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Saddle-splay-term-induced orientational instability in nematic-liquid-crystal cells
and director fluctuations at substrates

A. D. KiseleV*
Chernigov State Technological University, Shevchenko Street 95, 14027 Chernigov, Ukraine
(Received 13 September 2003; revised manuscript received 13 November 2003; published 14 April 2004

We analyze stability of the planar orientational structure in a nematic-liquid-crystal cell with planar anchor-
ing conditions at both substrates. Specifically, we study the instabilities of the ground state caused by surface
elasticity with the saddle-splay elastic constEp} violating the Ericksen inequalities. We express the surface
part of static correlation functions as a functional integral over the fluctuation field induced by director
fluctuations at confining walls and derive the stability conditions for the planar structure with respect to the
fluctuation modes characterized by the in-plane wave numbers and by the parity. These conditions are analyzed
in the cell thickness—fluctuation wavelength plane through the parametrization for the boundary curve of the
instability region. For relatively smaK,,, the fluctuation mode of the critical wavelength is found to render
the structure unstable when the thickness of the cell is below its critical value. The parity of the critical mode
changes as the twist-splay rat, /K is passing through unity. Further increasekof, beyond the second
threshold value, KK, /(K;+K,), leads to the instability with respect to short wavelength fluctuations re-
gardless of the cell thickness. We compute the critical thickness and the critical wavelength as a function of
K4, the twist-splay ratio, and the azimuthal anchoring strength.
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. INTRODUCTION stant,v is the outer normal to the surfaGandW(n) is the
o _ _ _ surface density of the anchoring energy.
Nematic liquid crystal§NLCs) confined in restricted ge- An important point is that, in addition to the anchoring

ometries are technologically importdrf] and have been the energy which is the anisotropic part of the surface tension,
subject of intense studies over the past few decdde.  there is also the elastic contribution to the surface free energy
Anisotropy of the vast majority of NLCs is locally uniaxial that, originally, has been indicated as a part of the elastic
and molecules of a NLC align on average along a local unienergy having the form of a divergend®—8|. This
director. Orientational structures in NLCs are thus defined byontribution—the so-called saddle-splay terfthe K,
distributions of the directon(r) and the well-established term)—can generally be viewed as the tangential director
continuum elastic theory provides the phenomenological degradient dependent elastic part of the surface enggh0].
scription of orientational distortionist,5]. The other surface elastic term known as lthg term will not

In the absence of external fields, orientational structurepe considered in this paper as it can be ignored in cases
in spatially bounded NLCs crucially depend on the condi-where spatial variations of the density and the scalar order
tions at confining walls. These are macroscopically characparameter are of minor importanggl—13.
terized by the surface contribution to the elastic free energy |n the last years,, specific issues have attracted much
F that adds to the Frank elastic eneffgly, describing elas- |ess attention than the fundamental difficulties caused by the
ticity of NLC in the bulk, to yield the total elastic free energy K, term. In particular, though the exact measurements of

of a NLC in the presence of the confining surfaces: K o4 are still missing it was experimentally estimated to be of
the order of the Frank elastic constafitg—16. One of the
Fln]=Fy[n]+F{n], (1)  most important theoretical results is that tkg, term may

induce spontaneous twist deformations in hybrid nematic
1 films with azimuthally degenerate anchoring conditiphg].
Fb:_f {K1(V,n)?+K,(n,VXn)?+Ks[nx (Vxn)]2do, Such deformations are manifested in the formation of peri-
2)v odic stripe domains observed in sufficiently thin hybrid NLC
(2 cells[18-20.
For planar NLC cells, similar instability of the ground
1 state in the presence of the, term was considered in Refs.
Fszsz{W(n)—K24[(v,n)(V,n)—(v,(n,V)n)]}ds, [21,22. Recently, in Ref[23], Barbero and Pergamenshchik
3) suggested that in the proximity of the nematic-smeatic-
transition theK,, term grows anomalously large so as to

) . violate the Ericksen stability conditiorig4]:
whereK,, K,, andK; are the splay, twist, and bend elastic

constants, respectivel is the saddle-splay elastic con- .
pectivel 2 ey 0<K <2 min(K . K,). @)

*Email address: kisel@mail.cn.ua As a result, the uniform equilibrium director distribution be-
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comes unstable and a periodically modulated nematic phagkictuations in confined liquid crystals. After introducing
may occur in sufficiently thin planar films. necessary notations we briefly remind the reader about the

The results of Refd22,23,25 are essentially limited to standard approach that uses functional integrals to carry out
the special case in which the azimuthal anchoring strength iaveraging over fluctuatiori$,26]. In this approach the effect
identically zero. But the study of possible mechanisms leadef the confining surface enters the theory through the bound-
ing to the formation of modulated orientational structuresary conditions for the saddle point equatioriEuler-
close to the nematic-smectictransition requires a quantita- Lagrange equationsand for the Green functions.
tively accurate description of the instability that goes beyond We then describe an alternative procedure, where the part
this limitation. At this stage, however, even the instability of the fluctuation field representing the director fluctuations
scenario as a whole has not been studied in any detail.  at the surface is separated out by shifting the integration

In this paper we intend to fill the gap. Our primary goal is variable in the functional integral. The corresponding part of
the comprehensive study of the instability induced byKhg  the correlator is defined by the surface part of the free energy
term in the presence of the azimuthal anchoring. (3) and involves averaging over the fluctuations at the sur-

The idea underlying our general theoretical considerationface. Finally, we show that the energy of these fluctuations
is that instabilities of this sort occur when the director fluc-determines stability of orientational structures. Some techni-
tuations at confining surfaces become critically divergentcal details omitted in this paper can be found in R&%)].

So, we suggest the method connecting the correlation func-
tions of director fluctuations and the computational proce-
dure applied to perform the stability analysis. This method is
based on separating out the surface part of the correlator as a ) ) . .
correlation function of the fluctuation field induced by the Assuming that the director fielth, defines the unper-
director fluctuations at confining walls. tgrbed orien'_[ationgl structure, we begin with the distorted

The layout of the paper is as follows. In Sec. II, we ex-director configuration
press the surface part of the static correlation functions of the
director fluctuations as a functional integral over fluctuations
at confining walls and explicitly relate the procedure for
computing the correlators to the stability conditions used in (n;,nj) =6, ()
our stability analysis.

