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We formulate and solve a model of dynamical arrest in colloids. A particle is coupled to the bath of
statistically identical particles. The dynamics is described by Langevin equation with stochastic external force
described by telegraphic noise. The interaction with the bath is taken into account self-consistently through the
back-reaction mechanism. Dynamically induced glass transition occurs for certain value of the coupling
strength. Edwards-Anderson parameter jumps discontinuously at the transition. Another order parameter can be
also defined, which vanishes continuously with exponent 1/2 at the critical point. Nonlinear response to
harmonic perturbation is found.
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I. INTRODUCTION

Glass transition and slow relaxation in systems character-
ized by weak ergodicity breaking remains still an open area,
despite many efforts and numerous significant results in the
last decade[1–22]. Among the host of diverse phenomena
we are motivated here mostly by the effect of dynamical
arrest in colloidal matter[23–31], observed experimentally
and thoroughly investigated by numerical simulations and
mode-coupling method. Below the transition point, the dy-
namics effectively leads to a glassy state with diverging vis-
cosity, however, the static thermodynamic transition may not
be identifiable. Indeed, dynamical or structural arrest demon-
strates the glass transition as a purely dynamic and self-
consistent phenomenon, where casual slow down of certain
particles prevents some other particles from moving, which
may slow down the others even more, etc. The self-
consistent nature of the phenomenon is reflected by the ana-
lytical approaches available now. One of the most striking
phenomena in colloids, suspensions, and granular matter is
the non-Newtonian response to mechanical perturbation. On
one hand, we can have shear thinning, which amounts to a
decrease if viscosity due to applied field, which can be inter-
preted as restoration of ergodicity due to perturbation[25].
On the other hand, increase of viscosity may result in shear
thickening or even jamming, typically observed in particu-
late or granular matter[32,33].

From the theoretical side, the mode-coupling(MC) equa-
tions provide us with a well-established framework, capable
of explaining a good deal of experimental data[34–37]. The
attempts to derive the MC equations starting from the Hamil-
tonian of the system were successful in the mean-field ap-
proximation. It was perhaps thep-spin spherical model
[4–6,13], where the machinery reached the farther edge of

our current understanding of the phenomenon.
However, the bottom-up approach starting with writing

explicit Hamiltonians is far from being complete. The pres-
ence of the parametrization invariance[13,38] leaves the nu-
merical solution of the MC equations as the only means for
obtaining the true time dependence of the correlation and
response functions. Also the mean-field approximation gen-
erally used now seems to be very difficult to overcome.

The serious difficulties remaining in using the more ad-
vanced MC techniques leave the space for more simple phe-
nomenological approaches. We want to follow this path in
the present work.

Indeed, the mathematical substance of the mode-coupling
method can be summarized by saying that the time depen-
dence of the correlation(and response) functions depends
nonlinearly and in time-delayed manner on these functions
themselves. Actually, the memory kernel in the MC equa-
tions, which is primarily dictated by the properties of the
reservoir, depends on the system dynamics.

We may represent the dynamics of the system by a sto-
chastic process and the parameters of the process depend on
time through the averaged properties of the process itself. In
order to study generic properties of such problems it can be
useful to establish a simple idealized model, which would
capture the essential mathematic ingredients while avoiding
the complications which arise from choosing a specific
Hamiltonian at the beginning. The most important ingredient
in such an idealized model should be the mechanism of the
back-reaction.

We introduced recently[39] a very simple stochastic pro-
cess, in which the back-reaction leads to rich dynamic be-
havior. The main characteristics was the presence of a phase
transition from ergodic to nonergodic phase. The principal
aim of the present work is to investigate analytically some of
the properties of the transition and from the numerical solu-
tion of the corresponding differential equations infer the non-
trivial critical behavior.
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II. LANGEVIN EQUATION WITH BACK–REACTION

A. System of coupled particles

The model system we will have in mind will be composed
of particles, relaxing to their equilibrium positions under the
influence of surrounding particles. They can be viewed as
colloidal particles immersed in a solvent, but the formulation
of our model is generic enough to allow for other interpreta-
tions as well, e.g., they can be viewed as microdomains in a
relaxor ferroelectric material.

The time evolution of the model can lead to dynamical
arrest, where particles are locked in their positions by sur-
rounding particles, which are also locked in their turn. There-
fore, the dynamics can lead to the spatially disordered but
time-stable stationary state with glass properties. The indica-
tion of the glass transition will be the nonzero value of the
Edwards-Anderson order parameter and sensitivity to initial
conditions. The interaction between particles will be taken
into account on a phenomenological level; if we concentrate
on a randomly selected particle(single relaxor), the external
field from the rest of the system(reservoir) will change as
the states of the other particles(relaxors in reservoir) evolve.
The changes in the local external field will be the more rapid
the faster is the evolution of the other particles. This leads to
the idea of expressing the intensity of the changes in the
external field through the velocity of movement of the relax-
ors in the reservoir. As we suppose all particles to be statis-
tically identical, the movement of our single relaxor should
be in probabilistic sense equivalent to the movement of any
relaxor within the reservoir. This consideration closes the
loop.

We will try to express the intensity of the changes of the
local field through the averaged properties of the movement
of the single relaxor itself. This introduces the idea ofback-
reaction: the probabilistic properties of the reservoir dictate
the system evolution and the averaged system dynamics
tunes the properties of the reservoir itself.

