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Glass transition in a simple stochastic model with back-reaction

FrantiSek Slanina
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha, Czech Republic

Petr Chvosth
Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Halesod,
CZ-180 00 Praha, Czech Republic
(Received 21 August 2003; revised manuscript received 19 December 2003; published 15 April 2004

We formulate and solve a model of dynamical arrest in colloids. A particle is coupled to the bath of
statistically identical particles. The dynamics is described by Langevin equation with stochastic external force
described by telegraphic noise. The interaction with the bath is taken into account self-consistently through the
back-reaction mechanism. Dynamically induced glass transition occurs for certain value of the coupling
strength. Edwards-Anderson parameter jumps discontinuously at the transition. Another order parameter can be
also defined, which vanishes continuously with exponent 1/2 at the critical point. Nonlinear response to
harmonic perturbation is found.
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[. INTRODUCTION our current understanding of the phenomenon.
. o However, the bottom-up approach starting with writing
Glass transition and slow relaxation in systems characteréxpncit Hamiltonians is far from being complete. The pres-

dance of the parametrization invariands3,3g leaves the nu-

despite many effarts and numerous significant results in thﬁwerical solution of the MC equations as the only means for
last decadq1-22. Among the host of diverse phenomena obtaining the true time dependence of the correlation and

we are motivated here mostly by the effect of dynamicalres onse functions. Also the mean-field approximation gen-
arrest in colloidal mattef23-31, observed experimentally b ) eld app 9
Oerally used now seems to be very difficult to overcome.

and thoroughly investigated by numerical simulations an . A 2 :
ghly g y The serious difficulties remaining in using the more ad-

mode-coupling method. Below the transition point, the dy- , ,
namics effectively leads to a glassy state with diverging visvanced MC techniques leave the space for more simple phe-

cosity, however, the static thermodynamic transition may nofomenological approaches. We want to follow this path in
be identifiable. Indeed, dynamical or structural arrest demont€ present work. _ _
strates the glass transition as a purely dynamic and self- Indeed, the mathematical substance of the mode-coupling
consistent phenomenon, where casual slow down of certaiffethod can be summarized by saying that the time depen-
particles prevents some other particles from moving, whictience of the correlatioiand responsefunctions depends
may slow down the others even more, etc. The selfhonlinearly and in time-delayed manner on these functions
consistent nature of the phenomenon is reflected by the anghemselves. Actually, the memory kernel in the MC equa-
lytical approaches available now. One of the most strikingtions, which is primarily dictated by the properties of the
phenomena in colloids, suspensions, and granular matter igservoir, depends on the system dynamics.
the non-Newtonian response to mechanical perturbation. On We may represent the dynamics of the system by a sto-
one hand, we can have shear thinning, which amounts to éhastic process and the parameters of the process depend on
decrease if viscosity due to applied field, which can be intertime through the averaged properties of the process itself. In
preted as restoration of ergodicity due to perturbaf®®.  order to study generic properties of such problems it can be
On the other hand, increase of viscosity may result in shegjsefyl to establish a simple idealized model, which would
thickening or even jamming, typically observed in particu- capture the essential mathematic ingredients while avoiding
late or granular mattef32,33. , the complications which arise from choosing a specific
From the theoretical side, the mode-coupliMC) equa- Hamiltonian at the beginning. The most important ingredient

tions provide us with a well-established framework, capablqn such an idealized model should be the mechanism of the
of explaining a good deal of experimental dg3d4—37. The back-reaction

attempts to derive the MC equations starting from the Hamil- We introduced recentlj39] a very simple stochastic pro-

tonian of the system were successful in the mean-field apzes iy which the back-reaction leads to rich dynamic be-

proximation. It was perhaps the-spin spherical model F
f

! avior. The main characteristics was the presence of a phase
[4-6,13, where the machinery reached the farther edge Of5hgition from ergodic to nonergodic phase. The principal

aim of the present work is to investigate analytically some of

the properties of the transition and from the numerical solu-
*Electronic address: slanina@fzu.cz tion of the corresponding differential equations infer the non-
"Electronic address: chvosta@kmf.troja.mff.cuni.cz trivial critical behavior.

