiment using two optical tweezers and may providelipoles take antiparallel directions. We do not consider the

evidence that the hedgehog indeed possesses the structuresitfiation where two hedgehogs lie between the two particles,

a ring and not a point. because it is experimentally observgl®] that such a con-
We plot in Fig. 4 the dimensionless free energy of thefiguration is quite unstable and one of the particles escapes

B. Antiparallel dipoles
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()

FIG. 6. The orientation profiles of a nematic liquid crystal
shown by gray-scale plots c@iz for (a) D=5.0R,, (b) D=3.0R,,
and(c) D=2.3R, in the “antiparallel-dipole” configurations.

from the line along the orientation of the nematic liquid crys-

tal at infinity, just as it is very difficult to let two bar magnets
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FIG. 7. The dimensionless free energy of a nematic liquid crys-

tal F as a function of the distand® between the centers of the
particles in the case of the “antiparallel-dipole” configuration.

also plot in Fig. 8 the dimensionless fortas a function of

D. In this casef >0, which implies that the force is repul-
sive. Although numerical errors are present, the data points
fall well onto the dashed line, 0.003 @3/ Ry) 3= D3, which

also supports the above finding that the interaction potential
is proportional toD™2.

To our knowledge, such a repulsive interaction whose po-
tential is proportional tdD~? has never been found in any
previous analytic and numerical studies concerning the inter-
action between particles in a liquid crystal. As was empha-
sized in the Introduction, almost all of the previous analytic
studies implicitly assume that the interparticle distance is
much larger than the dimension of the particles, therefore our
present result may reveal the limitation of the validity of the
analytic studies in the case of medium interparticle distances.
Although a clear theoretical interpretation of our results is
not available so far, the particles can be regarded as radial
hedgehogs, and the bare repulsion between those two radial

with antiparallel directions approach each other on one linehedgehogs may render the interaction in the present case
As noted in Sec. Il B, in our setup the particles must lie onstronger than the dipole-dipole one.

the z axis. Therefore, we only deal with the case where no We notice that the present case with antiparallel dipoles

topological defects lie between the particles. In Fig. 6 wehas never been discussed in any previous numerical or ex-

show several typical orientation profiles for different inter-
particle distance®. As in the previous case for parallel di-

poles, when the particle distance is large enough, the orien-
tation profiles around each particle are almost the same as

that around an isolated partidlEig. 6@)]. The distortions of

the orientation profiles are not strong but observable in the

case of smaller interparticle distandésgs. §b) and Gc)].
From the theoretical arguments in Reff23,24, it is ex-
pected that the two-particle interaction for antiparallel di-

poles is repulsive and that its potential energy is proportional

to D73, We plot in Fig. 7 the(dimensionlessfree energy of
the liquid crystalF as a function of the interparticle distance
D. From Fig. 7 we find that the interaction is indeed repul-
sive, but the dashed line of Fig. 7 is given by 0.003 55
+0.001 51D/Ry) ™2 Trials of the fitting of the numerical re-
sults by a functiorm+b(D/Ry)™ with a and b being fitting
parameters andh being an integer other than 2 were not

perimental studies, so the comparison between our results

107
107+ o
o
mj—‘%
+k‘\
P
105 | + Ly
ety
10—6 L L L L L ) L
3 4 5 6 7 8 910
DIRy

FIG. 8. Log-log plot of the dimensionless foréeas a function

successfulwhenn is not restricted to an integer, the numeri- of D in the case of the “antiparallel-dipole” configuration. The