To be more specific, our single relaxor will be described
by the continuous real stochastic variableXstd. It will evolve
under influence of the environmental force, represented by
the stochastic variableQstd. The force will be modeled by a
two-valued random processQstdP h−q, +qj [40], jumping at
random instants. Occurrence of the jumps are governed by a
self-exciting point process[41,42] with time-dependent in-
tensity 1

2lstd.
For given(friction-reduced) force Qstd the single relaxor

is described by the Langevin equation[44–46]

d

dt
Xstd = − g Xstd + Qstd s1d

with initial conditionsXs0d=X0 andQs0d=Q0.
We may consider the processXstd as a movement of an

overdamped particle which slides in a parabolic potential
well; the parabola jumps between two positions at random
instants, with time-dependent rate1

2lstd.
In reality, of course, we should take into account also the

inertial term with second time derivative of the coordinate.
This term is neglected here taking implicitly the limit of

damping going to infinity while keeping the force to damp-
ing ratio finite. We expect the usual damped regime be re-
covered for the oscillations around the equilibrium positions
of the frozen particles. The vibrational states superimpose
over the relaxational behavior described mainly in this paper.
We believe it does not interfere substantially with the freez-
ing dynamics studied here and therefore the two phenomena
can be treated separately. However, this goes beyond the aim
of our work. For recent results on vibrational properties of
glassy systems see, e.g., Ref.[43].

The choice of bimodal environmental force is motivated
by the following consideration. The dynamics of a glassy
system is dominated by the cage effect, where any chosen
particle feels itself trapped within a configuration of sur-
rounding particles forming a cage.

The system has two separate time scales, the shorter one
describing the relaxation of the particle within the cage, the
longer one corresponding to changes in the cage configura-
tion. We therefore assume that the cage, when excited, finds
quickly its equilibrium configuration and remains there for a
relatively longer time until it is excited again. Moreover, we
suppose the cage can assume discrete set of configurations,
such as those sketched schematically in Fig. 1. For the sake
of simplicity we reduce this set of cage configurations to
two.

The jumps from one to the other configuration occur at
the shorter time scale and for thecagedynamics we approxi-
mately consider this fast dynamics as instantaneous. There-
fore, we arrive at the description of the cage dynamics as a
sequence of instantaneous jumps between two possible
states. The frequency of the jumps12lstd determines the
longer time scale.

On the other hand, the fast and slow processes should be
coupled somehow, as they are two manifestations of the
same dynamic process. Here this coupling will be imple-
mented by the mechanism we call back-reaction.

The intensity of the process, or the frequency of jumps,
1
2lstd, is related to the movement of the surrounding relaxors,
considered as a reservoir. Intuitively the frequency must be
smaller if the movement of the relaxors is slower. Therefore,

FIG. 1. (Color online) Schematic picture of the particle moving
within a cage which can assume two discrete configurations. The
cage is represented by a parabolic potential which can be centered
around two possible equilibrium positions.
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the function lstd should be coupled to the velocityVstd
=sd/dtd Xstd.

However, it is not obviousa priori what should be the
specific functional dependence. We only require that the de-
pendence is described by a non-negative function analytic at
the origin. The simplest choice satisfying this property is

lstd = e
g

q2kV2stdl, s2d

where e is the dimensionless coupling strength parameter.
The latter prescription is the form of the back-reaction we
will study in the following. The model described above is
sketched schematically in Fig. 2.

The parametersg andq can be in principle rescaled to 1
by appropriate choice of the units of time and length. There-
fore, the coupling strengthe remains to be the only physi-
cally relevant parameter tuning the behavior of the system.
As we will see, there is a qualitative change in the behavior
of the system at a certain critical value ofe.

The physical meaning of the parametersg and e can be
formulated as follows. The parameterg arises as a limit of
the fraction of spring constant and damping. As the damping
is essentially proportional to temperature, the parameterg is
related to inverse temperature. This observation can be put
on a more firm basis using the fluctuation-dissipation theo-
rem, where the response and correlation functions are related
through a constant which is inverse temperature. We will
return back to this point in Sec. VI when we will discuss the
response of the system to external perturbation.

The interpretation ofe is less straightforward. As men-
tioned earlier, it quantifies the back-reaction mechanism
which relates the long- and short-time processes. Therefore
e, or rather the combinationeg /q2 occurring in Eq.(2), re-
lates the cage dynamics to the individual particle dynamics.
We expect, e.g., that for higher density of particles the move-
ment of a single particle will be less likely to change the

cage configuration, while with lower density the shape of the
cage will follow more closely the movement of an individual
particle. In such situatione would decrease with increasing
density.

However, both in the relation(2) and in the fluctuation-
dissipation relation which we will investigate in Sec. VI the
parameterse andg occur in combination.

The back-reaction mechanism specified in Eq.(2) is the
main ingredient which induces the freezing transition in our
model. It corresponds to expressing the memory kernel in
MC equations by the correlation functions which themselves
are to be computed. Both in more sophisticated MC theory
and our simple approach the essential meaning is to provide
relationship between the dynamics of a particle within a cage
and the dynamics of the cage itself. As the glass transition is
found in MC theories with diverse forms of the kernel, we
expect also here the transition occurring for various func-
tional forms of the back-reaction. Thus, the choice(2) is a
simple representative of a whole class of similar back-
reaction schemes. On the other hand, surely there are func-
tional forms, which are not powerful enough to yield the
transition. We expect the criterion being related to the value
of the power, with which the velocityVstd appears in a for-
mula such as our Eq.(2).

