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Saddle-splay-term-induced orientational instability in nematic-liquid-crystal cells
and director fluctuations at substrates

A. D. Kiselev*
Chernigov State Technological University, Shevchenko Street 95, 14027 Chernigov, Ukraine

~Received 13 September 2003; revised manuscript received 13 November 2003; published 14 April 2004!

We analyze stability of the planar orientational structure in a nematic-liquid-crystal cell with planar anchor-
ing conditions at both substrates. Specifically, we study the instabilities of the ground state caused by surface
elasticity with the saddle-splay elastic constantK24 violating the Ericksen inequalities. We express the surface
part of static correlation functions as a functional integral over the fluctuation field induced by director
fluctuations at confining walls and derive the stability conditions for the planar structure with respect to the
fluctuation modes characterized by the in-plane wave numbers and by the parity. These conditions are analyzed
in the cell thickness–fluctuation wavelength plane through the parametrization for the boundary curve of the
instability region. For relatively smallK24, the fluctuation mode of the critical wavelength is found to render
the structure unstable when the thickness of the cell is below its critical value. The parity of the critical mode
changes as the twist-splay ratioK2 /K1 is passing through unity. Further increase ofK24 beyond the second
threshold value, 4K1K2 /(K11K2), leads to the instability with respect to short wavelength fluctuations re-
gardless of the cell thickness. We compute the critical thickness and the critical wavelength as a function of
K24, the twist-splay ratio, and the azimuthal anchoring strength.
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I. INTRODUCTION

Nematic liquid crystals~NLCs! confined in restricted ge
ometries are technologically important@1# and have been the
subject of intense studies over the past few decades@2,3#.
Anisotropy of the vast majority of NLCs is locally uniaxia
and molecules of a NLC align on average along a local u
director. Orientational structures in NLCs are thus defined
distributions of the directorn~r ! and the well-established
continuum elastic theory provides the phenomenological
scription of orientational distortions@4,5#.

In the absence of external fields, orientational structu
in spatially bounded NLCs crucially depend on the con
tions at confining walls. These are macroscopically char
terized by the surface contribution to the elastic free ene
Fs that adds to the Frank elastic energyFb , describing elas-
ticity of NLC in the bulk, to yield the total elastic free energ
of a NLC in the presence of the confining surfaces:

F@n#5Fb@n#1Fs@n#, ~1!

Fb5
1

2EV
$K1~“,n!21K2~n,“3n!21K3@n3~“3n!#2%dv,

~2!

Fs5
1

2ES
$W~n!2K24@~n,n!~“,n!2~n,~n,“ !n!#%ds,

~3!

whereK1 , K2, andK3 are the splay, twist, and bend elas
constants, respectively,K24 is the saddle-splay elastic con
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stant,n is the outer normal to the surfaceS, andW(n) is the
surface density of the anchoring energy.

An important point is that, in addition to the anchorin
energy which is the anisotropic part of the surface tensi
there is also the elastic contribution to the surface free ene
that, originally, has been indicated as a part of the ela
energy having the form of a divergence@6–8#. This
contribution—the so-called saddle-splay term~the K24
term!—can generally be viewed as the tangential direc
gradient dependent elastic part of the surface energy@9,10#.
The other surface elastic term known as theK13 term will not
be considered in this paper as it can be ignored in ca
where spatial variations of the density and the scalar or
parameter are of minor importance@11–13#.

In the last yearsK24 specific issues have attracted mu
less attention than the fundamental difficulties caused by
K13 term. In particular, though the exact measurements
K24 are still missing it was experimentally estimated to be
the order of the Frank elastic constants@14–16#. One of the
most important theoretical results is that theK24 term may
induce spontaneous twist deformations in hybrid nema
films with azimuthally degenerate anchoring conditions@17#.
Such deformations are manifested in the formation of p
odic stripe domains observed in sufficiently thin hybrid NL
cells @18–20#.

For planar NLC cells, similar instability of the groun
state in the presence of theK24 term was considered in Refs
@21,22#. Recently, in Ref.@23#, Barbero and Pergamenshch
suggested that in the proximity of the nematic-smecticA
transition theK24 term grows anomalously large so as
violate the Ericksen stability conditions@24#:

0,K24,2 min~K1 ,K2!. ~4!

As a result, the uniform equilibrium director distribution b
©2004 The American Physical Society01-1
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comes unstable and a periodically modulated nematic ph
may occur in sufficiently thin planar films.

The results of Refs.@22,23,25# are essentially limited to
the special case in which the azimuthal anchoring streng
identically zero. But the study of possible mechanisms le
ing to the formation of modulated orientational structur
close to the nematic-smectic-A transition requires a quantita
tively accurate description of the instability that goes beyo
this limitation. At this stage, however, even the instabil
scenario as a whole has not been studied in any detail.

In this paper we intend to fill the gap. Our primary goal
the comprehensive study of the instability induced by theK24
term in the presence of the azimuthal anchoring.

The idea underlying our general theoretical considerati
is that instabilities of this sort occur when the director flu
tuations at confining surfaces become critically diverge
So, we suggest the method connecting the correlation fu
tions of director fluctuations and the computational pro
dure applied to perform the stability analysis. This method
based on separating out the surface part of the correlator
correlation function of the fluctuation field induced by th
director fluctuations at confining walls.

The layout of the paper is as follows. In Sec. II, we e
press the surface part of the static correlation functions of
director fluctuations as a functional integral over fluctuatio
at confining walls and explicitly relate the procedure f
computing the correlators to the stability conditions used
our stability analysis.

Analytical results for the planar NLC cell are described
Sec. III. We characterize the mirror symmetry properties
the fluctuation harmonics and calculate the surface par
the correlator. We find that the result is a sum of the con
butions from the two fluctuation modes of different symm
try ~symmetric and antisymmetric! and derive the stability
conditions for these modes.

Stability of the uniform planar orientational structure
studied in Sec. IV. We analyze the parametrization of
boundary curve enclosing the instability region in t
thickness-wavelength plane and show that, in addition to
stability interval ~4!, there are two different intervals fo
K24: ~a! 2min(K1,K2),K24,4K1K2 /(K11K2), where the
critical point is characterized by the critical thicknessdc and
the critical fluctuation wavelength lc ; ~b! K24
.4K1K2 /(K11K2), where NLC cells of any thickness ar
unstable with respect to the short wavelength fluctuati
with l,l` . It is found that the critical fluctuation mode i
antisymmetric atK2,K1 and is symmetric atK2.K1. The
critical thickness and the critical wavelength are computed
functions ofK24 and the azimuthal anchoring strength. W
also discuss the spectrum of director fluctuations at the s
strates near the critical thickness.