1539-3755/2004/69)/04150213)/$22.50 69 041502-1 ©2004 The American Physical Society



F. SLANINA AND P. CHVOSTA PHYSICAL REVIEW E69, 041502(2004

II. LANGEVIN EQUATION WITH BACK-REACTION
A. System of coupled particles

The model system we will have in mind will be composed
of particles, relaxing to their equilibrium positions under the
influence of surrounding particles. They can be viewed as
colloidal particles immersed in a solvent, but the formulation X X
of our model is generic enough to allow for other interpreta-
tions as well, e.g., they can be viewed as microdomains in a
relaxor ferroelectric material.

The time evolution of the model can lead to dynamical
arrest, where particles are locked in their positions by sur-
rounding particles, which are also locked in their turn. There-
fore, the dynamics can lead to the spatially disordered but
time-stable stationary state with glass properties. The indica-
tion of the glass transition will be the nonzero value of the FIG. 1. (Color onling Schematic picture of the particle moving
Edwards-Anderson order parameter and sensitivity to initiatVithin a cage which can assume two discrete configurations. The
conditions. The interaction between particles will be takent@9€ iS represented by a parabolic potential which can be centered
into account on a phenomenological level; if we concentratéound wo possible equilibrium positions.
on a randomly selected partiolgingle relaxoy, the external  4amping going to infinity while keeping the force to damp-
field from the rest of the systerieservoij will change as  ing ratio finite. We expect the usual damped regime be re-
the states of the other particlgglaxors in reservojrevolve.  covered for the oscillations around the equilibrium positions
The changes in the local external field will be the more rapicof the frozen particles. The vibrational states superimpose
the faster is the evolution of the other particles. This leads t@ver the relaxational behavior described mainly in this paper.
the idea of expressing the intensity of the changes in thgve believe it does not interfere substantially with the freez-
external field through the velocity of movement of the relax-ing dynamics studied here and therefore the two phenomena
ors in the reservoir. As we suppose all particles to be statiscan be treated separately. However, this goes beyond the aim
tically identical, the movement of our single relaxor shouldof our work. For recent results on vibrational properties of
be in probabilistic sense equivalent to the movement of anylassy systems see, e.g., REf3].
relaxor within the reservoir. This consideration closes the The choice of bimodal environmental force is motivated
loop. by the following consideration. The dynamics of a glassy

We will try to express the intensity of the changes of thesystem is dominated by the cage effect, where any chosen
local field through the averaged properties of the movemenparticle feels itself trapped within a configuration of sur-
of the single relaxor itself. This introduces the ideebatk-  rounding particles forming a cage.
reaction: the probabilistic properties of the reservoir dictate  The system has two separate time scales, the shorter one
the system evolution and the averaged system dynamiagescribing the relaxation of the particle within the cage, the
tunes the properties of the reservoir itself. longer one corresponding to changes in the cage configura-

To be more specific, our single relaxor will be describedtion. We therefore assume that the cage, when excited, finds
by the continuous real stochastic variablg). It will evolve  quickly its equilibrium configuration and remains there for a
under influence of the environmental force, represented byelatively longer time until it is excited again. Moreover, we
the stochastic variabl@(t). The force will be modeled by a suppose the cage can assume discrete set of configurations,
two-valued random proces$3(t) € {-q, +q} [40], jumping at  such as those sketched schematically in Fig. 1. For the sake
random instants. Occurrence of the jumps are governed byaf simplicity we reduce this set of cage configurations to
self-exciting point proces$41,42 with time-dependent in- two.

tensiw%)\(t). The jumps from one to the other configuration occur at
For given(friction-reducedl force Qt) the single relaxor the shorter time scale and for tbegedynamics we approxi-
is described by the Langevin equatipti—4§ mately consider this fast dynamics as instantaneous. There-

fore, we arrive at the description of the cage dynamics as a

d sequence of instantaneous jumps between two possible
ax(t):_yx(t)+Q(t) (D) states. The frequency of the jumgsa\(t) determines the
longer time scale.
with initial conditions X(0) =X, and Q(0)=Q,. On the other hand, the fast and slow processes should be

We may consider the proce¥§t) as a movement of an coupled somehow, as they are two manifestations of the
overdamped particle which slides in a parabolic potentiaskame dynamic process. Here this coupling will be imple-
well; the parabola jumps between two positions at randonmented by the mechanism we call back-reaction.
instants, with time-dependent ra%a(t). The intensity of the process, or the frequency of jumps,