B. Properties of the environmental force Q„t…

The forceQstd is a time-inhomogeneous Markov process,
therefore its properties are fully described by a master equa-
tion. More specifically, let us define the probabilities

p±std = Probh Qstd = ± qj s3d

making the vectorpstd=s p−std
p+std d, which satisfies the Pauli

master equation

d

dt
pstd = −

1

2
lstdS 1 − 1

− 1 1
Dpstd. s4d

Solving the equation amounts to calculation of the corre-
sponding time-ordered exponential. The averages and corre-
lation functions can be expressed through the integrated in-
tensity

Lstd =E
0

t

lst8ddt8. s5d

The time dependence of the vectorpstd can be written
through the semigroup operator

Rst,t0d = S1 0

0 1
D +

1

2
se−Lstd+Lst0d − 1dS 1 − 1

− 1 1
D s6d

as pstd=Rst ,t0dpst0d. Note that the semigroup operator
obeysRst ,tdRst ,t0d=Rst ,t0d∀tP ft0,tg, which testifies the
Markov property of the process.

More explicitly, we find

kQstdl = kQ0lexpf− Lstdg, s7d

FIG. 2. (Color online) Schematical picture of our model. Relax-
ing particles in the reservoir influence the relaxation of the selected
particle, described by the Langevin equation shown in the frame
box.
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kQstdQst1dl = q2expf− uLstd − Lst1dug. s8d

Similarly, also the higher correlation functions can be written
as products of exponentials with combinations ofLstd with
appropriate time arguments in the exponents. In fact, higher
order correlation functions factorize into product of first- and
second-order correlations, e.g.,

Kp
l=1

2k

QstldL = p
l=1

k

kQst2ldQst2l−1dl s9d

for t2kù t2k−1ù ¯ ù t2ù t1. Another consequence is that the
cumulants of order higher than two vanish.

Note that the functionLstd is nondecreasing and can ei-
ther diverge[if lim t→`lstd.0] or assume a finite limit for
t→`, if lstd approaches 0 fast enough.

III. GLASS TRANSITION AND ASYMPTOTIC
RELAXATION

A. Equations for moments

For any given realization of the processQstd, the formal
solution of Eq.(1) is

Xstd = X0 e−gt +E
0

t

e−gst−t8dQst8ddt8. s10d

If the function lstd were known, various moments(and
correlation functions) of the random processXstd could have
been computed from Eq.(10) using the expressions(7) and
(8). However, in our case the functionlstd should be com-
puted from the condition(2), relating it to the second mo-
ment of the time derivative ofXstd. This suggests that suffi-
ciently broad set of moments ofXstd andVstd may provide a
closed set of ordinary differential equations. The solution of
this set will yield the closed description of the behavior of
our model.

Indeed, we can define four auxiliary functions

s1std = e−Lstd, s11d

s2std = e−gtE
0

t

dt8 egt8−Lst8d, s12d

s3std = e−gt−LstdE
0

t

dt8 egt8+Lst8d, s13d

s4std = e−2gtE
0

t

dt8 egt8−Lst8d E
0

t8
dt9 egt9+Lst9d, s14d

and express the requested quantities through these functions.
For example, the average coordinate can be written as

kXstdl = kX0l e−gt + kQ0l s2std. s15d

Similarly, the second moment of the coordinate is

kX2stdl = kX0
2l e−2gt + 2kX0Q0l e−gt s2std + 2q2 s4std.

s16d

The functionss1std to s4std can be found by solving the set of
nonlinear differential equations

ṡ1std = − lstds1std, s17d

ṡ2std = − g s2std + s1std, s18d

ṡ3std = 1 − fg + lstdg s3std, s19d

ṡ4std = − 2g s4std + s3std, s20d

with initial conditions s1s0d=1, s2s0d=s3s0d=s4s0d=0. The
functionlstd occurring in the latter equations is itself a com-
bination of the functionss1std to s4std:

lstd = efg − 2g2 s3std + 2g3 s4stdg +
eg2

q2 fgkX0
2l e−2gt

+ 2gkX0Q0l e−gt s2std−2kX0Q0le−gt s1stdg. s21d

In the following we will assume that the initial condition
of the stochastic process isX0=0 andkQ0l=0, except explic-
itly mentioned cases. This leads to significant simplification
of the mathematical structure of the equations. Indeed, the
equations fors3std ands4std form a closed pair of equations

ṡ3std = 1 − s1 + edg s3std + 2eg2 fs3std − g s4stdg s3std,

ṡ4std = s3std − 2g s4std. s22d

Unfortunately, the system(22) cannot be solved analytically.
The best one can do is to transform the nonlinear Ricatti-type
set (22) to one differential equation of Abel type, whose
solution, however, is not generally known. Therefore, we
will solve Eqs.(22) numerically. Nevertheless, there is still a
significant amount of information which can be extracted
analytically.

The typical results of numerical solution are shown in
Figs. 3 and 4. In Fig. 3 we can see the time evolution of the
auxiliary functionss1std to s4std. Figure 4 shows the evolu-
tion of the switching ratelstd and average coordinatekXstdl
for nonzero value of the initial conditionkQ0l. We can ob-
serve qualitatively different behavior fore,1 and e.1:
first, the switching rate approaches a nonzero limit fore.1,
while for e,1 it decays to zero. This means that in the latter
case the system effectively freezes. This is further confirmed
by the observation that fore,1 the limit value of the aver-
age coordinate depends on the initial conditions, while in the
opposite case the dependence on initial conditions is lost for
large times, the system equilibrates and the average coordi-
nate converges always to zero. The following sections are
mainly devoted to the analytical investigation of the above
observations.