Finally, in Sec. V, we present our results and make so
concluding remarks.

II. CORRELATION FUNCTIONS
AND STABILITY CRITERIA

In this section we consider the general procedure for co
puting the correlation functions~correlators! of NLC director
04170
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fluctuations in confined liquid crystals. After introducin
necessary notations we briefly remind the reader about
standard approach that uses functional integrals to carry
averaging over fluctuations@5,26#. In this approach the effec
of the confining surface enters the theory through the bou
ary conditions for the saddle point equations~Euler-
Lagrange equations! and for the Green functions.

We then describe an alternative procedure, where the
of the fluctuation field representing the director fluctuatio
at the surface is separated out by shifting the integra
variable in the functional integral. The corresponding part
the correlator is defined by the surface part of the free ene
~3! and involves averaging over the fluctuations at the s
face. Finally, we show that the energy of these fluctuatio
determines stability of orientational structures. Some tech
cal details omitted in this paper can be found in Ref.@27#.

A. Energy of director distortions and static
correlation functions

Assuming that the director fieldn0 defines the unper-
turbed orientational structure, we begin with the distort
director configuration

n5cosu cosf n01cosu sinf n11sinu n2 ,

~ni ,nj !5d i j , ~5!

where brackets denote the scalar product. For small dis
tions with f,u!1, Eq. ~5! reduces to the familiar form

n'n01dn0 , dn05c i ni , ~6!

where the anglesf and u representing fluctuations of th
director are conveniently combined into the two-compon
fluctuation field:c[(c2

c1)5( u
f) and summation over repeate

indices will be assumed throughout the paper.
The elastic energy of the fluctuation fieldc can be de-

rived from the free energy of the director configuration~5!
obtained by substituting Eq.~5! into Eqs. ~1!–~3!. In the
lowest order approximation—the so-called Gauss
approximation—this energy is given by the second-or
term F (2) of the truncated series expansion for the free
ergy functional~1!,

F@n#'F@n0#1F (2)@c#, ~7!

F (2)@c#5Fb
(2)@c#1Fs

(2)@c#, ~8!

whereFb
(2) andFs

(2) are the bulk and the surface parts of t
fluctuation energy generated by the corresponding term
the free energy~1!.

The standard variational procedure provides the sad
point equations forF (2)@c# in the following general form:

dFb
(2)@c#

dc i~r !
5K̂ i j c j~r ![K̂c~r !50, ~9!
1-2
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whereK̂ is the matrix differential operator and hats indica
matrices and matrix differential operators. These equati
can also be derived as the linearized Euler-Lagrange e
tions for the director~5!.

The general structure of the fluctuation energy~8! can
now be expressed as follows:

Fb
(2)@c#5E

V
~c,K̂c!dv1E

S
~c,Q̂(b)c!ds, ~10!

Fs
(2)@c#5E

S
~c,Q̂(s)c!ds. ~11!

where (w,Âc)[w i Âi j c j and the last surface term on th
right-hand side of Eq.~10! results from the integration by
parts.

We shall need to write the probability distribution of flu
tuations at the state of thermal equilibrium in the form

P@c#5Z21 exp$2bF (2)@c#%, ~12!

whereb[(kBT)21, kB is the Boltzmann constant,T is the
temperature, andZ is the partition function given by the
functional integral

Z5E exp$2bF (2)@c#%Dc, ~13!

whereDc[Dc1Dc2. The averages of the fluctuation fie
products

Ci j ~r ,r 8![@Ĉ~r ,r 8!# i j 5^c i~r !c j~r 8!&

5E c i~r !c j~r 8!P@c#Dc ~14!

then give the components of the correlator which is m
appropriately known as the two-point static correlation fun
tion @26#.

Explicit analytical treatment of functional integrals can
rather involved@28#. One way around the difficulties is t
introduce the generating functional of the correlation fun
tions through the partition function of the distribution~12!
with the energy~8! augmented by a source term@26#.

Following Ref. @27#, the standard relations linking th
correlator and functional derivatives of the generating fu
tional can be used to show that the correlator is proportio
to the Green function of the operatorK̂,

Ĉ~r ,r 8!5b21Ĝ~r ,r 8!, ~15!

and the boundary value problem for the Green functionĜ is

K̂ ikGk j~r ,r 8!5d~r2r 8!d i j , ~16a!

Q̂ikGk j~r ,r 8!urPS50, ~16b!

whereQ̂5Q̂(b)1Q̂(s) andd(r ) is the delta function.
04170
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The problem~16! is at the heart of the conventional com
putational procedures traditionally used, e.g., in studies
light scattering in confined liquid crystals@29–33#.

The key point is that the effects caused by the anchor
energy and the surface elasticity constant are solely inco
rated into the boundary conditions~16b!. These conditions
affect eigenfunctions~normal fluctuation modes! and eigen-
values of the operatorK̂. The eigenvalues form the spectru
of fluctuations that must be positive provided the orien
tional structuren0 is stable. Otherwise, the functional inte
grals ~13! and ~14! do not converge.

We have thus formulated the spectral stability conditio
that turn out to be closely related to the approach based
the generating functional. These conditions are in consid
able use as stability criteria in several methods develope
study Fréedericksz-type transitions in confined liquid cry
tals @34,35#.

B. Surface part of correlator and stability

We now pass on to the approach that emphasizes the
of the director fluctuations at confining walls by using a
other transformation of the functional integral~14!. This
transformation has long been known as an efficient met
to perform Gaussian integrals@26# and we, following the
general idea, define the new integration variablewb that van-
ishes at the surface by translating the fluctuation fieldc:

c5wb1w, wbuS50, ~17!

wherewb5(
w

2
(b)

w1
(b)

).

The fluctuation fieldc is thus decomposed into the fiel
wb vanishing at the surface and the fieldw that accounts for
nonvanishing fluctuations at the surface,cuS5ws . Whenw
additionally satisfies the Euler-Lagrange equations~9!,

K̂w50, wuS5cuS[ws , ~18!

the fluctuations described bywb and w will be statistically
independent@27#,

F (2)@wb1w#5Fb
(2)@wb#1Fs@ws#, ~19!