cal data are best fitted by 0.003 55+0.00107AR,)"%". We

dashed line corresponds to 0.003 @& Ry) 2.
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and previous numerical or experimental ones cannot be donkng-range attraction and the short-range repulsion is the rea-
Therefore we hope that our results will promote further ex-son for the experimentally observed chainlike superstructure
periments concerning the interaction between particles in af particles with well-defined interparticle distances in a uni-
nematic liquid crystal. Finally, note that the antiparallel- formly aligned nematic liquid crystal.
dipole configuration possesses a mirror symmetry about the We also investigated the case where the two dipoles take
z=0 plane that lies between the particles. We therefore corthe antiparallel configuration with no hedgehog defects situ-
clude that the interaction of a particle, carrying a hyperbolicated between the two particles. The particles experience a
hedgehog, and a planar wall, imposing strong homeotropicepulsive interaction and the dependence of its potential on
anchoring, should show the same behavior as our results. the interparticle distance B72, in contrast to the “parallel
dipoles” mentioned above or theoretical expectations whose
IV. CONCLUSION potential is proportional td~3. This result may show that
the validity of analytic arguments is somewhat limited be-
We numerically investigated the interaction mediated bycayse they assume that the interparticle distance is much
the elastic distortions of a nematic liquid crystal between tWQgrger than the dimension of the particle. A clear theoretical
spherical particles imposing a rigid homeotropic anchoringargumem that explains the=2 dependence is not available
and carrying a hyperbolic hedgehog defect in a uniformlysg far, However, the stronger dependenceDomay be at-
aligned nematic. We employed the Landau—de Gennes COfipyted to the bare interaction between two particles that
tinuum theory where the orientational order of a nematicyehaye as radial hedgehogs. We finally notice that there have
liquid crystal is described in terms of a second-rank tensopeen almost no experimental studies that focused on the re-
order parameteiQ; and the topological defects can be pysive interaction between particles in a nematic liquid
treated without introducing any singularities. In contrast tOcrystal. We therefore hope that our present results will en-
similar numerical studies in which triangular grids or regularcourage further experimental as well as numerical studies

square grids were used, we utilized bispherical coordinategoncerning the elastic-distortion-mediated interactions in a
for the description of the geometry of the system containingiquid crystal.

two spherical particles. They enabled us to naturally imple-

ment the boundary conditions at the particle surfaces and at
infinity. ACKNOWLEDGMENT

We found that when the dipoles composed of a particle J.F. is grateful to Dr. Makoto Yada for helpful conversa-
and a hyperbolic hedgehog defect align in parallel directions; s on his experiments.

the interaction potential is attractive for large particle sepa-
rationsD and behaves @32 until it reaches its minimum at
D=2.46R, (R, is the particle radius The long-range attrac- APPENDIX: FIRST-ORDER DERIVATIVES

tion is of dipolar type and consistent with previous experi- In this appendix we show how to calculate first-order de-
mental results and those of analytical studies. The potentialvatives necessary for the evaluation of the free enééyy
minimum arises from the short-range repulsion that is attrib+rom Eq.(3) the calculation of the Jacobi matrix is straight-
uted to the presence of a hyperbolic hedgehog defect and iferward and noticing thak=p cos¢ and y=p sin ¢, we
elastic distortion to a larger ring. The balance between théave

i - }sinh {sinu cos ¢ 1(coshg cosu—1)cos¢p - Esin ¢ 7

ax a a p al

— =] - }sinh {sinpsin¢ }(coshg cosu —1)sin ¢ }cos¢ a2 . (A1)
ay a a p ou

d 1 1. . J

7 5(1 - cosh{ cosu) - ;smh Zsinu 0 ﬁ

At the axis of rotational symmetrgthe z axis), care must (cosu=1 or —1). It can also be showf63] that when rota-
be taken in the use of EgAL) because=0 there. There is tional symmetry is assumediQ;;/dx=dQ;;/dy=0 for ij
no problem in the treatment éf 9z and sinu=0 straightfor-  =xx,yy,zz andxy at the symmetry axis. As fo®,, (the
wardly  yields  dQ;/dz=(1/a)(1-cosh{ cosu)(d/d;)  same argument holds fdd,,), we notice that it is regular
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around thez axis and therefore can be expanded in terms of 9 Qyy 1 9 Qy,
p as QXZ:Q;?(z,¢>+pQ§1;<z,¢>+§szii>(z,¢>,+ -+, where Tox |, alcoshecosum) TR
we assume the regularity o®)=dQ,,/dp. Since Q,, zaxs zaxisd=
should be independent gf at thez axis,&ng)/(w:O. There-
fore (1/p) dQy,/ d¢ is regular at the axis. Then at the axis 90 1 90
(=1/p)sin ¢(9Q,,l ) and (1/p)cos $pd(Q,,/dp) can be —x ==(cosh{ cospu—-1) —=* :
safely set to zero ab=0 and¢=m/2, respectively. From Eq. Y | zaxis M | zaxis g=ml2
(A1) and sinu=0, we finally obtain (A2)
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