B. Fixed points

The first step in investigating the behavior of the system
(22) is the search for the fixed pointsfs3

* ,s4
*g of the dynamics.
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We found that there are only two fixed points, namely,

fs3
* ,s4

*g = F 1

ge
,

1

2g2e
G s23d

and

fs3
* ,s4

*g = F1

g
,

1

2g2G . s24d

Let us denotel` the value oflstd calculated at the corre-
sponding fixed point. Using Eq.s21d the fixed point s23d
yields l`=se−1dg and the fixed points24d yields l`=0.

The linear stability analysis reveals that fore.1 the fixed
point (23) is stable, while Eq.(24) is unstable. On the other
hand, fore,1 the fixed point(24) is stable, while Eq.(23) is
unstable. The casee=1 is a marginal one, where both fixed
points have one of the eigenvalues equal to 0. Therefore, the
value e=1 marks a transition, whose nature will be further
pursued in the following.

C. Ergodic regime e.1

In this case the relevant fixed point is given in Eq.(23)
and inserting its value to the expressions for the moments of
Xstd we find that both the average coordinate and the average
velocity relaxes to zero. On the other hand, the fluctuations
of the coordinate reach positive value, so

lim
t→`

kXstdl = 0,

lim
t→`

kX2stdl =
q2

g2e
. s25d

The external force switching rate converges to positive con-
stant limt→`lstd=gse−1d. In all cases the quantities of inter-
est converge exponentially to their limit values. The rate of
convergence is determined by the lowest in absolute value
eigenvalue, which is

FIG. 3. (Color online) Time evolution of the auxiliary functions
s1std (solid line), s2std (dashed line), s3std (dash-dotted line), and
s4std (dotted line) for g−1 andq=1. The panel(a) corresponds to
the value of the parametere=1.2, while in the panel(b) we have
e=0.8.

FIG. 4. (Color online) Time evolution of the average coordinate
kXstdl computed for initial conditionkQ0l=1 (solid line) and of the
switching ratelstd (dashed line) for g=1 andq=1. The panel(a)
corresponds to the value of the parametere=1.2, while in the panel
(b) we havee=0.8.

GLASS TRANSITION IN A SIMPLE STOCHASTIC… PHYSICAL REVIEW E 69, 041502(2004)

041502-5



m1 = −
g

2
se − Îe2 − 8e + 8d. s26d

In the intervaleP s4−2Î2,4+2Î2d the eigenvalue acquires
a nonzero imaginary part, which means that oscillatory
behavior is superimposed over the exponential relaxation.

The overall picture is the following. The back-reaction
leads to self-adjustment of the switching rate of the external
force exerted by the reservoir. The coordinate fluctuates
around the origin and these fluctuations are stationary. There-
fore, the stationary regime of the system corresponds to the
primitive version with fixedl, except the fact that the value
of l is not given from outside, but tuned by the dynamics
itself. We call this regime ergodic, because the particles do
not freeze at some value of the coordinateXstd but fluctuate
forever.

The probability density for the coordinate

Psx,td =
d

dx
ProbhXstd ø xj s27d

can be in principle obtained by solving the coupled partial
differential equationssanalogous to Fokker-Planck equationd

]

] t
Sp−sx,td

p+sx,td
D =

]

] x
Ssgx + qdp−sx,td

sgx − qdp+sx,td
D

− lstdS 1 − 1

− 1 1
DSp−sx,td

p+sx,td
D , s28d

where p±sx,td=sd/dxdProbhXstdøx,Qstd= ±qj and there-
fore Psx,td=p−sx,td+p+sx,td. These equations are not ana-
lytically solvable, but provide the exact asymptotic prob-
ability density. Indeed, fort→` we can set the left-hand
sidesLHSd of Eq. s28d to zero and the functionlstd on the
right-hand sidesRHSd to its asymptotic valuel`. Then,
we obtain a set of two ordinary differential equations,
which can be solved, giving finally the resultf39,46g

lim
t→`

Psx,td =
g

q

s1 − x̃2dse−3d/2

BS e − 1

2
,
1

2
D Qs1 − x̃2d, s29d

wherex̃=xg /q, Qsad is the Heaviside unit-step function, and
Bsa,bd denotes the Beta functionf47g.

We can observe a qualitative change at the valuee=3. For
e.3 the limiting distribution(29) has a maximum forx=0
and approaches 0 at the edges of the supportf−q/g ,q/gg,
while for e,3 it has a minimum atx=0 and diverges at the
edges of the support. The tendency for accumulating the
probability close to the points ±q/g whene decreases can be
regarded as a precursory phenomenon of the transition to the
nonergodic regime, investigated in the following section.

D. Nonergodic regimee,1

In this case we have Eq.(24) as stable fixed point. For
kQ0l=0 the average coordinate converges to 0 again, but the
second moment approaches thee-independent maximum
value

lim
t→`

kX2stdl =
q2

g2 . s30d

As the probability density for the coordinatePsx,td has sup-
port limited to the intervalf−q/g ,q/gg, it follows from Eq.
s30d that the limiting probability density is composed of two
d functions of equal weight12 located at the edges of the
latter interval. More generally, for nonsymmetric initial con-
dition for the noise,kQ0lÞ0, the limiting probability density
is the sum of twod functions,

lim
t→`

Psx,td = r+dSx −
q

g
D + r−dSx +

q

g
D , s31d

the weights of which depend nontrivially one and the initial
condition

r± =
1

2
S1 ±

kQ0l
q

ssedD , s32d

wheressed=limt→`s1std.
The functionlstd relaxes to zero. Therefore, in this re-

gime, the switching of the external force asymptotically
stops and the coordinateXstd approaches either the value
+q/g or −q/g, where it freezes. So, the coordinate acquires a
random but time-independent asymptotic value. More pre-
cisely, the mean coordinatekXstdl approaches a generally
nonzero asymptotic value, which depends on the initial con-
dition. This is the manifestation of glassy state in the regime
e,0, characterized by broken ergodicity and nonzero
Edwards-Anderson order parameter. This point will be dis-
cussed more in detail later in the presentation of correlation
functions.