In reality, of course, we should take into account also thezlh(t), is related to the movement of the surrounding relaxors,
inertial term with second time derivative of the coordinate.considered as a reservoir. Intuitively the frequency must be
This term is neglected here taking implicitly the limit of smaller if the movement of the relaxors is slower. Therefore,
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cage configuration, while with lower density the shape of the
l cage will follow more closely the movement of an individual
particle. In such situatio would decrease with increasing
density.
’ l However, both in the relatio2) and in the fluctuation-
3 N dissipation relation which we will investigate in Sec. VI the
T Y F X(tj\, g parameters and y occur in combination.
o | [ Pa— The back-reaction mechanism specified in E2).is the
l s main ingredient which induces the freezing transition in our
~ . model. It corresponds to expressing the memory kernel in
MC equations by the correlation functions which themselves
are to be computed. Both in more sophisticated MC theory
and our simple approach the essential meaning is to provide
relationship between the dynamics of a particle within a cage
d X(1)=—vX(1) + Q(1) and the dynamics of the cage itself. As the glass transition is
dz - found in MC theories with diverse forms of the kernel, we
expect also here the transition occurring for various func-

FIG. 2. (Color onling Schematical picture of our model. Relax- tjonal forms of the back-reaction. Thus, the choiggis a
ing particles in the reservoir influence the relaxation of the selectegimme representative of a whole class of similar back-
particle, described by the Langevin equation shown in the fram‘?eaction schemes. On the other hand, surely there are func-
box. tional forms, which are not powerful enough to yield the

transition. We expect the criterion being related to the value
the functionA(t) should be coupled to the velocity(t)  of the power, with which the velocity (t) appears in a for-
=(d/dt) X(1). mula such as our Eq2).

However, it is not obvious priori what should be the
specific functional dependence. We only require that the de-
pendence is described by a non-negative function analytic at
the origin. The simplest choice satisfying this property is The forceQ(t) is a time-inhomogeneous Markov process,
therefore its properties are fully described by a master equa-
tion. More specifically, let us define the probabilities

m.(t) = Prod Q(t) = +q} 3

where € is the dimensionless coupling strength parameter. . _(w_(t)) . - .
The latter prescription is the form of the back-reaction weMaking the \{ectorrr(t)— =/, Which satisfies the Pauli
will study in the following. The model described above is master equation

sketched schematically in Fig. 2.

The parametery andq can be in principle rescaled to 1 Ew(t) - l)\(t)< 1
by appropriate choice of the units of time and length. There- dt 2 -1 1
fore, the coupling strengtla remains to be the only physi-
cally relevant parameter tuning the behavior of the systemSolving the equation amounts to calculation of the corre-
As we will see, there is a qualitative change in the behaviogPponding time-ordered exponential. The averages and corre-
of the system at a certain critical value ef lation functions can be expressed through the integrated in-

The physical meaning of the parameterand e can be  tensity
formulated as follows. The parametgrarises as a limit of .
fthe fractlt_)n of spring constant and damping. As the damping A() :f A(t)dt. (5)
is essentially proportional to temperature, the paramgisr 0
related to inverse temperature. This observation can be put
on a more firm basis using the fluctuation-dissipation theoThe time dependence of the vectai(t) can be written
rem, where the response and correlation functions are relatedrough the semigroup operator
through a constant which is inverse temperature. We will
return back to this point in Sec. VI when we will discuss the _ 1 Ao+ -1
response of the system to external perturbation. R(t.to) = (0 1) * E(e it - 1)(_ 1 1 ) ®)

The interpretation ofe is less straightforward. As men-
tioned earlier, it quantifies the back-reaction mechanismas #(t)=R(t,tp) m(tp). Note that the semigroup operator
which relates the long- and short-time processes. ThereforeébeysR(t, )R(7,t5) =R(t,t) 07 < [t,t], which testifies the
€, or rather the combinatioay/g? occurring in Eq.(2), re- Markov property of the process.
lates the cage dynamics to the individual particle dynamics. More explicitly, we find
We expect, e.g., that for higher density of particles the move-
ment of a single particle will be less likely to change the (Q(1)) =(Qexd - A)], (7)

B. Properties of the environmental force Qt)

A(D) = eq—72<v2<t)>, )

) (t). (4)
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(Q(1)Q(ty)) = gPexp— |A(t) = A(ty)]]. (8)

Similarly, also the higher correlation functions can be written

as products of exponentials with combinationsAdf) with

PHYSICAL REVIEW E69, 041502(2004

(X2(1)) = (X5) €27+ 2(XoQq) €7 (1) + 207 (1),
(16)

The functionss;(t) to s,(t) can be found by solving the set of

appropriate time arguments in the exponents. In fact, highefionlinear differential equations

order correlation functions factorize into product of first- and
second-order correlations, e.g.,

(

for ty=ty_1=---=t,=t;. Another consequence is that the
cumulants of order higher than two vanish.