Analytical results for the planar NLC cell are described inwhere brackets denote the scalar product. For small distor-
Sec. lll. We characterize the mirror symmetry properties oftions with ¢, <1, Eq.(5) reduces to the familiar form
the fluctuation harmonics and calculate the surface part of
the correlator. We find that the result is a sum of the contri- n~ng+ dng, Sng= i n;, (6)
butions from the two fluctuation modes of different symme-
try (symmetric and antisymmetji@and derive the stability
conditions for these modes.

Stability of the uniform planar orientational structure is
studied in Sec. IV. We analyze the parametrization of th
boundary curve enclosing the instability region in theindices will be assumed throughout the paper.
thickness-wavelength plane and show that, in addition to the The elastic energy of the fluctuation fie{fi can be de-
stability interval (4), there are two different intervals for rived from the free energy of the director configuratici
Koo (@) 2min(Ky,Ko)<Ko4<4K;K,/(K,+K,), where the obtained by substituting Eq5) into Egs. (1)—(3). In the
critical point is characterized by the critical thickneksand ~ lowest order —approximation—the so-called ~Gaussian
the critical fluctuation wavelength \¢; (b)) Ko, approximation—this energy i§ given by the second-order
>4K K, /(K,+K,), where NLC cells of any thickness are term F@ c_)f the truncated series expansion for the free en-
unstable with respect to the short wavelength fluctuation§rgy functional(l),
with A<\, . It is found that the critical fluctuation mode is

A. Energy of director distortions and static
correlation functions

N=C0S# COS¢ Ny+ COSH SN N +sinfny,,

where the anglegp and ¢ representing fluctuations of the
director are conveniently combined into the two-component

efluctuation field:zpz(ﬁz) =( g’) and summation over repeated

antisymmetric aK,<K; and is symmetric ak,>K;. The F[n]=~F[ne]+F@[ ], (7)

critical thickness and the critical wavelength are computed as

functions ofK,, and the azimuthal anchoring strength. We F(Z)[w]ngz)[zp]JrF(z)[w] @)
S 1

also discuss the spectrum of director fluctuations at the sub-

strates near the critical thickness. ) )
Finally, in Sec. V, we present our results and make som&/hereFy” andFs™ are the bulk and the surface parts of the
concluding remarks. fluctuation energy generated by the corresponding terms of

the free energyl).
The standard variational procedure provides the saddle
Il. CORRELATION FUNCTIONS point equations foF (?)[ 4] in the following general form:
AND STABILITY CRITERIA

. . . 5|:(2)[ ¥l
In this section we consider the general procedure for com- b — R (1) =Ra{r)=0 9
puting the correlation functiongorrelatorg of NLC director (1) v '
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whereK is the matrix differential operator and hats indicate
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The problem(16) is at the heart of the conventional com-

matrices and matrix differential operators. These equationButational procedures traditionally used, e.g., in studies of
can also be derived as the linearized Euler-Lagrange equéght scattering in confined liquid crysta]29-33.

tions for the directok5).
The general structure of the fluctuation eneil@y can
now be expressed as follows:

FE,2>[¢]=J <¢,R¢>dv+f<¢,©<b>¢>ds, (10)
\Y S

FOLy)= L(a,zr,ds)«wds- )

where (@, Ag)=gp;A;y; and the last surface term on the
right-hand side of Eq(10) results from the integration by
parts.

We shall need to write the probability distribution of fluc-
tuations at the state of thermal equilibrium in the form

Ply]=Z""exp{— BF [y}, (12)
where 8= (kgT) "%, kg is the Boltzmann constant, is the

temperature, and is the partition function given by the
functional integral

Z= f exp{— BFO[ 41} Dy, (13)

where Dy="Duy, Di)r,. The averages of the fluctuation field
products

Cij(r,r)=[C(r,r") i =(s(r) g(r"))

The key point is that the effects caused by the anchoring
energy and the surface elasticity constant are solely incorpo-
rated into the boundary conditior{d6b). These conditions
affect eigenfunctiongnormal fluctuation modesand eigen-

values of the operatdt. The eigenvalues form the spectrum

of fluctuations that must be positive provided the orienta-
tional structuren, is stable. Otherwise, the functional inte-

grals(13) and(14) do not converge.

We have thus formulated the spectral stability conditions
that turn out to be closely related to the approach based on
the generating functional. These conditions are in consider-
able use as stability criteria in several methods developed to
study Fredericksz-type transitions in confined liquid crys-
tals[34,35.

B. Surface part of correlator and stability

We now pass on to the approach that emphasizes the role
of the director fluctuations at confining walls by using an-
other transformation of the functional integrél4). This
transformation has long been known as an efficient method
to perform Gaussian integra[®6] and we, following the
general idea, define the new integration variablehat van-
ishes at the surface by translating the fluctuation figid

b=eut+ ¢, @ls=0, 17

o
whereg,= ().
¥2

The fluctuation fieldys is thus decomposed into the field
¢y Vanishing at the surface and the fiekdthat accounts for

_ ] Syt nonvanishing fluctuations at the surfagdg=¢s. When ¢
f Vi) g (r)PLYIDY (14 additionally satisfies the Euler-Lagrange equatit®s
then give the components of the correlator which is more Rga=0, ols= Ws=e, (18)

appropriately known as the two-point static correlation func-

tion [26].
Explicit analytical treatment of functional integrals can be
rather involved[28]. One way around the difficulties is to

the fluctuations described by, and ¢ will be statistically
independent27],

introduce the generating functional of the correlation func- FOlg,+@]=FP[@p]+ D 5], (19)

tions through the partition function of the distributigh?2)
with the energy(8) augmented by a source teffi26].
Following Ref.[27], the standard relations linking the

correlator and functional derivatives of the generating func-

Pl es]= fs(sos,ésos) ds (20)

tional can be used to show that the correlator is proportional

to the Green function of the operati,
Clr,r)=p71G(r.r"), (15)
and the boundary value problem for the Green funcois
KikGig(r,r)=a(r=r1")3;, (168
QikGi(r,r)]rcs=0, (16b

whereQ=Q® +Q® and §(r) is the delta function.

and combining Eqs(19) and (12) gives the probability dis-
tributions

Pol ¢o]=2Z, " exp{— BFP [ eul}, (21)

Ps[‘Ps]ZzgleXF}{_Bq)s[¢s]}a (22)

wherePy[ ¢, ] is the distribution for the field of fluctuations
in the bulk¢,, and the distributiorP[ ¢5] characterizes the
fluctuations at the surfaces.