As in the ergodic phase, all quantities relax toward their
limit values exponentially for large times. The rate of con-
vergence is governed by the eigenvalue with smallest modu-
lus, which is now

m1 = − 2gs1 − ed. s33d

Note that, contrary to the ergodic regime, the eigenvalue is
always a real number, so no oscillations occur, at least in the
linearized approximation.

E. Marginal case e=1

Let us proceed by approaching the marginal casee=1
from the nonergodic side, i.e., from below. It might be in-
structive to cast Eqs.(22) in terms of the eigenmodes of the
linearized approximation. Namely, we can introduce the
functions

jstd =
1

s2e − 1dgSs3std − g s4std −
1

2g
D ,

hstd =
1

s2e − 1dg
S− s3std + 2eg s4std +

1 − e

g
D , s34d

and express Eqs.(22) in the form

j̇ = − 2gs1 − edj + 2eg3s2e j + hdj,
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ḣ = − g h − 2eg3s2e j + hdj. s35d

The functionjstd has a straightforward physical interpreta-
tion: it describes the time evolution of the switching rate of
the external force. Indeed, inserting Eq.(34) into Eq.(21) we
get

lstd = 2g3s1 − 2edjstd. s36d

Equations(35) are a convenient starting point for the in-
vestigation of the marginal regime. Takinge=1, the linear

term in the equation forj̇ vanishes, while the linear term in
the equation forḣ remains. This suggests that in the long-
time regime the value ofh will be negligible compared toj.
This consideration will yield the leading term in the relax-
ation.

Thus, supposinguhu! uju we get the following approxi-
mate equation forj:

j̇ = 4g3 j2, s37d

which leads to the following asymptotic behavior

jstd . −
1

4g3

1

t
, t → `. s38d

Now we must check the assumption thath is negligible com-
pared toj. However, from Eq.s35d we can see that the
leading term in the relaxation ofh is

hstd .
1

g

1

t2
, t → `, s39d

and the assumption is therefore consistent.
The consequence to draw is that in the marginal regime

the relaxation becomes power law with exponent −1. Espe-
cially, the relaxation of the switching rate follows the behav-
ior

lstd .
1

2t
, t → `. s40d

In Fig. 5 we can compare the numerical solution with the
asymptotic behaviors40d. We can see not only that the func-
tion lstd approaches zero according to the power decays40d,
but also the corrections to the asymptotic behavior can be
well approximated by a power. Indeed, from the inset in Fig.
5 we can see that

1

2t lstd
− 1 . 3 t−0.9, t → `. s41d

It is interesting to note that the power in the correction is not
an integer, so the naive expansion of the solution in powers
of t−1 cannot be used here. Instead, the behaviors41d sug-
gests the expression in the form of a continued fraction

lstd =
1

a1t
a1 +

1

a2t
a2 +

1

a3t
a3 + ¯

, s42d

where the valuesa1=2 anda1=1 are known exactly and the
next pair of parameters is estimated from the numerical so-
lution asa2.1/6 anda2.0.9.

IV. CORRELATION FUNCTIONS

Additional information on the properties of the transition
from ergodic to nonergodic behavior which occurs at the
valuee=1 can be gained from the two-time correlation func-
tions. Let us havet. t1.0 and define the correlation func-
tion

Cst,t1d = kXstdXst1dl. s43d

It can be expressed through the functionss1std to s4std. The
most general formula is

Cst,t1d = kX0le−gst+t1d + kX0Q0lfe−gt1 s2std + e−gt s2st1dg

+ q2F2e−gst−t1d s4st1d + fs2std

− e−gst−t1d s2st1dg
s3st1d
s1st1dG , s44d

although we suppose throughout this section thatX0=0.
We show in Figs. 6(ergodic regime) and 7 (nonergodic

regime) the evolution of correlation functions using the nu-
merical solution fors1 to s4. We can observe the damping of
the correlations in the ergodic regime, while in the noner-
godic regime the correlations converge to a finite limit. Let
us now turn to the analytic investigation of the long-time
behavior of the correlation function.

FIG. 5. (Color online) Time evolution of the switching rate in
the marginal regimee=1, for g=1 andq=1. The solid line is the
numerical solution, dashed line the asymptotic analytical solution
(40). In the inset the deviation from the expression(40) is shown
(solid line). The dashed line is power dependence 33 t−0.9.
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For long enough times we can suppose that we are in the
regime of exponential asymptotic relaxation of the functions
s1std to s4std and lstd, which is governed by the eigenvalue
closest to 0, as given by Eqs.(26) and (33).

Let us start with the ergodic regimee.1. We find that for
both t→` and t1→` the correlation function behaves like

Cst,t1d .
q2

g2es2 − ed
fe−gse−1dst−t1d − se − 1de−gst−t1dg.

s45d

Important feature of this result is that the correlation in
asymptotic regime depends only on the time differencet
− t1 and decays to zero when this difference increases. This
supports the picture of thee.1 phase as a usual ergodic
regime without long-time correlations.