F@ws#5E
S
~ws ,Q̂ws! ds ~20!

and combining Eqs.~19! and ~12! gives the probability dis-
tributions

Pb@wb#5Zb
21 exp$2bFb

(2)@wb#%, ~21!

Ps@ws#5Zs
21 exp$2bFs@ws#%, ~22!

wherePb@wb# is the distribution for the field of fluctuation
in the bulkwb , and the distributionPs@ws# characterizes the
fluctuations at the surfacews .

Averaging over the fluctuation fieldsws andwb can now
be performed independently. As a result, we have
1-3



s
rm

-

-

a

q.

r
s
ot

ul

e

or

i-

-
c
th
-
ho
e

ru

ge
-

efi-

een

ing
takes
ce.
ed
in a
of

will

k-
nor-

nta-

an-

r-

a-

e
thal

ion

e

he
tor

A. D. KISELEV PHYSICAL REVIEW E 69, 041701 ~2004!
^AbAs&5E AbAsP@c#Dc

5E AsPs@ws#DwsE
wbuS50

AbPb@wb#Dwb

5^As&s^Ab&b , ~23!

whereAs[As@ws# andAb[Ab@wb#.
After substituting the decomposition~17! into Eq. ~14!

and using Eq.~23! to carry out averaging over fluctuation
we arrive at the expression for the correlator in the final fo

Ci j ~r ,r 8!5Ci j
(b)~r ,r 8!1Ci j

(s)~r ,r 8!. ~24!

The two terms on the right-hand side of Eq.~24! are given by

Ci j
(b)~r ,r 8!5^w i

(b)~r !w j
(b)~r 8!&b , ~25!

Ci j
(s)~r ,r 8!5^w i~r uws!w j~r 8uws!&s , ~26!

where notations for the argument ofw indicate the depen
dence of the fieldw on ws @see Eq.~18!#.

The correlatorĈ(b) is entirely determined by the bulk di
rector fluctuations with the probability distribution~21!. In
this case the fluctuations at the surface are suppressed
the boundary conditions forĈ(b),

Ci j
(b)~r ,r 8!urPS50, ~27!

correspond to the limit of infinitely strong anchoring for E
~16b!.

When the anchoring is not infinitely strong, the bounda
conditions~16b! differ from the strong anchoring condition
~27!. Now the fluctuations at the confining wall have n
been suppressed completely and are characterized by
probability distribution~22! with the energy~20!. Equation
~18! shows that these fluctuations transmitted into the b
give rise to the fluctuation fieldw. Equation~26! gives the
correlator of the fieldw induced by the fluctuations at th
surface and determines the difference betweenĈ and Ĉ(b).
In what follows the correlatorĈ(s) will be referred to as the
surface part of the correlatorĈ.

It is of particular interest that the surface part of the c
relator is written as an average with the distribution~22!.
When the energy~20! is not positive definite and the cond
tions

~ws ,Q̂ws!.0 ~28!

are violated, the correlator~26! becomes divergent. So, sta
bility of the orientational structure with respect to the dire
tor fluctuations at the confining surface is determined by
stability conditions~28!. Instabilities induced by such fluc
tuations are of our primary concern, since neither the anc
ing energy nor theK24 term may affect the correlator of th
bulk fluctuation field~25!.

Technically, using the conditions~28! enormously simpli-
fies stability analysis as compared to exploring the spect
04170
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of fluctuations@35#. The procedure involves two steps:~a!
solving the boundary value problem for the Euler-Lagran
equations~18!, and~b! evaluating the energy of the fluctua
tions at the surface~20!. Finally, the stability conditions are
derived as the conditions for the energy to be positive d
nite.

Equivalent computational schemes have already b
used to study surface elasticity effects in Refs.@21,25,36#.
We have thus developed the method at the very least link
these schemes and the surface part of the correlator that
into account the director fluctuations at the confining surfa

In the following section we apply the above describ
procedure to the case of the planar orientational structure
NLC cell. As an advantage of our approach, the study
director fluctuations at the substrates bounding the cell
be naturally incorporated into the stability analysis.

III. DIRECTOR FLUCTUATIONS IN NEMATIC CELL

In this section we consider a NLC planar cell of the thic
nessd sandwiched between two substrates that are both
mal to thez axis:z52d/2 andz5d/2. Anchoring conditions
at both substrates are planar with the vector of easy orie
tion directed along thex axis. Thus, we have the uniform
planar director distributionn05ex giving the ground state
undistorted orientational structure.

The distorted director~5! with n15ey andn25ez is char-
acterized by the anglesf andu shown in Fig. 1. For small
angles, the approximate second-order expression for the
choring potential is

W~n!'W~n0!1Wuu21Wff2, ~29!

whereWu andWf are the zenithal and the azimuthal ancho
ing strengths. Note that Eq.~29! does not imply using the
Rapini-Papoular potential@37#, whereWu5Wf . But the sur-
face energy costs for splay-bend and twist director deform
tions in interfacial layers are generally different~recent dis-
cussion can be found in Ref.@38#!. So, it is more reasonabl
to consider the case in which the zenithal and the azimu
anchoring energies differ.

The cell is invariant under translations in thex-y plane
and we impose the periodic conditions on the fluctuat
field: c(x1Lx ,y,z)5c(x,y,z) and c(x,y1Ly ,z)5c(x,
y,z), whereLx and Ly are the characteristic lengths of th

FIG. 1. Schematic representation of the planar NLC cell. T
anglesf andu describe the in-plane and the out-of-plane direc
fluctuations, respectively.
1-4
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cell along thex andy axes, respectively. We can now wri
down the Fourier series expansion for the fluctuations:

c5 (
m,my>0

$cm~z!exp@ i ~kxx1kyy!#

1cm* ~z!exp@2 i ~kxx1kyy!#%, ~30!

wherem5(mx ,my), kx52pmx /Lx , ky52pmy /Ly and an
asterisk indicates complex conjugation.