Averaging over the fluctuation fieldgs and ¢, can now
be performed independently. As a result, we have
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(Ahd= | AAPLYIDY

= f AsP ¢s]Des f ‘

Pols™

OAbe[%]D%

= <As>s<Ab>b ) (23
whereA;=A4 o] andAy,=Ay[ ¢p].

After substituting the decompositiofi7) into Eq. (14)
and using Eq(23) to carry out averaging over fluctuations

we arrive at the expression for the correlator in the final form

Cij(r,r)=CP(r,r)+CO(r.r'). (24)

The two terms on the right-hand side of Eg4) are given by

CPrr)=(e®™ ()P (r"))p, (25)

COr,r ) =(ei(rles) oi(r'es))s, (26)

where notations for the argument gf indicate the depen-
dence of the fieldp on ¢ [see Eq(18)].

The correlatoiC® is entirely determined by the bulk di-
rector fluctuations with the probability distributidi21). In

PHYSICAL REVIEW E 69, 041701 (2004

z=d/2

FIG. 1. Schematic representation of the planar NLC cell. The
angles¢ and @ describe the in-plane and the out-of-plane director
fluctuations, respectively.

of fluctuations[35]. The procedure involves two step&)
solving the boundary value problem for the Euler-Lagrange
equationg18), and(b) evaluating the energy of the fluctua-
tions at the surfac€20). Finally, the stability conditions are
derived as the conditions for the energy to be positive defi-
nite.

Equivalent computational schemes have already been
used to study surface elasticity effects in R¢fl,25,34.
We have thus developed the method at the very least linking
these schemes and the surface part of the correlator that takes
into account the director fluctuations at the confining surface.

this case the fluctuations at the surface are suppressed and!n the following section we apply the above described

the boundary conditions fa&(®,

cP(r,r")],.s=0, 27)

correspond to the limit of infinitely strong anchoring for Eq.

(16b).

procedure to the case of the planar orientational structure in a
NLC cell. As an advantage of our approach, the study of
director fluctuations at the substrates bounding the cell will
be naturally incorporated into the stability analysis.

IIl. DIRECTOR FLUCTUATIONS IN NEMATIC CELL

When the anchoring is not infinitely strong, the boundary

conditions(16b) differ from the strong anchoring conditions

In this section we consider a NLC planar cell of the thick-

(27). Now the fluctuations at the confining wall have not nessd sandwiched between two substrates that are both nor-
been suppressed completely and are characterized by tiheal to thez axis:z= —d/2 andz=d/2. Anchoring conditions

probability distribution(22) with the energy(20). Equation

at both substrates are planar with the vector of easy orienta-

(18) shows that these fluctuations transmitted into the bulkion directed along thex axis. Thus, we have the uniform

give rise to the fluctuation fieleb. Equation(26) gives the
correlator of the fieldy induced by the fluctuations at the

surface and determines the difference betw€eand C®.
In what follows the correlato€(® will be referred to as the
surface part of the correlat@.

It is of particular interest that the surface part of the cor-

relator is written as an average with the distributi®®).
When the energy20) is not positive definite and the condi-
tions

(¢s,Qe)>0 (28)

planar director distributiomy=¢, giving the ground state
undistorted orientational structure.

The distorted directof5) with n;=e, andn,=e¢, is char-
acterized by the angle$ and 6 shown in Fig. 1. For small
angles, the approximate second-order expression for the an-
choring potential is

W(n)=~W(ng)+W,6%+W 42, (29)
whereW, andW,, are the zenithal and the azimuthal anchor-

ing strengths. Note that Eq29) does not imply using the
Rapini-Papoular potentiB7], whereW,=W, . But the sur-

are violated, the correlatd?6) becomes divergent. So, sta- face energy costs for splay-bend and twist director deforma-
bility of the orientational structure with respect to the direc-tions in interfacial layers are generally differgnécent dis-

tor fluctuations at the confining surface is determined by theussion can be found in Rd88]). So, it is more reasonable
stability conditions(28). Instabilities induced by such fluc- to consider the case in which the zenithal and the azimuthal
tuations are of our primary concern, since neither the anchoanchoring energies differ.

ing energy nor thé,, term may affect the correlator of the
bulk fluctuation field(25).
Technically, using the condition28) enormously simpli-

The cell is invariant under translations in tRey plane
and we impose the periodic conditions on the fluctuation

field: ¥(x+Ly,y,2)=¥(x,y,2) and (x,y+L,,z)=¢(X,

fies stability analysis as compared to exploring the spectrury,z), whereL, andL, are the characteristic lengths of the
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cell along thex andy axes, respectively. We can now write kyd W, 4
down the Fourier series expansion for the fluctuations: u=-—- W¢,0=T=2| ' (40
1 b,6
o= > {(Dexdi(kx+ kyy)] wherel , andl , are the zenithal and the azimuthal anchoring
m,my=0 extrapolation lengths, respectively.