The situation is dramatically different fore,1. Techni-
cally speaking, it is important that the functionLstd has a
finite limit for large times, limt→`Lstd=L`,`. For e close
to 1 (i.e., 1−e!1) the approach to this limit value can be
written in the form

Lstd . L` − u e−2gs1−edt, s46d

whereu is a constant depending one.
For large times the correction will be small and we can

formally write the correlation function as expansion in pow-

ers of u. However, we should bear in mind that it is notu
itself, which is small, but the factore−2gs1−edt which appears
always together withu.

Finally,

Cst,t1d .
q2

g2 +
uq2

sg − mdg
se−m t − e−m t1d

−
2uq2m

sg − mds2g − mdg
e−gst−t1d−m t1 + Osu2d,

s47d

usingm=2gs1−ed for shorter notation.
We can see that the qualitative difference from the ergodic

regime consists in the fact that fore,1 the correlation func-
tion converges to a positivee-independent constantq2/g2. If
we define the Edwards-Anderson order parameter

qEA = lim
t→`

lim
t1→`

Cst1 + t,t1d, s48d

we can see thatqEA jumps discontinuously from the value
qEA=0 for e.1 to qEA=q2/g2 for e,1. This observation
represents another evidence that there is a transition from
ergodic regime to nonergodic glassy regime ate=1. As
the Edwards-Anderson parameter is discontinuous at the
critical point, the transition should be classified as first
order from this point of view. However, because we do
not deal with an equilibrium transition and the phenom-
enon is of purely dynamical origin, the canonic classifica-
tion of phase transition as first or second order is of lim-
ited relevance here.

V. CRITICAL BEHAVIOR AT e\1−

We have already seen that it is possible to characterize the
glass transition ate=1 through the Edwards-Anderson order
parameterqEA. It has discontinuity at the transition, so the
corresponding critical exponent is 0. Here we investigate an-
other quantity, which can play the role of an order parameter,
being zero in the ergodic and nonzero in the nonergodic
phase.

The quantity in question will describe how the initial con-
ditions affect the asymptotic value of the average coordinate.
We have already touched this point in Sec. III D. Up to now
we assumed that the initial condition for the noise is such
that kQ0l=0. This assumption has the consequence that both
in ergodic and nonergodic regimes the average coordinate
converges to 0. In this section we investigate the casekQ0l
Þ0.

From Eqs.(15) and (18) we can see that

lim
t→`

kXstdl =
kQ0l

g
ssed, s49d

where we defined, as in Sec. III D,

ssed = lim
t→`

s1std, s50d

stressing explicitly the dependence one. Equationss22d hold
also in casekQ0lÞ0. Therefore, we can proceed without

FIG. 6. (Color online) Correlation function in the ergodic re-
gime, for e=1.2, g=1 andq=1.

FIG. 7. (Color online) Correlation function in the nonergodic
regime, fore=0.8, g=1 andq=1.
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further complications. We only need to plug the solution
obtained the same way as in Secs. III and IV into the defi-
nition s11d of the functions1std and find the limits50d.

Let us first present the results of numerical integration.
We will turn to the analytic estimate afterwards. Figure 8
shows the results of numerical integration, indicating that
asymptotically fore→1 the behavior follows the power law

ssed , s1 − ed1/2. s51d

The exponent 1/2 is still observed only empirically and we
do not possess any proof that this is the exact value.

However, we may get some analytical argument in favor
of this type of behavior from Eqs.(19)–(21), which can be
rewritten in slightly different form. Defining new function
cstd=s3std−1/g we can write the set of equations for the pair
cstd andlstd,

ċ = − g c −
1

g
l − lc,

l̇ = − 2gs1 − edl + 2eg2 lc, s52d

with initial conditionscs0d=−1/g, ls0d=eg. If we further
define L`=e0

` lstddt and C`=e0
` cstddt, we can integrate

both LHS and RHS of Eqs.(52) and obtain the exact relation
betweenL` andC`,

e = − 2L` − 2eg2 C`. s53d

Knowing L` would solve the problem, becausessed=e−L`.
However, in addition to Eq.s53d we need some other condi-
tion. It can be established from the observation that the equa-
tion for lstd can be formally solved in the form

lstd = eg expS− 2gs1 − edt + 2eg2E
0

t

cst8ddt8D , s54d

and becausecstd,0, we havee0
t cst8ddt8.C`. Therefore,

we can write the following upper bound:

ssed , expF−
1

2
WLS e e−e

1 − e
DG ; suppersed, s55d

whereWLsxd is the Lambert function defined by the equation
WLsxdeWLsxd=x.

The leading term in the asymptotic behavior of the Lam-
bert function for large argument isWLsxd. ln x. If we use it
as an approximation for calculating the asymptotic behavior
of ssed, starting with Eq.(55) we finally get

ssed . Îe Î1 − e, s56d

which is compatible with the behaviors51d. Actually, we can
see in Fig. 8 that the approximations56d fits very well with
the results from numerical integration and lies much closer
than the exact upper bounds55d. Thus, we conjecture that the
formula s56d is in fact the correct asymptotic behavior for
e→1.

To sum up, in the regimee.1, the initial conditions are
irrelevant for long-time dynamics, as expected in the ergodic
phase. On the other hand, fore,1, we observe that the
asymptotic value of the average coordinate depends on the
initial condition for the noise, which is yet another signature
of ergodicity breaking. The factorssed measures the sensi-
tivity to initial conditions: it vanishes in ergodic phase but
remains nonzero in nonergodic phase. So, it may be consid-
ered as a kind of order parameter. Close to the critical point
e=1 it approaches zero continuously as a power with critical
exponent 1/2.