Since the fluctuation harmonics with nonvanishingkx do
not produce additional instability, we shall restrict ourselv
to the case in whichkx50. Owing to the translational sym
metry, the fluctuation harmonics are statistically independ
in the Gaussian approximation and the energy of fluctuati
takes the form of a sum of the energies of different fluct
tion modes:

F (2)@c#5 (
m>0

~22dm,0!Fm
(2)@cm#, ~31!

wherem[my .
Calculation of the fluctuation energy is rather straightf

ward @27# and we present the result in matrix notations
the modified fluctuation harmonics:

cm→c5S 1 0

0 i D cm . ~32!

For brevity, we drop the indexm from notations for the fluc-
tuation field. The energy then is given by

Fm
(2)@c#5

K1S

d
$Sm

(b)@c#1Sm
(s)@c#%, ~33!

Sm
(b)@c#5uE

2u

u

dt@@]tc#†Â ]tc1 1
2 c†B̂]tc

1 1
2 @]tc#†B̂†c1c†Ĉc#, ~34!

Sm
(s)@c#5 (

m561
c†Q̂m

(s)cut5mu , ~35!

Â5S r 0

0 1D , Ĉ5S 1 0

0 r D , ~36!

B̂5~r 21!S 0 1

21 0D , ~37!

Q̂m
(s)5mu@q242~11r !/2#S 0 1

1 0D 1S wf 0

0 wu
D , ~38!

where]t[]/]t and S5LxLy is the area of the substrate
The dimensionless parameters used in Eqs.~34!–~37! are

t5kyz, r 5
K2

K1
, q245

K24

K1
, ~39!
04170
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kyd

2
, wf,u5

Wf,ud

2K1
5

d

2l f,u
, ~40!

wherel u andl f are the zenithal and the azimuthal anchori
extrapolation lengths, respectively.

A. Mirror symmetry and parity of fluctuations

In order to evaluate the correlator of director fluctuatio
and to study stability of the planar structure,n05ex , we
shall need to solve the Euler-Lagrange equations for the fl
tuation energy functional~33!:

L̂w50, ~41!

L̂5Â]t
22B̂]t2Ĉ. ~42!

These equations are invariant under the mirror symme
transformation@21#:

w~t!→ P̂w~2t!, P̂5S 1 0

0 21D . ~43!

Algebraically, this result follows because the matricesP̂, Â,
andĈ are commuting,P̂Â2ÂP̂5 P̂Ĉ2ĈP̂50, whereas the
matricesP̂ and B̂ anticommute,P̂B̂1B̂P̂50.

The identityP̂25 Î , whereÎ is the identity matrix, shows
that invariant sets of the solutions of Eq.~41! can be charac-
terized by the parity with respect to the transformation~43!:

cs,a~2t!56 P̂cs,a~t!, ~44!

wherecs andca will be referred to as the symmetric and th
antisymmetric fluctuation modes, respectively. For symm
ric @antisymmetric# fluctuation fields, the parity relation~44!
means that the in-plane and the out-of-plane componenf
and u are represented by even@odd# and odd@even# func-
tions of t, correspondingly: f(2t)5f(t)@f(2t)
52f(t)# andu(2t)52u(t)@u(2t)5u(t)#.

The general solution is now a sum of the symmetric a
the antisymmetric modes:

w~t!5cs~t!1ca~t!. ~45!

We shall write expressions for the modes in matrix notatio
through the two fundamental matricesĈ (s)(t) and Ĉ (a)(t)
composed from solutions of the corresponding symme
These 232 matrices satisfy both the Euler-Lagrange equ
tion ~41! and the parity relation~44!. In addition, Ĉ (a)(t)
will be conveniently normalized by the conditionĈ (a)(u)
5 Î . It can be verified that solving Eq.~41! yields the fol-
lowing result:

ca~t!5Ĉ (a)~t!wa , a5s,a, ~46!

Ĉ (a)~t!5F̂a~t!@F̂a~u!#21, ~47!
1-5
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F̂a~t!5S ca1rtsa 2rtsa

rtca sa2rtca
D , ~48!

r5~12r !/~11r !, ~49!

wherecs5sa5cosht, ss5ca5sinht, andwa are the vectors
of integration constants.

After substituting Eqs.~45! and ~46! into Eq. ~33! and
using the symmetry relation~44!, we find that the symmetric
and the antisymmetric fluctuations independently contrib
to the energy of the fluctuation field~45!:

Fm
(2)@w#5

2K1S

d
~ws

†M̂ sws1wa
†M̂awa!, ~50!

M̂a5u~Â]tĈ
(a)ut5u2 1

2 B̂!1Q̂1
(s) . ~51!

We can now combine Eqs.~36!–~38! and Eqs.~47!–~49! to
derive expressions for the matricesM̂ s and M̂a from Eq.
~51!. The result is

M̂a5
1

ba
S m11

(a)1wfba m12
(a)

m12
(a) m22

(a)1wuba
D , ~52!

bs,a5tanhu7ru~12tanh2u!, ~53!

where

m12
(a)5u@q24ba2~12r!tanhu#, ~54a!

m22
(s)5m11

(a)5~12r!u, ~54b!

m11
(s)5m22

(a)5m22
(s) tanh2 u. ~54c!

B. Director fluctuations at substrates

Now we apply the analytical results obtained in the p
ceding section to evaluate the surface part of the correla
function. According to the procedure described in Sec. II
the first step is to solve the boundary value problem~18!
with the Euler-Lagrange equations~41!.

It can be readily verified that the fluctuation fieldw can be
written in the form

w~t!5Ĉ (1)~t!w(1)1Ĉ (2)~t!w(2), ~55!

whereĈ (1)5 1
2 $Ĉ (s)1Ĉ (a)%, Ĉ (2)5 1

2 $Ĉ (s)2Ĉ (a)%P̂, and
w(1) @w(2)# is the value of the fluctuation field at the upp
@lower# substrate of the cell.

We can now substitute the fluctuation field~55! into the
expression for the surface part of the correlator~26! and
perform Gaussian integrals with the probability distributi
defined in Eqs.~22! and~50! to derive the surface part of th
correlator in the final form@27#:

Ĉ(s)~t,t8!5
kBTd

2K1S
F̂~t,t8!, ~56!
04170
e
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F̂~t,t8!5Ĉ (s)~t!M̂s
21@Ĉ (s)~t8!#†

1Ĉ (a)~t!M̂a
21@Ĉ (a)~t8!#†. ~57!