+y(2)exd —i(kex+kyy) 1 (30

wherem=(m,,my), k,=2mm,/L,, k,=2mm,/L, and an

asterisk indicates complex conjugation. and to study stability of the planar structume,=e,, we

Since the fluctuation harmonics with nonvanishkygdo  gha) need to solve the Euler-Lagrange equations for the fluc-
not produce additional instability, we shall restrict ourselves; ;5tion energy functiona33):

to the case in whick,=0. Owing to the translational sym-
metry, the fluctuation harmonics are statistically independent Lo=0, (41)
in the Gaussian approximation and the energy of fluctuations
takes the form of a sum of the energies of different fluctua-

A. Mirror symmetry and parity of fluctuations

In order to evaluate the correlator of director fluctuations

c Ao Al a
tion modes: L=Ad;—Bd,—C. (42)

) These equations are invariant under the mirror symmetry

FOy]= 20 (2= 8no) F&L ], (38D transformatior{21]:
m=
= - . (1 0
wherem=m, . _ _ _ @(1)—Pe(— 1), P=( ) (43)
Calculation of the fluctuation energy is rather straightfor- 0 -1
ward [27] and we present the result in matrix notations for
the modified fluctuation harmonics: Algebraically, this result follows because the matriégsA,
10 andC are commutingPA— AP=PC—CP=0, whereas the
L )./,m_ (32  matricesP andB anticommutePB+BP=0.
i

The identityP?=1, wherel is the identity matrix, shows
that invariant sets of the solutions of E41) can be charac-

For brevity, we drop the indem from notations for the fluc- : , ,
terized by the parity with respect to the transformat(48):

tuation field. The energy then is given by
—7)=*P T), 44

FOLw]= KTls{S‘n?[a/sz;?[M}, (33 el TR “

whereys, and ¢, will be referred to as the symmetric and the

u antisymmetric fluctuation modes, respectively. For symmet-
SP[y]= uf dr[[a,.4]TA . g+ 1 B, ric [antisymmetrig fluctuation fields, the parity relatiof#4)

- means that the in-plane and the out-of-plane compongnts
and ¢ are represented by evéndd] and odd[even func-
tions of 7, correspondingly: &(—7)=¢(7)[ d(—7)
=—¢(n)] and (- 7)=—0(7)[6(—7)=6(7)].

SOryl= >, WQELS)'MFW: (35) The general solution is now a sum of the symmetric and
u=%1 the antisymmetric modes:

+3[0.41" BT+ ' Cyl, (34)

. (r 0O ~ (10 o(7)= () + (7). (45)
A_(o 1)’ C_(o r)’ (36

We shall write expressions for the modes in matrix notations

0 1 through the two fundamental matricds® () and ¥ @ (1)
; (387)  composed from solutions of the corresponding symmetry.

I§=(r—1)(

-1 These 22 matrices satisfy both the Euler-Lagrange equa-
0 1| [w, tion (41) and the parity relatiof44). In addition, ¥(*)(7)
fo)z,uu[qm—(lJrr)/Z](l oo w ) (389 will be conveniently normalized by the conditioh(®)(u)
6

=1. It can be verified that solving Eq41) yields the fol-

where d,=d/d7 and S=L,L, is the area of the substrates. lowing result:
The dimensionless parameters used in E84)—(37) are
(1) =V V(1)g,, a=sa, (46)
r=k,z r=& q _Ka (39
y4 ' 247

K1 T@O(r) =D ([ D (w)] L, (47)
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R C,tprs, —pT7S,
D, (7)= , (48)

pTCD[ SH_pTCCY
p=(1-r)/(1+r), (49

wherec,=s,=coshr, sq=c,=sinh7, ande¢, are the vectors
of integration constants.
After substituting Egs(45) and (46) into Eg. (33) and

using the symmetry relatiof#4), we find that the symmetric
and the antisymmetric fluctuations independently contribut

to the energy of the fluctuation field5):

2K,S

FOlg]= (@M st @iM o), (50)

M,=u(Ag, ¥ _,—3B8)+QY. (51)
We can now combine Eq$36)—(38) and Eqs.(47)—(49) to

derive expressions for the matricé, and M, from Eq.
(51). The result is

&)+ w Mm@
v “:% ‘1%>¢Ba mg3 +1$V.95a B
Bs.a=tanhu¥ pu(1—tanftfu), (53
where
m{3 = u[ 248~ (1~ p)tanhu], (543
ms=mP=(1-p)u, (54b)
m{Y=m{ =m{) tant? u. (540

B. Director fluctuations at substrates

PHYSICAL REVIEW E 69, 041701 (2004

F(r, T')=«if<5>(T)Mgl[\ir@(r')]f

+TE(N T (57)
This result has also been obtained by means of the Green
function method27].
As is seen from Eq57), the surface part of the correlator
is a sum of two terms that represent the contributions coming
from the symmetric and the antisymmetric fluctuation har-
éﬂOl’lICS at the substrates. The corresponding terms on the
ght-hand side of Eq(50) provide expressions for the ener-
gles of these harmonics.

We can further emphasize the role of the matrik?b§and
M,. For this purpose, we consider the case in whiehr’
==+u. Since C®)(xu,+u)=0, the covariance matrix of
the director fluctuations at the upper and lower substrates is
determined by the correlat@®6):

. . (%) <0¢>>
CO(+u,+u)=C(+u,=+ =( )
(FUEW=CEEDT gy () )],y
(58
From Eq.(57) we have
Fluuw=M_*+Mm;?, (59)
F(—u,—uy=PMJ*+M_HP. (60)

The fluctuations at the substrates are thus entirely described

by the matricesVlg and M. In Sec. IV D we shall discuss
symmetric and antisymmetric fluctuations at the lower sub-
strate of the cell and present some numerical results for the
elements of the matrix
() ()
. [Fas Facé)
Fiy

PM_1P= (61)

F&

Now we apply the analytical results obtained in the pre-
ceding section to evaluate the surface part of the correlatioRrom Eqgs.(56) and (60) this matrix is proportional to the
function. According to the procedure described in Sec. Il B,contribution of the corresponding fluctuation mode to the

the first step is to solve the boundary value problei8)
with the Euler-Lagrange equatiorél).

It can be readily verified that the fluctuation figldcan be
written in the form

()= (1) + T (7)), (55)

where ()= [0+ F @}, =1 F@P, and

covariance matrix58).

IV. STABILITY OF PLANAR STRUCTURE

In the preceding section we have derived all the analytical
results required to perform analysis of the stability condi-
tions (28) efficiently. In our case violating these conditions

will render the surface part of the correlatof® divergent

") [ 7)] is the value of the fluctuation field at the upper because the enerd$0) is not positive definite and the cor-

[lower] substrate of the cell.
We can now substitute the fluctuation figlsb) into the
expression for the surface part of the correlat®) and

responding Gaussian integrals diverge.
Equivalently, the planar structure is stable only if the ma-

tricesM¢ and M, are both positive definite. This yields the

perform Gaussian integrals with the probability distributionfollowing two stability conditions:

defined in Eqs(22) and(50) to derive the surface part of the

correlator in the final fornj27]:

Td .