VI. RESPONSE TO HARMONIC PERTURBATION

Let us investigate now the response of the particle to the
external driving force. Adding the additional termFstd
=F0 cossvtd at the right-hand side of Eq.(1), one can repeat,
mutatis mutandis, all steps leading to the system of equations
for the functionss1std to s4std. We find that Eqs.(17)–(20)
hold unchanged, while the influence of the external force
modifies the expression(21) for lstd. Actually, in the present
case one gets

lstd
eg

= 1 − 2g s3std + 2g2 s4std

+
1

q2Sg e−gtE
0

t

Fst8degt8 dt8 − FstdD2

. s57d

We assumedkQ0l=0 andkX0l=0 here.
First quantity to study is the response of the average co-

ordinate. We find

kXstdl = kQ0l e−gtE
0

t

e−Lst8d+gt8 dt8 + e−gtE
0

t

Fst8degt8 dt8.

s58d

Obviously enough, in the stationary regime the average co-
ordinate oscillates around 0 with the same frequency as the
driving forceFstd. We arrive at the standard Debye-type dy-
namic susceptibility

FIG. 8. (Color online) The critical behavior ate→1. Points
s+d are results of numerical integration. The solid line is the ap-
proximation (56), while the dashed line is the exact upper bound
suppersed given by formula(55).
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xst − t8d = Qst − t8de−gst−t8d. s59d

Thus, the exact response in terms of the coordinate is linear.
This behavior also does not depend on the value ofe.

The situation becomes much more complicated when we
turn to quantities, which depend nonlinearly on the coordi-
nate, especially the switching ratelstd. We solved numeri-
cally the set of equations(17)–(20) and (57). We can see in
Fig. 9 the evolution of the functionlstd within the noner-
godic regime, withe=0.8. Comparing the behavior with the
evolution in the absence of the external harmonic perturba-
tion we can see that the switching ratelstd does not approach
zero any more, but it oscillates around some finite value,
which we will denote byA0. This qualitative feature holds
for whatever small external force. However, when the ampli-
tudeF0 of the external field goes to zero, also the value ofA0
approaches zero according toA0,F0

2, as can be seen from
Fig. 10. Generalizing the linear stability analysis of Sec.
III B to harmonic oscillations, we conclude that the external
field continuously shifts the fixed point, withl=0 (i.e., also
A0=0), to a position with positiveA0, but the value of the
shift vanishes when the amplitude of the perturbation goes to
zero.

Figure 11 exemplifies the evolution of the functionss3std
and s4std. We can clearly see that the oscillations are not
harmonic. Generally, in the stationary regime these functions
are nonharmonic but periodic with the doubled frequency
2v. Thus, the same holds also for the functionlstd. Using
Eq. (57) the stationary response in terms of the switching
rate can be written as Fourier series

lststd = A0 + o
k=1

`

sAk sin 2kvt + Bk cos 2kvtd. s60d

The amplitudes of the harmonic componentsA0, Ak, Bk, k
=1,2, . . .,satisfy a complicated infinite set of quadratic equa-
tions.

To assess the weight of the higher harmonics we per-
formed the fast Fourier transform of the time evolutions ob-
tained by numerical solution, throwing away the initial tran-
sient regime. To illustrate the presence of higher harmonics
we chose the functions3std. The modulus of its Fourier trans-
form ŝ3snd=es3stde−2pi nt dt is shown in Fig. 12. We can
clearly see the peaks at the multiples of the basic frequency.
We can also observe that the higher harmonics have quite
considerable weight. In the inset of Fig. 12 we show also the
Fourier transform of the functionlstd. Here, the higher har-
monics are much less pronounced.

The most important feature of the time evolution under
the influence of external harmonic force is the observation
that the switching rate remains always positive. This leads to
the already mentioned fact that whatever is the coupling
strength parametere, the mean coordinate in stationary re-
gime oscillates around zero, irrespective of the initial condi-
tions. However, this is the signature of ergodicity, so the
glassy behavior disappears under the influence of arbitrarily
small external perturbation. Such a behavior was already ob-

FIG. 9. (Color online) Response of the switching rate to har-
monic external driving force forg=1, q=1, e=0.8, v=2p, and
F0=0.7 (dashed line) and F0=0.15 (dotted line). The solid line
shows the time dependence in the absence of the external driving
force.

FIG. 10. (Color online) Dependence of the constant term in the
Fourier series(60) for lststd on the amplitude of the driving force
s+d, in the regimee,1. The parameters areg=1, q=1, e=0.8, and
the frequency isv=p /2. Full line is the function 1.4F0

2.

FIG. 11. (Color online) Response of the functionss3std (solid
line) ands4std (dashed line) to harmonic external driving force for
g=1, q=1, e=0.8, v=p, andF0=10.
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served also in the model of sheared colloid[25].
Both observations can be easily understood. The external

force drags the particle back and forth. Once moving, the
particle induces through the back-reaction(2) the fluctua-
tions of the environmental force, which prevents the system
from freezing in a nonergodic state. This holds for any posi-
tive amplitude of the driving force. However, when the force
diminishes, there is still longer transient period, where the
system apparently relaxes toward the arrested state, as can be
seen qualitatively in Fig. 9. In the limit of infinitesimally
small driving, the transient time blows up and the asymptotic
state corresponds to the dynamically arrested state. This pic-
ture is consistent with the view of glassiness as a purely
dynamical phenomenon.