This result has also been obtained by means of the G
function method@27#.

As is seen from Eq.~57!, the surface part of the correlato
is a sum of two terms that represent the contributions com
from the symmetric and the antisymmetric fluctuation h
monics at the substrates. The corresponding terms on
right-hand side of Eq.~50! provide expressions for the ene
gies of these harmonics.

We can further emphasize the role of the matricesM̂ s and
M̂a . For this purpose, we consider the case in whicht5t8

56u. Since Ĉ(b)(6u,6u)50, the covariance matrix o
the director fluctuations at the upper and lower substrate
determined by the correlator~56!:

Ĉ(s)~6u,6u!5Ĉ~6u,6u!5S ^f2& ^uf&

^uf& ^u2&
D U

z56d/2

.

~58!

From Eq.~57! we have

F̂~u,u!5M̂ s
211M̂a

21 , ~59!

F̂~2u,2u!5 P̂~M̂ s
211M̂a

21!P̂. ~60!

The fluctuations at the substrates are thus entirely descr
by the matricesM̂ s and M̂a . In Sec. IV D we shall discuss
symmetric and antisymmetric fluctuations at the lower s
strate of the cell and present some numerical results for
elements of the matrix

P̂M̂a
21P̂5S Fff

(a) Fuf
(a)

Fuf
(a) Fuu

(a)D . ~61!

From Eqs.~56! and ~60! this matrix is proportional to the
contribution of the corresponding fluctuation mode to t
covariance matrix~58!.

IV. STABILITY OF PLANAR STRUCTURE

In the preceding section we have derived all the analyt
results required to perform analysis of the stability con
tions ~28! efficiently. In our case violating these condition
will render the surface part of the correlatorĈ(s) divergent
because the energy~50! is not positive definite and the cor
responding Gaussian integrals diverge.

Equivalently, the planar structure is stable only if the m
trices M̂ s and M̂a are both positive definite. This yields th
following two stability conditions:

detM̂ s.0 and detM̂a.0, ~62!

which determine stability with respect to the symmetric a
the antisymmetric fluctuation modes.
1-6
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From Eq. ~52! explicit expressions for the determinan
can be written in the form of a sum of three terms:

detM̂ s5wuwf1
~12r!u

bs~u!
~wu tanh2 u1wf!

2u2q24S q2422
~12r!tanhu

bs~u! D , ~63!

detM̂a5wuwf1
~12r!u

ba~u!
~wf tanh2 u1wu!

2u2q24S q2422
~12r!tanhu

ba~u! D , ~64!

where only the last term can be negative@the functions
bs,a(u) are defined in Eq.~53! and cannot be negative#.

This term is always negative atq24,0 and we concen-
trate on the case of our primary concern in whichq24 is
positive. In this case the term will be negative if the inequ
ity

q24.ga~u![2
~12r!tanhu

ba~u!
~65!

is fulfilled. Given the value ofq24, the values of the param
eteru that satisfy the instability condition~65! form the in-
stability interval for the corresponding fluctuation harmoni

A. General method

The key point underlying our analysis is that the determ
nant detM̂a will be negative provided the cell is sufficientl
thin and the parameteru lies within the instability interval.
The reasoning is as follows.

Given the parameteru (5kyd/2), which meets the condi
tion ~65!, the thickness of the celld, which enters Eqs.~63!
and ~64! through the parameterswu5d/(2l u) and wf
5d/(2l f), can be changed independently by varying t
fluctuation wave numberky so as to keep the parameteru
fixed. By this means the first two positive terms on the rig
hand sides of Eqs.~63! and ~64! can be reduced to the limi
where the sign of the total sum is determined by the
negative term.

From the above discussion it follows that each value ou
from the instability interval defines the critical point whe
the determinant of the critical mode vanishes. This poin
characterized by the thickness of the cell and the fluctua
wavelength,l52p/ky . The thickness can be computed as
function of u by finding the positive root of the quadrat
equation detM̂a50. The wavelength then can be found fro
the relationu5kyd/25pd/l @see Eq.~40!#.

Geometrically, these calculations give a set of poi
(d,l) in the thickness-wavelength plane and by this me
the instability interval appears to be mapped onto the cu
Ga in the d-l plane. This curve represents the boundary
the instability region for the corresponding fluctuation h
monics.
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It is now rather straightforward to carry out the describ
procedure and derive the parametrization for the curveGa :

Ga5H D5xa~u!5ula~u!/p

L5la~u!,
~66!

ls~u!5
p

r wbs~u!
$2~12r!~ tanh2 u1r w!

1@~12r!2~ tanh2 u1r w!214r wbs~u!ts~u!#1/2%,

~67!

la~u!5
p

r wba~u!
$2~12r!~r w tanh2 u11!

1@~12r!2~r w tanh2 u11!214r wba~u!ta~u!#1/2%,

~68!

ta~u!5q24ba~u!@q242ga~u!#, ~69!

where the thickness and the wavelength are both con
niently scaled by the zenithal anchoring extrapolation len
l u :

D5
d

l u
, L5

l

l u
, r w5

Wf

Wu
, ~70!

D is the size parameter;L is the wavelength parameter; an
r w is the azimuthal anchoring parameter.

Equations~66!–~69! describe the boundary of the insta
bility region provided the instability interval is not empty
So, we discuss the behavior of the functionsgs(u) and
ga(u) that enter the right-hand side of the instability cond
tion ~65! and specify the regions ofq24 in which the insta-
bility may occur. The results, illustrated in Fig. 2, are n
difficult to obtain analytically.

Figure 2~a! shows that, if the elastic constantK2 is
smaller thanK1 andr 5K2 /K1,1, the functionga increases
from ga(0)52r asymptotically approaching the valu
ga(`)54r /(r 11) at largeu, while gs is a decreasing func
tion that varies fromgs(0)52 to gs(`)54r /(r 11). As is
seen from Fig. 2~b!, in the case wherer .1 the functionsga
andgs also monotonically approach the common asympto
value ga(`)5gs(`)54r /(r 11). But now we havega(0)
52r .gs(0)52.

As we shall see later, there are two qualitatively differe
regimes of instability depending on whether the instabil
interval is bounded from above or not. So, we have the t
characteristic values ofq24:

qc
(1)5min~2,2r !, ~71!

qc
(2)52~12r!5

4r

r 11
. ~72!