CO(r,7)= 2K SF(T ), (56)

detM >0 and deM,>0, (62)
which determine stability with respect to the symmetric and

the antisymmetric fluctuation modes.

041701-6



SADDLE-SPLAY-TERM-INDUCED ORIENTATIONAL . .. PHYSICAL REVIEW E 69, 041701 (2004

From Eg.(52) explicit expressions for the determinants It is now rather straightforward to carry out the described

can be written in the form of a sum of three terms: procedure and derive the parametrization for the ciirye
. (1-p)u _[D=xg(W=un (W)
detMS:W9W¢+m(W(,tanl'? u+w,) r',= A=, (u), (66)
(1—p)tantu
—u2 T, L a
rWBS(u)
detf LAY Ry +[(1=p)?(tantf u+r,)+4r,But(u)]3,
etM,=wWyw,+———(W tanif u+w
T ) ’ ©0
) (1—p)tanhu -
~U 4| G20~ 25y | ©®)  \aw-= {—(1-p)(rytanff u+1)
FwBa(U)
where only the last term can be negatiitbe functions +[(1—p)A(rytanif u+1)2+4r,Ba(u)t,(u) V3,
Bs.a(u) are defined in Eq(53) and cannot be negatiye 68)
This term is always negative at,<0 and we concen-
trate on the case of our primary concern in whigjy is _ _
positive. In this case the term will be negative if the inequal- La(W) = 024Bo(W[ G20~ Ya(W], (69)
Ity where the thickness and the wavelength are both conve-
(1— p)tanhu niently scaled by the zenithal anchoring extrapolation length
>y, (U)=2———— 65 ly:
Qi ¥ W=2— 5 (65
d N W,
is fulfilled. Given the value ofj,4, the values of the param- D= A=p =y (70
4 (4 4

eteru that satisfy the instability conditio(65) form the in-

stability interval for the corresponding fluctuation harmonlcs.D is the size parameten is the wavelength parameter; and

rw is the azimuthal anchoring parameter.
A. General method Equations(66)—(69) describe the boundary of the insta-

The key point underlying our analysis is that the determi-Rility region provided the instability interval is not empty.

9 ; - : ; .- So, we discuss the behavior of the functiomgu) and
nant deM , will be negative provided the cell is sufficientl . . . ) .
thin and the parametgr lies SVithin the instability interval.y 7a(u) that enter the right-hand side of the instability condi-
The reasoning is as follows tion (65) and specify the regions af,, in which the insta-

Given the parametar (=k,d/2), which meets the condi- bility may occur. The results, illustrated in Fig. 2, are not
,d/2), e X )
tion (65), the thickness of the cetl, which enters Eq463) d|ff|9ult to obtain analytlcally.' . .
and (64) through the parametersv,=d/(2l,) and w, Figure 2a) shows that, if the elastlc_ constamz is
—d/(2l,), can be changed independently by varying thesmaller tharK andr=K2/K'1<1, the functlo.nya increases
fluctuation wave numbek, so as to keep the parameter from ,(0)=2r asymptotically approaching the value
fixed. By this means the first two positive terms on the right-’."”‘(oo)hz4”(.r + 1f) at Iargeg,zwhlle Vs |s_a4d(/acrea13|n%fupc—
hand sides of Eqg63) and(64) can be reduced to the limit tion that varies ror_nysg )=2 1o KS(OO)_ rh(rf+ )'. S 1S
where the sign of the total sum is determined by the last€€N rom Fig. @), in the case where>1 the functionsy,
negative term. and vy, also monotonically approach the common asymptotic
From the above discussion it follows that each value of \ialue Va(oo)i%(oc):m/(” 1). But now we havey,(0)
from the instability interval defines the critical point where =2r>y4(0)=2. . .
the determinant of the critical mode vanishes. This point is AS We shall see later, there are two qualitatively different
characterized by the thickness of the cell and the fluctuatiof€9imes of instability depending on whether the instability
wavelength) =2/k, . The thickness can be computed as ainterval is b_ounded from above or not. So, we have the two
function of u by finding the positive root of the quadratic Characteristic values afz:

equation deM ,=0. The wavelength then can be found from

(1) — mi
the relationu=k,d/2=7d/\ [see Eq(40)]. G = min(2,2r), (7D
Geometrically, these calculations give a set of points
(d,\) in the thickness-wavelength plane and by this means q(2)=2(1—p)= i (72)
the instability interval appears to be mapped onto the curve ¢ r+1°

I',, in thed-\ plane. This curve represents the boundary of
the instability region for the corresponding fluctuation har-Now we pass on to discuss the stability of the planar struc-
monics. ture in the intervals separated by these values.
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1.5
4r/(r+1)
i s ALY 1
//
1 _/Zr .................................................................... —
u u
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0 1 2 3 4 0 1 2 3 4
u u

FIG. 2. The graphs of the functiong(u) (solid line) and y,(u) (dashed lingin the u-g,, plane. Two cases are illustrate@ r<1
(r=0.5) and(b) r>1 (r=1.5). The end point of the instability interval for the critical mage ., at q"'<q,,<q%? is shown on the left.
At q(c2)< q24<q(c3), the end point of the instability interval for the noncritical made u,,;, is indicated on the right.

B. Stability diagrams r-g,4 plane.

In this section we study the stability of the planar struc- Next we consider the interval
ture by analyzing the behavior of the functions which define
t_he boundary cur.vé66) of the instability region. Quallita— M<qp<q?, (74)
tively, the analysis can be performed without resorting to

numerical computations and we shall use the numerical re- . N . .
sults only for iIIFL)Istrative purposes where, as is demonstrated in Figap the instability takes

Figure 2 clearly indicates the interval place atu<<up,,yfor the critical fluctuation mode whose sym-
metry depends on the parametefor relatively small elas-
0<Qou< qgl) (73)  tic constantK, with r <1, this mode is antisymmetrisee
Fig. 2(@)]. Referring to Fig. &), it can be seen that in the

as the region where the inequalitiéd5) cannot be satisfied opposite case with>1 the critical mode is symmetric.