Note that the function\(t) is nondecreasing and can ei-
ther diverge[if lim_.\(t)>0] or assume a finite limit for
t—oo, if A(t) approaches 0 fast enough.

2k

k
|H Q(t|)> = |H (Q(t2)Q(tz-1)) 9)
=1 =1

Ill. GLASS TRANSITION AND ASYMPTOTIC
RELAXATION

A. Equations for moments

For any given realization of the proce@gt), the formal
solution of Eq.(1) is

t

X(t) =Xo e+ f e Q) dt'. (10)

0

If the function A(t) were known, various momentand
correlation functiongof the random process(t) could have
been computed from E@10) using the expressiond) and
(8). However, in our case the functiodt) should be com-
puted from the conditior2), relating it to the second mo-
ment of the time derivative oX(t). This suggests that suffi-
ciently broad set of moments &f(t) andV(t) may provide a

S0 =-MD)sy(1), (17)
S(8) ==y s(t) +51(V), (18)
S3(t) =1 -[y+NO] s3(0), (19
Sa(t) = = 2y (1) + s5(1), (20

with initial conditions s;(0)=1, s,(0)=s;3(0)=54(0)=0. The
functionA(t) occurring in the latter equations is itself a com-
bination of the functions,(t) to s,(t):

At = el y— 297 s3(t) + 29 s4(t) ] + %;2[70(3) e

+29(XoQ0) €7 () -2X,Qpe " s(H].  (21)

In the following we will assume that the initial condition
of the stochastic processXg=0 and(Q,) =0, except explic-
ity mentioned cases. This leads to significant simplification
of the mathematical structure of the equations. Indeed, the
equations fois;(t) ands,(t) form a closed pair of equations

S =1-(1+e)y s3(t) + 267 [S3(t) = ¥ s4(H)] s5(b),

S4(t) = s3(t) = 2 s4(V). (22)

Unfortunately, the systerf22) cannot be solved analytically.
The best one can do is to transform the nonlinear Ricatti-type
set (22) to one differential equation of Abel type, whose

closed set of ordinary differential equations. The solution ofSlution, however, is not generally known. Therefore, we

this set will yield the closed description of the behavior of
our model.
Indeed, we can define four auxiliary functions

sy =, (11)
t ! !
sy(t) = e"’tj dt’ et AT, (12)
0
t
Sg(t) — e—yt—A(t)J dt’ eyt’+A(t/), (13)
0

t

s,(t) = g2 f dt’ e M (14)

t
0

0

and express the requested quantities through these functio
For example, the average coordinate can be written as

(X(1)=(Xo) €7 +(Qo) Sa(1).

Similarly, the second moment of the coordinate is

(15)

will solve Egs.(22) numerically. Nevertheless, there is still a
significant amount of information which can be extracted
analytically.

The typical results of numerical solution are shown in
Figs. 3 and 4. In Fig. 3 we can see the time evolution of the
auxiliary functionss;(t) to s,(t). Figure 4 shows the evolu-
tion of the switching rate\(t) and average coordinatX(t))
for nonzero value of the initial conditio(Q,). We can ob-
serve qualitatively different behavior foe<1 and e>1:
first, the switching rate approaches a nonzero limitdorl,
while for e<1 it decays to zero. This means that in the latter
case the system effectively freezes. This is further confirmed
by the observation that for<<1 the limit value of the aver-
age coordinate depends on the initial conditions, while in the
opposite case the dependence on initial conditions is lost for
large times, the system equilibrates and the average coordi-
nate converges always to zero. The following sections are

ainly devoted to the analytical investigation of the above
observations.