Now we pass on to discuss the stability of the planar str
ture in the intervals separated by these values.
1-7
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FIG. 2. The graphs of the functionsgs(u) ~solid line! andga(u) ~dashed line! in the u-q24 plane. Two cases are illustrated:~a! r ,1
(r 50.5) and~b! r .1 (r 51.5). The end point of the instability interval for the critical modeu,umax at qc

(1),q24,qc
(2) is shown on the left.

At qc
(2),q24,qc

(3) , the end point of the instability interval for the noncritical modeu.umin is indicated on the right.
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B. Stability diagrams

In this section we study the stability of the planar stru
ture by analyzing the behavior of the functions which defi
the boundary curve~66! of the instability region. Qualita-
tively, the analysis can be performed without resorting
numerical computations and we shall use the numerical
sults only for illustrative purposes.

Figure 2 clearly indicates the interval

0,q24,qc
(1) ~73!

as the region where the inequalities~65! cannot be satisfied
and the structure is stable. The stability conditions~73! are
equivalent to the long known Ericksen inequalities~4! de-
rived in Ref.@24#. Figure 3 shows this stability region in th

FIG. 3. Stability diagram in ther -q24 plane. There are two criti-
cal values ofq24 shown as functions of the twist-splay ratior: qc

(1)

~solid line! andqc
(2) ~dashed line!.
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r -q24 plane.
Next we consider the interval

qc
(1),q24,qc

(2) , ~74!

where, as is demonstrated in Fig. 2~a!, the instability takes
place atu,umax for the critical fluctuation mode whose sym
metry depends on the parameterr. For relatively small elas-
tic constantsK2 with r ,1, this mode is antisymmetric@see
Fig. 2~a!#. Referring to Fig. 2~b!, it can be seen that in the
opposite case withr .1 the critical mode is symmetric.

Since the instability interval is bounded, the size para
eterD on the boundary curve~66! is described by the func
tion xa(u) and reaches its maximumDc asu varies from 0 to
umax. It follows that in this regime the planar structure
unstable only in sufficiently thin films anddc (Dc5dc / l u) is
the critical thickness. On the curveGa this critical point is
also characterized by the critical fluctuation wavelengthlc
(Lc5lc / l u).

Sinceq245ga at u5umax, Eqs.~63! and ~64! show that
theq24 dependent term vanishes atu50 andu5umax. When
WuWfÞ0, the result is thatxa(0)5xa(umax)50 and the
curveGa forms the loop enclosing the region of instabilit
Figure 4~a! illustrates this result forr 51.5 when the bound-
ary curveGs is determined by the symmetric critical fluctua
tion mode.

Thus in this regime the instability induced by theK24 term
may lead to the formation of periodically modulated stru
tures in cells of subcritical thickness. The critical waveleng
lc provides an estimate for the period of the emerging str
ture near the critical point.

Now we consider the case of largeq24 with

q24.qc
(2) . ~75!
1-8
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In this case the instability interval is no longer bounded fro
above. From Fig. 2 it is clear that the instability conditio
~65! does not impose any restrictions onu for the critical
mode, whereas the instability interval for the noncritic
mode isu.umin . Thus, both fluctuation modes lead to th
instability at sufficiently largeu. Equations~67!–~69! pro-
vide the limiting value of the functionsls(u) andla(u) at
u→`:

L`5
p

r w
$2~12r!~r w11!1@~12r!2~r w11!2

14r wq24~q242qc
(2)!#1/2%, ~76!

so that the size parameterD5ula /p increases indefinitely
in this limit. The result is that the planar structure is unsta
at any thickness of the cell and this instability is caused
the short wavelength fluctuations withl,l` . This equally
applies to the case of negativeq24.

Figures 4~b!–4~c! illustrate transformations of the stabi
ity diagram in theD-L plane asq24 increases beyondqc

(2) at
r .1. The curve of the critical modeGs forms the boundary
of the instability region similarly to the case of the interv
~74!. The curve of the noncritical modeGa resides within this
region and is not shown in the figures. Both curves rapi
approach the horizontal asymptoteL5L` .

We show in Fig. 4~b! that, whenq24 is close toqc
(2) , the

shape of the curveGs still somewhat resembles the loo
developed in the interval~74!. There are two points marke
asDmin andDmax at which the curve bends and at which t
function xs(u) reaches its local minimum and maximum
correspondingly. Further increase ofq24 reduces the distanc
betweenDmin andDmax and the points finally disappear afte
merging at sufficiently largeq24. Figure 4~c! presents the
stability diagram in this regime.

FIG. 4. Stability diagrams in theD-L plane atWf5Wu and r
51.5 for various values ofq24: ~a! qc

(1)52,q2452.1,qc
(2)52.4;

~b! qc
(2)52.4,q2452.43,2r 53; and~c! 2r 53,q2453.3.
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In general, Fig. 3 qualitatively summarizes the results
this section for the three different intervals ofq24 described
in Eqs.~73!–~75!. The interval~75! was previously indicated
as the instability region in Ref.@21# and as the region wher
modulated structures can exist in Ref.@25#.

C. Effects of azimuthal anchoring

The critical thickness and the critical wavelength a
meaningful only whenq24 is within the interval~74!. By
using Eqs.~66!–~69! they both can be computed numer
cally. The numerical procedure involves two steps:~a! solv-
ing the equationxa8 (uc)50 to find the maximum ofxa for
the critical mode, and~b! evaluatingDc5xa(uc) and Lc
5la(uc). The parameterL` can be computed from Eq
~76!.

The critical thickness parameterDc , the critical wave-
length parameterLc , and the parameterL` as functions of
q24 for different values of the azimuthal anchoring para
eter, r w5Wf /Wu , are plotted in Figs. 5~a!–5~c!. As it can
be expected, the curves demonstrate that the structure
comes less stable as the azimuthal anchoring strength
creases. So, in order to estimate the critical thickness f
above, it is instructive to discuss the limit of weak azimuth
anchoring, Wf→0, previously considered in Refs
@22,23,25#.

In this limiting case the planar structure is marginally u
stable with respect to the long wavelength symmetric fl
tuations with ky50 regardless ofK24. Mathematically, it
follows because the determinant~63! vanishes atu50 and
wf50. The reason is that all uniform planar structures
energetically equivalent in the absence of azimuthal anch
ing.