; o . Since the instability interval is bounded, the size param-
and the structure is stable. The stability conditidn3) are ! X
equivalent to the long known Ericksenyinequaliti(éls de. eterD on the boundary curvéso) is described by the func-

rived in Ref.[24]. Figure 3 shows this stability region in the tion X,(u) and reache_s its maximuby asu varies from 0 to .
Umax- It follows that in this regime the planar structure is

4 . . , | . | . unstat_)l_e only_in sufficiently thin films arfdic (E_)_czdcll_g) i;
the critical thickness. On the cundé, this critical point is
also characterized by the critical fluctuation wavelength
Instability region ~ ____—--""7"" (Ac=Nclly).
o S Sinceqy4= 7y, at U=Unyax EQgs.(63) and(64) show that
- | theq,, dependent term vanishestat 0 andu= u,,,«. When
i WyW,#0, the result is thak,(0)=X,(Uma)=0 and the
21 - curvel’, forms the loop enclosing the region of instability.
7 Figure 4a) illustrates this result for=1.5 when the bound-
; Stability region ] ary curvel'g is determined by the symmetric critical fluctua-
1k | tion mode.
/ Thus in this regime the instability induced by tkg, term
M/ I may lead to the formation of periodically modulated struc-
0 ‘ | , | ‘ , ‘ | ‘ tures in cells of subcritical thickness. The critical wavelength
2 3 4 5 N\ provides an estimate for the period of the emerging struc-
r(= K2/K1 ) ture near the critical point.
Now we consider the case of largg, with

Ky/Ky)
A\

\
5
(7]
@
Q
=3
E

<
Q
—
o
A
o
[+]

Q

dy, (

FIG. 3. Stability diagram in the-qg,, plane. There are two criti-
cal values ofg,, shown as functions of the twist-splay ratiog"

S (2) . ¢ > (2) (75)
(solid line) andg¥?’ (dashed ling 024~ 0¢ -
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) | L | . |
0
5

10
D (=dll,)

FIG. 5. Dimensionless parameters (@ critical thicknessD_;
(b) critical wavelengthA .; and(c) critical asymptotic wavelength
A, (=N.1ly) vsQqy, atr=1.5 for various values of the azimuthal

FIG. 4. Stability diagrams in th®-A plane atW =W, andr anchoring parameter,=W,, /W, .

=1.5 for various values ofi,,: (a) qM'=2<q,,=2.1<q@=2.4;
(b) qP)=2.4<q,,=2.43<2r=3; and(c) 2r =3<qp,=3.3.

In general, Fig. 3 qualitatively summarizes the results of
In this case the instability interval is no longer bounded fromthis section for the three different intervals @f, described
above. From Fig. 2 it is clear that the instability condition in Egs.(73)—(75). The interval(75) was previously indicated
(65) does not impose any restrictions onfor the critical ~ as the instability region in Ref21] and as the region where
mode, whereas the instability interval for the noncriticalmodulated structures can exist in REZ5].
mode isu>up,,. Thus, both fluctuation modes lead to the
instability at sufficiently largeu. Equations(67)—(69) pro-
vide the limiting value of the functionsg(u) and X ,(u) at
U—oo: The critical thickness and the critical wavelength are
meaningful only wheng,, is within the interval(74). By
using Eqgs.(66)—(69) they both can be computed numeri-
cally. The numerical procedure involves two ste@:solv-
(2N ing the equationx(u.)=0 to find the maximum ok, for
+4r,024(02a— a8 13, (76)  the critical mode, andb) evaluatingD.=x,(u;) and A,

=N,(u;). The parameteA, can be computed from Eq.
so that the size paramet®r=uh\ ./ increases indefinitely (7¢).

in this limit. The result is that the planar structure is unstable The critical thickness paramet&,, the critical wave-
at any thickness of the cell and this |nStab|l|ty is caused b}{ength parameteﬁc, and the pa_r‘ametatOC as functions of
the short wavelength fluctuations with<X... This equally  q,, for different values of the azimuthal anchoring param-
applies to the case of negatigg,. eter,r,,=W,/W,, are plotted in Figs. @-5(c). As it can
Figures 4b)—4(c) illustrate transformations of the stabil- pe expected, the curves demonstrate that the structure be-
ity diagram in theD-A plane agy,, increases beyong(® at  comes less stable as the azimuthal anchoring strength de-
r>1. The curve of the critical modE, forms the boundary creases. So, in order to estimate the critical thickness from
of the instability region similarly to the case of the interval above, it is instructive to discuss the limit of weak azimuthal
(74). The curve of the noncritical mode, resides within this  anchoring, W,—0, previously considered in Refs.
region and is not shown in the figures. Both curves rapidly[22,23,25.
approach the horizontal asymptote=A., . In this limiting case the planar structure is marginally un-
We show in Fig. 4b) that, wheng,, is close toq(cz), the  stable with respect to the long wavelength symmetric fluc-
shape of the curvd’s still somewhat resembles the loop tuations withk,=0 regardless oK,,. Mathematically, it
developed in the intervdlr4). There are two points marked follows because the determinaf@3) vanishes au=0 and
asD i and D g @t which the curve bends and at which thew,=0. The reason is that all uniform planar structures are
function xs(u) reaches its local minimum and maximum, energetically equivalent in the absence of azimuthal anchor-
correspondingly. Further increase®f,; reduces the distance ing.
betweerD i, andD ., and the points finally disappear after ~ Nevertheless, we may apply our method to this case by
merging at sufficiently largey,,. Figure 4c) presents the taking the limitw,— 0 in Eqs.(66)—(76) to yield the follow-
stability diagram in this regime. ing result:

C. Effects of azimuthal anchoring

v
A= {1 p)(r+ D H(1=p)(ry +1)2

041701-9



A. D. KISELEV
25
T 20 -
< 15| (a) ]
R .
< 5r 7
0
25 | ‘15
a0l ]
R s (b)—:
Il =
< SC ]
0 2 3 4
~ 80 ' I ! ]
= b T ]
<L O s Stability region OF
noaol ]
N o A E
202 ]
< oL . | . | . | . L . i
0

10 40

wn
<

20 30
D (=dll,)

FIG. 6. Stability diagrams in th®-A plane atr,=0 (W,
=0) andr=1.5 for various values off,,: (8) q{"=2<q,,=2.1
<q®P=2.4; (b) q¥=2.4<q,,=2.5<2r=3; and(c) 2r=3<qy
=3.3.