We also observed the response of the system to a signal,
which is switched on only after the system relaxed very close
to the arrested state. The results can be seen in Fig. 13.
Initially, the switching rate relaxes toward zero, but after the
perturbation it settles on oscillating behavior. The average
coordinate initially approaches nonzero value(we have cho-
sen initial conditionkQ0l.0), but the perturbation brings it
to oscillations around zero. This can be interpreted as a sche-
matic picture of shear thinning, although the model is too
much simplified to account for the shear thinning quantita-
tively.

We also looked at the role of fluctuation-dissipation theo-
rem (FDT) in our model. Usually in ergodic systems in equi-
librium it relates the correlation and response functions
through the identity]Cst ,t8d /]t8=T xst ,t8d. Comparing Eqs.
(45) and (59) we can see that strictly speaking FDT is not
satisfied. However, a more general formula of the form

]

] t8
Cst,t8d =

q2se − 1d
gese − 2d

fxst,t8d − xe−1st,t8dg s61d

holds here. Thus, the quantityfq2se−1d /gese−2dgs1−xe−2d
plays the role of asgeneralized, time-dependentd tempera-

ture. This is consistent with the interpretation, given in Sec.
II A, of g as a parameter proportional to inverse temperature.
However, we should keep in mind that the influence of pa-
rametersg ande is mixed in Eq.s61d.

As for the nonergodic regime, FDT is not expected to be
valid. Indeed, we found that neither standard FDT nor a gen-
eralized form of the type(61) or those found in aging sys-
tems[36] applies here. Generalized FDT in the form studied
in Ref. [36] implies a “weak” ergodicity breaking. From this
point of view we have a “strong” ergodicity breaking in our
model.

VII. CONCLUSIONS

Motivated by the dynamical arrest phenomenon in col-
loids, we formulated and solved a stochastic dynamical
model, where the coordinate of a single particle evolves un-
der the influence of stochastic environmental force. The
back-reaction couples the switching rate of the force to the
average of the square of the velocity of the particle. The
strength of the couplinge is the crucial parameter which

FIG. 12. (Color online) Fourier transform of the stationary os-
cillations of the functions3std under the influence of harmonic ex-
ternal driving force fore=0.8,v=p, andF0=10. It was calculated
using the fast Fourier transform algorithm. In the inset the Fourier
transform of oscillations of the switching rate. The finite width of
the peaks, the noise, and the continuous part of the spectrum in the
inset are due to numerical imprecision of the fast Fourier transform
procedure.

FIG. 13. (Color online) Time evolution of the average coordi-
nate(a) and switching rate(b) in the regimee,1, when the exter-
nal harmonic perturbation was switched on at timet=50. The pa-
rameters areg=1, q=1, e=0.8, the amplitude of the external
perturbation isF0=0.3, and the frequency isv=p /2. The initial
condition iskQ0l=1.
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determines the behavior of the system. The problem reduces
to a set of coupled nonlinear differential equations, which
was investigated both analytically and numerically.

The back-reaction induces a phase transition from the er-
godic phase fore.1 to the nonergodic glassy state fore,1.
The transition is observed qualitatively in the behavior of the
switching rate, decaying to zero in nonergodic state, while
staying positive in the ergodic state. The Edwards-Anderson
parameter, established from the two-time correlation func-
tions, is discontinuous at the transition; it is zero in ergodic
phasese.1d, while for e,1 it acquires finite value indepen-
dent ofe. The critical pointe=1 is characterized by power-
law decay of the switching rate. The leading term,t−1 in the
long-time behavior was calculated analytically.

We investigated the critical behavior ate→1 through the
dependence of the average coordinate in the long-time limit
on the initial condition. We find that the asymptotic value of
the average coordinate is proportional to the average initial
value of the force, where the proportionality factorssed is
singular at the transition. In the ergodic phase we have
ssed=0 identically, while in the nonergodic phase, close to
the transition, we foundssed,s1−ed1/2 for e→1−.

Therefore, we find a situation quite unusual from the point
of view of static equilibrium phase transition. Indeed, we
have two variables, which may be considered as order pa-
rameter, namely, the Edwards-Anderson parameter and the
quantityssed. While the former is discontinuous at the criti-
cal point, thus indicating first-order transition, the latter is
continuous, suggesting second-order transition. The discrep-
ancy is to be attributed to purely dynamical nature of the
transition.

Finally, we investigated the response of the system to har-
monic external perturbation. We found that the exact re-
sponse of the coordinate is linear. On the other hand, the
response of the variables which are quadratic functions of the
coordinate and velocity, such as the switching rate, was non-
linear and generically contains all higher harmonics, as was
seen in the Fourier transform of the signal. We also observed
that arbitrarily weak external perturbation is sufficient to
“melt” the nonergodic glassy state and bring it back to er-
godic behavior. We may relate this feature to the notion of
stochastic stability[48]; in this view our system is not sto-
chastically stable. However, our finding is in accord with
previously observed behavior of sheared colloids[25]. It
makes also connection to the rheological properties of thixo-
tropic fluids[49,50], although our model is too simplified to
give quantitative predictions in this direction.

The back-reaction mechanism described by Eq.(2) repre-
sents the simplest choice. One may ask what would happen if
we tried another prescription. We expect that the methods
used here will be as well applicable if we generalize Eq.(2)
aslstd=kF(V2std)l for an analytic functionFsxd. More com-
plicated situation would appear if the dependence was non-
local in time, e.g., of the formlstd=etkVstdVst8dl Kst
− t8ddt8 with some kernelKstd. Such an approach would
bring our model closer to the well-studied mode coupling
equations, but it goes beyond the scope of the present work.
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