Nevertheless, we may apply our method to this case
taking the limitwf→0 in Eqs.~66!–~76! to yield the follow-
ing result:

FIG. 5. Dimensionless parameters of~a! critical thicknessDc ;
~b! critical wavelengthLc ; and ~c! critical asymptotic wavelength
L` (5l` / l u) vs q24 at r 51.5 for various values of the azimutha
anchoring parameterr w5Wf /Wu .
1-9
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ls~u!5
2p ts~u!

~12r!tanh2 u
, ~77!

la~u!5
2p ta~u!

~12r!
, ~78!

L`5ls~`!5
2pq24

12r
~q242qc

(2)!. ~79!

From Eq.~78! it is seen that the behavior of the antisymm
ric harmonics atu50 does not differ from the case in whic
wfÞ0 andla(0)5xa(0)50. But, for the symmetric mode
this is not the case. From Eq.~77! we havels→` at u→0
and

Dc5xs~0!52q24~q2422!. ~80!

When r .1 and the critical mode is symmetric, Eq.~80!
provides the exact expression for the critical thickness
Wf50, which has been derived as an approximation
Refs.@22,23,25#.

The stability diagrams in theD-L plane at r .1 and
Wf50 are shown in Fig. 6. In the opposite case ofr ,1, so
long asq24,2 the diagrams are quite similar to those d
picted in Fig. 4. Otherwise, atq24.2, the noncritical sym-
metric mode will change the stability diagram presented
Fig. 4~c!. The result, however, is not too different from th
diagram shown in Fig. 6~c!.

If the azimuthal anchoring strength is not identically ze
Eq. ~80! estimates the critical thickness from above. In p
ticular, substitutingqc

(2) into Eq. ~80! and taking the limitr
→` we arrive at the conclusion that the critical thickne
cannot be larger than 16l u .

FIG. 6. Stability diagrams in theD-L plane at r w50 (Wf

50) and r 51.5 for various values ofq24: ~a! qc
(1)52,q2452.1

,qc
(2)52.4; ~b! qc

(2)52.4,q2452.5,2r 53; and ~c! 2r 53,q24

53.3.
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Dependencies of the critical thicknessDc and the critical
wave numberKc52p/Lc on the azimuthal anchoring pa
rameterr w5Wf /Wu for various values ofr are plotted in
Figs. 7 and 8. As is seen from Fig. 7, the critical thickne
declines steeply in the immediate vicinity of the origin. Typ
cally, the critical thickness atr w50 appears to be halved a
r w50.1, so that even forr 520.0 we need very small azi
muthal anchoringr w'0.03 to haveDc'8 (dc'8l u). Refer-
ring to Fig. 8, the critical wave numberKc52p/Lc also
starts growing rapidly, but the effect is less pronounced
large values ofr. So, we haveKc'0.2 (kc'0.2/l u) at r w
'0.03 andr 520.0.

When the saddle-splay elastic constant meets a Cau
relation K245(K11K2)/2 @8,11#, we find the two intervals
for the twist-splay ratio where the regime of instability d
fined in Eq. ~74! takes place: 3,r ,312A2'5.82 and 3

FIG. 7. Dimensionless parameter of critical thicknessDc vs r w

at q245qc
(2)20.1 for various values of the elastic anisotropy para

eter r. Inset at the upper right corner enlarges initial decay in
neighborhood of the origin.

FIG. 8. Dimensionless parameter of critical wave numberKc

(52p/Lc5kcl u) vs r w at q245qc
(2)20.1 for various values of the

elastic anisotropy parameterr.
1-10
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22A2'0.17,r ,1/3. The critical thickness and the critica
wavelength as a function of the parameterr varying within
these intervals are plotted in Fig. 9.

For r ,1/3, the critical fluctuation mode is antisymmetr
and Fig. 9~c! shows that the critical wavelength remains
nite at r w50. Referring to Figs. 9~a! and 9~b!, the critical
thickness atr ,1/3 is an order of magnitude smaller than
the case wherer .3 and the critical mode is symmetric.

According to Ref.@23#, the latter presents the case
which the ratior grows anomalously large due to an increa
of the twist constantK2 in the vicinity of the nematic-
smectic-A transition. In this case, the estimate of the critic
thickness atWf50.0 and q245qc

(2)'3.41 (r'5.82) pro-
vides the upper bound fordc to be about 9.7l u . As is shown
in Fig. 9~b!, this estimate can be significantly reduced in t
presence of azimuthal anchoring.

D. Director fluctuations at substrates near the critical point

In this section we consider the correlation functions
director fluctuations at the plates bounding the cell by us
the results of Sec. III B. Specifically, we shall use Eqs.~58!–
~61! that express the correlator in terms of the inverse of
matricesM̂ s andM̂a given in Eq.~52!. We shall restrict our
considerations to the stability region where the Gaussian
proximation is applicable and study what happens when
ther the thickness orq24 varies so as to get closer to th
boundary of the instability region.

In the long wavelength limitky→0 (u→0), the matrices
M̂a

21 are diagonal:M̂ s
215diag„wf

21 ,(wu11)21
… and M̂a

21

5diag„(wf1r )21,wu
21

…. It is seen that the correlator d
verges atu50 whenWfWu50. This is a consequence o
the marginal instability discussed in the preceding sectio

As far as the large wave number~short wavelength! limit
is concerned, it can be shown that in the stability region

FIG. 9. ~a, b! The critical thickness and~c, d! the critical wave-
length parameters as a function of the twist-splay ratior for various
values ofr w . The graphs are computed by using the Cauchy re
tion q245(11r )/2. The saddle-splay parameterq24 is in the insta-
bility region ~74! when r lies in the intervals 322A2,r ,1/3 or
3,r ,312A2.
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matrices~and the correlator! both decay to zero atu→`.
Interestingly, this is not the case at the boundary of the
stability interval whenq2450 or q245qc

(2) . In this case we

have the nonzero limitsM̂a
21(`)5(wu1wf)21(61 1

1 61) for
q2450 andq245qc

(2) , respectively. This anomaly is a pre
cursor of the instability caused by short wavelength fluct
tions. As a result, using the widespread approximation w
K2450 does not give the correlation functions that prope
behave at large wave numbers.