Ay = 27 (77
s (1-p)tanfu’
Ag(U)= ZLE‘(U) (78
@ (1-p)
Ap=Ny()= 27Tq24(Q24_q(2))- (79)
1-p ¢

From Eq.(79) it is seen that the behavior of the antisymmet-
ric harmonics ati=0 does not differ from the case in which
w,#0 and\,;(0)=x,(0)=0. But, for the symmetric mode,
this is not the case. From EG/7) we have\— atu—0
and

Dc=x4(0) =2024(024—2). (80)

Whenr>1 and the critical mode is symmetric, E0)

provides the exact expression for the critical thickness at |
W,=0, which has been derived as an approximation in

Refs.[22,23,28.

The stability diagrams in thé-A plane atr>1 and
W,=0 are shown in Fig. 6. In the opposite case efl, so
long asq,,<2 the diagrams are quite similar to those de-
picted in Fig. 4. Otherwise, a,,>2, the noncritical sym-

metric mode will change the stability diagram presented in

Fig. 4(c). The result, however, is not too different from the
diagram shown in Fig. @).
If the azimuthal anchoring strength is not identically zero,

Eq. (80) estimates the critical thickness from above. In par-

ticular, substitutingg(® into Eq. (80) and taking the limitr

PHYSICAL REVIEW E 69, 041701 (2004

2
r, (=W/W,)

FIG. 7. Dimensionless parameter of critical thickn&ssvs r,,
atqo= q(cz)— 0.1 for various values of the elastic anisotropy param-
eterr. Inset at the upper right corner enlarges initial decay in the
neighborhood of the origin.

Dependencies of the critical thickneBs and the critical
wave numberK.=27/A. on the azimuthal anchoring pa-
rameterr,,=W, /W, for various values of are plotted in
Figs. 7 and 8. As is seen from Fig. 7, the critical thickness
declines steeply in the immediate vicinity of the origin. Typi-
cally, the critical thickness at,=0 appears to be halved at
ro=0.1, so that even for=20.0 we need very small azi-
muthal anchoring,,~0.03 to haveD ;~8 (d.~8l,). Refer-
ring to Fig. 8, the critical wave numbef.=27x/A. also
starts growing rapidly, but the effect is less pronounced at
large values ofr. So, we haveK.~0.2 (k.~0.21,) atr,,
~0.03 andr=20.0.

When the saddle-splay elastic constant meets a Cauchy
relation K,,= (K, +K5)/2 [8,11], we find the two intervals
for the twist-splay ratio where the regime of instability de-
fined in Eq.(74) takes place: &r<3+22~5.82 and 3

Un ' ' T

5

3

2

%

FIG. 8. Dimensionless parameter of critical wave numiker

—oo we arrive at the conclusion that the critical thickness(=2#/A.=k.l,) vsr,, atq,,=q'?—0.1 for various values of the

cannot be larger than L§.

elastic anisotropy parameter
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FIG. 9. (a, b The critical thickness an¢t, d) the critical wave-
length parameters as a function of the twist-splay rafiar various
values ofr,,. The graphs are computed by using the Cauchy rela
tion g,4=(1+r)/2. The saddle-splay parametyy, is in the insta-
bility region (74) whenr lies in the intervals 32\2<r<1/3 or
3<r<3+22.

FIG. 10. Elements of the covariance matri6l vs u
X (=kyd/2) for () symmetric andb) antisymmetric fluctuations at
the lower substrate= —d/2, of the cell with the thickness param-
eter D=D +1.0=1.27, g,,=q"’+0.3=2.3<q?, r=1.5, and
r»=1.0. The curves shown ift, d are computed in the immediate
vicinity of the critical thickness ab =D+ 0.02=0.29.
—2\2~0.17<r<1/3. The critical thickness and the critical
wavelength as a function of the parameterarying within
these intervals are plotted in Fig. 9.

Forr<1/3, the critical fluctuation mode is antisymmetric

matrices(and the correlatgrboth decay to zero at— oo.
Interestingly, this is not the case at the boundary of the in-

. . _ _ (2 .
and Fig. 9c) shows that the critical wavelength remains fi- stability interval whe.rq.24r(7)lor 924=0c " In}?'i ste we
nite atr,,=0. Referring to Figs. @ and g9b), the critical have the nonzerc(;z)llmns\/la () =(wytwy) (217 for
thickness at <1/3 is an order of magnitude smaller than in 924=0 @nddz,=qc", respectively. This anomaly is a pre-
the case where>3 and the critical mode is symmetric. cursor of the |nstab|I|_ty caused_ by short wavelerjgth .fluctu_a—

According to Ref.[23], the latter presents the case in tions. As a result, using the W|de_spread approximation with
which the ratior grows anomalously large due to an increase/<24=0 does not give the correlation functions that properly
of the twist constant<, in the vicinity of the nematic- Pehave atlarge wave numbers.

smecticA transition. In this case, the estimate of the critical Ve demonstrate in Fig. 10, which shows the spectra of the
thickness atw,=0.0 and q,,= (2~341 (~5.82) pro- critical and the noncritical fluctuation modes computed from

vides the upper bound fat, to be about 9.7,. As is shown Eq.t(Glz' atr= 165' tgat the cr|t|(|:an |n|creaseko1;thet styamme_ttr_lc |
in Fig. 9b), this estimate can be significantly reduced in the uctuation mode becomes sharply peaked at he critica
: : wave number as the thickness of the cell approaches its criti-
presence of azimuthal anchoring. L ) .
cal value. In addition, Fig. 10 shows that the symmetric and
the antisymmetric modes are dominated by the in-plane and
D. Director fluctuations at substrates near the critical point by the out-of-plane fluctuations, respectively.
In this section we consider the correlation functions of
director fluctuations at the plates bounding the cell by using V. DISCUSSION AND CONCLUSIONS
the results of Sec. Il B. Specifically, we shall use EG8)—

(61) that express the correlator in terms of the inverse of the In this paper stability of the uniform director distribution
o - ~ i . in a planar NLC cell has been studied in the presence of the
matricesM ¢ and M, given in Eq.(52). We shall restrict our

. ; . : X saddle-splay term. The approach developed to skugyin-
considerations to the stability region where the Gaussian apyceq instabilities uses the correlation function of the fluc-

proximation is applicable and study what happens when €igation field induced by director fluctuations at confining

ther the thickness og, varies so as to get closer 10 the 45 (the surface part of the correlajdor derivation of the

boundary of the instability region. stability conditions.

_ In the long wavelength limik,—0 (u—0), the matrices This approach in combination with the mirror symmetry

M, "' are diagonalMg '=diagw,",(w,+1)"") andM;'  considerations has been applied to the case of NLC planar

=dia@(w¢+r)‘1,wgl). It is seen that the correlator di- cell. It is found that there are two types of fluctuation modes,

verges atu=0 whenW,W,=0. This is a consequence of which we have called symmetric and antisymmetric modes,

the marginal instability discussed in the preceding section. depending on the parity under the mirror symmetry transfor-
As far as the large wave numbgshort wavelengthlimit mation involving reflection in the middle plane of the cell.

is concerned, it can be shown that in the stability region the We have devised the analytical method to analyze the
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stability conditions for the fluctuation modes of different low and high twist-splay ratios with<1/3 andr>3, re-
symmetry. In this method the thickness of the cell and thespectively(see Fig. 9 and the related discussion at the end of
fluctuation wavelength form the plane and the boundary oSec. IV Q.
the instability region in this plane is described as a curve The corresponding condition for the periodic Edericsz
defined in the parametric form. The analysis revealed the tweransition requires the ratioto be belowr ;~0.303[40,4]]
different regimes for instabilities caused by the saddle-splayhich places a slightly more stringent constraint on the value
term depending on the value &f,. of r than the above inequality:<1/3. But, as is seen from
When K, falls within the range between 2mh{,K») Fig. 9a), for smallr, the critical thickness is an order of
and &K;K,/(K;+K,), the planar orientational structure magnitude smaller than in the case of lamgpresented in
loses its stability only in sufficiently thin cells and the critical Fig. 9b), whered. can be of order of several microns pro-
thicknessd.. together with the wavelength of the critical fluc- vided the extrapolation length, varies in the range
tuation mode)\ ., determine the critical point. In this case, 0.1-1 um.
as is shown in Fig. 1@), the spectrum of critical fluctuations For typical nematics, the twist-splay ratio does not exceed
at the substrates grows sharply peaked at the critical wavemity, but close to the nematic-smecfictransition the pa-
length when approaching the critical point. The period oframeter becomes anomalously largé] leading to theK,,
modulated structure emerging at the critical point is thus deinduced instability of the ground state et-3. This may
termined by the critical wavelength. result in the appearance of modulated orientational structures
This K,4 induced instability takes place at any elastic an-as suggested in Ref23].
isotropy parameter=K,/K;. The sole exception is the case =~ When K,,>4K;K,/(K;+K,) or Ky<0, the short
of elastic isotropy in whichK;=K,. In contrast with the wavelength fluctuations withh <\ will render the planar
periodic splay-twist Fredericsz transitiorf39—41, where structure unstable at any thickness of the cell. With the
spatially modulated pattern comes into play only at suffi-Cauchy relation such instability will take place when the
ciently small twist-splay ratio withkk,/K,, the surface elas- twist-splay ratio is either less than 0.17 or greater than 5.82.
ticity driven instability cannot be hindered by large elasticin contrast with the above discussed regime, this instability
anisotropy, but rather, as is shown in Fig. 7, the greater elashough does not impose any restrictions on the film thick-
tic anisotropy the larger the critical thickness can be. Theness, in general, cannot be unambiguously related to the pe-
symmetry of the critical fluctuation mode, however, dependsiodic pattern formation. This case requires a more detailed
on the parametar. the mode is antisymmetric at<1 and is  additional study of orientational structures in the instability
symmetric in the opposite caserof 1. Figure 10 shows that region where the Gaussian approximation is inapplicable.
the in-plane and out-of-plane fluctuations prevail depending Our concluding remark concerns the general method for
on the symmetry of the fluctuation mode. separating out the contribution of director fluctuations at
The azimuthal anchoring turned out to have a profoundtonfining walls to static correlation functions. We have dem-
effect on both the critical thickness and the critical wave-onstrated that this method can be used as a useful tool for
length. The absence of the azimuthal anchoring presents tigtudying orientational instabilities in confined liquid crystals.
limiting case where the planar structure is marginally un-For this purpose, we have restricted ourselves to the case of
stable with respect to the long wavelength fluctuations withuniaxial director fluctuations with uniformly distributed de-
k,=0 regardless of th&,, term. As a consequence, the gree of ordering. But a complete treatment of fluctuations at
critical wavelength\ . increases indefinitely in the limit of confining surfaces is required in studies of such phenomena
weak azimuthal anchoring,.— > atW,—0, while the lim-  as electrohydrodynamical pattern format[d], instabilities
iting value of the critical thickness can be computed exactlyunder shear flow[4,43], wetting [44], and backflow[4].
[see Eq.(80)] giving the upper bound for the critical thick- These more general considerations involving fluctuations of
ness. spatially varying order parameter tensor coupled to the trans-
In Sec. IV C, the absolute upper bound for the criticallational degrees of freedom are well beyond the scope of this
thickness was found to be 16. Figure 7 shows that the paper and we will extend on this subject elsewhere.
critical thickness could have been significantly reduced in

::r;]%rpi)rr]zsence of relatively small amount of the azimuthal an- ACKNOWLEDGMENT
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