We demonstrate in Fig. 10, which shows the spectra of
critical and the noncritical fluctuation modes computed fro
Eq. ~61! at r 51.5, that the critical increase of the symmetr
fluctuation mode becomes sharply peaked at the crit
wave number as the thickness of the cell approaches its c
cal value. In addition, Fig. 10 shows that the symmetric a
the antisymmetric modes are dominated by the in-plane
by the out-of-plane fluctuations, respectively.

V. DISCUSSION AND CONCLUSIONS

In this paper stability of the uniform director distributio
in a planar NLC cell has been studied in the presence of
saddle-splay term. The approach developed to studyK24 in-
duced instabilities uses the correlation function of the flu
tuation field induced by director fluctuations at confinin
walls ~the surface part of the correlator! for derivation of the
stability conditions.

This approach in combination with the mirror symmet
considerations has been applied to the case of NLC pla
cell. It is found that there are two types of fluctuation mod
which we have called symmetric and antisymmetric mod
depending on the parity under the mirror symmetry transf
mation involving reflection in the middle plane of the cell

We have devised the analytical method to analyze

-
FIG. 10. Elements of the covariance matrix~61! vs u

3(5kyd/2) for ~a! symmetric and~b! antisymmetric fluctuations a
the lower substrate,z52d/2, of the cell with the thickness param
eter D5Dc11.051.27, q245qc

(1)10.352.3,qc
(2) , r 51.5, and

r w51.0. The curves shown in~c, d! are computed in the immediat
vicinity of the critical thickness atD5Dc10.0250.29.
1-11
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A. D. KISELEV PHYSICAL REVIEW E 69, 041701 ~2004!
stability conditions for the fluctuation modes of differe
symmetry. In this method the thickness of the cell and
fluctuation wavelength form the plane and the boundary
the instability region in this plane is described as a cu
defined in the parametric form. The analysis revealed the
different regimes for instabilities caused by the saddle-sp
term depending on the value ofK24.

When K24 falls within the range between 2min(K1,K2)
and 4K1K2 /(K11K2), the planar orientational structur
loses its stability only in sufficiently thin cells and the critic
thicknessdc together with the wavelength of the critical fluc
tuation mode,lc , determine the critical point. In this cas
as is shown in Fig. 10~c!, the spectrum of critical fluctuation
at the substrates grows sharply peaked at the critical w
length when approaching the critical point. The period
modulated structure emerging at the critical point is thus
termined by the critical wavelength.

This K24 induced instability takes place at any elastic a
isotropy parameterr 5K2 /K1. The sole exception is the cas
of elastic isotropy in whichK15K2. In contrast with the
periodic splay-twist Fre´edericsz transition@39–41#, where
spatially modulated pattern comes into play only at su
ciently small twist-splay ratio withK2 /K1, the surface elas
ticity driven instability cannot be hindered by large elas
anisotropy, but rather, as is shown in Fig. 7, the greater e
tic anisotropy the larger the critical thickness can be. T
symmetry of the critical fluctuation mode, however, depen
on the parameterr: the mode is antisymmetric atr ,1 and is
symmetric in the opposite case ofr .1. Figure 10 shows tha
the in-plane and out-of-plane fluctuations prevail depend
on the symmetry of the fluctuation mode.

The azimuthal anchoring turned out to have a profou
effect on both the critical thickness and the critical wav
length. The absence of the azimuthal anchoring presents
limiting case where the planar structure is marginally u
stable with respect to the long wavelength fluctuations w
ky50 regardless of theK24 term. As a consequence, th
critical wavelengthlc increases indefinitely in the limit o
weak azimuthal anchoring,lc→` at Wf→0, while the lim-
iting value of the critical thickness can be computed exac
@see Eq.~80!# giving the upper bound for the critical thick
ness.

In Sec. IV C, the absolute upper bound for the critic
thickness was found to be 16l u . Figure 7 shows that the
critical thickness could have been significantly reduced
the presence of relatively small amount of the azimuthal
choring.

Using the Cauchy relationK245(K11K2)/2 @8,11#, we
have found that the instability may occur at both sufficien
04170
e
f

e
o
y

e-
f
-

-

-

s-
e
s

g

d
-
he
-
h

y

l

n
-

low and high twist-splay ratios withr ,1/3 and r .3, re-
spectively~see Fig. 9 and the related discussion at the end
Sec. IV C!.

The corresponding condition for the periodic Fre´edericsz
transition requires the ratior to be belowr c'0.303@40,41#
which places a slightly more stringent constraint on the va
of r than the above inequality:r ,1/3. But, as is seen from
Fig. 9~a!, for small r, the critical thickness is an order o
magnitude smaller than in the case of larger presented in
Fig. 9~b!, wheredc can be of order of several microns pro
vided the extrapolation lengthl u varies in the range
0.1–1 mm.

For typical nematics, the twist-splay ratio does not exce
unity, but close to the nematic-smectic-A transition the pa-
rameterr becomes anomalously large@4# leading to theK24
induced instability of the ground state atr .3. This may
result in the appearance of modulated orientational struct
as suggested in Ref.@23#.

When K24.4K1K2 /(K11K2) or K24,0, the short
wavelength fluctuations withl,l` will render the planar
structure unstable at any thickness of the cell. With
Cauchy relation such instability will take place when t
twist-splay ratio is either less than 0.17 or greater than 5
In contrast with the above discussed regime, this instab
though does not impose any restrictions on the film thi
ness, in general, cannot be unambiguously related to the
riodic pattern formation. This case requires a more deta
additional study of orientational structures in the instabil
region where the Gaussian approximation is inapplicable

Our concluding remark concerns the general method
separating out the contribution of director fluctuations
confining walls to static correlation functions. We have de
onstrated that this method can be used as a useful too
studying orientational instabilities in confined liquid crysta
For this purpose, we have restricted ourselves to the cas
uniaxial director fluctuations with uniformly distributed de
gree of ordering. But a complete treatment of fluctuations
confining surfaces is required in studies of such phenom
as electrohydrodynamical pattern formation@42#, instabilities
under shear flow@4,43#, wetting @44#, and backflow@4#.
These more general considerations involving fluctuations
spatially varying order parameter tensor coupled to the tra
lational degrees of freedom are well beyond the scope of
paper and we will extend on this subject elsewhere.
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