B. Fixed points

The first step in investigating the behavior of the system
(22) is the search for the fixed poirs;, s,] of the dynamics.
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s1(t), s2(t), s3(t), sa(t)
(X)), A(t)

s1(t), s2(t), s3(t), sa(?)
X&), A®)

0 2 4 6 8 10 12 14
t t
FIG. 3. (Color onling Time evolution of the auxiliary functions FIG. 4. (Color onling Time evolution of the average coordinate
s;(t) (solid line), sy(t) (dashed ling s5(t) (dash-dotted ling and  (X(t)) computed for initial conditiofQq)=1 (solid line) and of the
s(t) (dotted ling for y—1 andq=1. The panela) corresponds to  switching ratex(t) (dashed lingfor y=1 andq=1. The panela)

the value of the parameter=1.2, while in the pane{b) we have  corresponds to the value of the parameted..2, while in the panel
€=0.8. (b) we havee=0.8.

We found that there are only two fixed points, namely, C. Ergodic regime e> 1

In this case the relevant fixed point is given in E83)
s,5]= {i i} (29  andinserting its value to the expressions for the moments of
’ ye' 29°€ X(t) we find that both the average coordinate and the average
velocity relaxes to zero. On the other hand, the fluctuations
of the coordinate reach positive value, so

and
. 11 lim(X(t)) =0,
= = 5 |- 24 — 00
[33154] |: y’ 2'}/2:| ( ) t
Let us denote\,, the value ofA(t) calculated at the corre- )
sponding fixed point. Using Eq(21) the fixed point(23) lim(X2(t)y = 2 (25)
yields \..=(e—1)y and the fixed point24) yields \..=0. oo Ve

The linear stability analysis reveals that tor 1 the fixed
point (23) is stable, while Eq(24) is unstable. On the other
hand, fore<1 the fixed point24) is stable, while Eq(23)is ~ The external force switching rate converges to positive con-
unstable. The case=1 is a marginal one, where both fixed stant lim_.\(t)=y(e—1). In all cases the quantities of inter-
points have one of the eigenvalues equal to 0. Therefore, thest converge exponentially to their limit values. The rate of
value e=1 marks a transition, whose nature will be further convergence is determined by the lowest in absolute value
pursued in the following. eigenvalue, which is
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2
= Le—J2-8e+8). (26) lim(x2(t) = L.
2 kil "
In the intervale e (422, 4+2,2) the eigenvalue acquires As the probability density for the coordinalx,t) has sup-
a nonzero imaginary part, which means that oscillatoryport limited to the interval—q/y,q/y], it follows from Eq.
behavior is superimposed over the exponential relaxation30) that the limiting probability density is composed of two
The overall picture is the following. The back-reaction § functions of equal Weigh% located at the edges of the
leads to self-adjustment of the switching rate of the externalatter interval. More generally, for nonsymmetric initial con-
force exerted by the reservoir. The coordinate fluctuatesgiition for the noise{Q,) # 0, the limiting probability density
around the origin and these fluctuations are stationary. Thergs the sum of twos functions,
fore, the stationary regime of the system corresponds to the
primitive version with fixed\, except the fact that the value imP(x.t) = p+5<X— %) + p_5(x+ %) (31)

(30)

of \ is not given from outside, but tuned by the dynamics to
itself. We call this regime ergodic, because the particles do ) ) o o
not freeze at some value of the coordinXi@) but fluctuate the weights of which depend nontrivially anand the initial
forever. condition
The probability density for the coordinate 1 (Qo)
. pizi(lt—%(e)), (32)
P(X,1) = —Prob{X(t) < x} 27) b
dx whereo(e)=lim,_..s(t).
can be in principle obtained by solving the coupled partial The function\(t) relaxes to zero. Therefore, in this re-

differential equationganalogous to Fokker-Planck equation gime, the switching of the external force asymptotically
stops and the coordinaté(t) approaches either the value

9 (p-(x1) ) _ 9 [(yx+a)p-(x1) +q/y or —q/ y, where it freezes. So, the coordinate acquires a
at\p.x,t) /) ax\(yx—q)p.(x,t) random but time-independent asymptotic value. More pre-
1 -1\/p.(xb) cisely, the mean coordinaté(t)) approaches a generally
-\t D 8
ol Ten)

nonzero asymptotic value, which depends on the initial con-
dition. This is the manifestation of glassy state in the regime
_ _ <0, characterized by broken ergodicity and nonzero
where p,(x,t)=(d/dx)ProbX(t)<x,Q(t)=+q} and there- € (oY anth .
fore P(x,t)=p_(x,H)+p,(x,1). These equations are not ana- Edwards-Anderson order parameter. This point will be dis-
. . . cussed more in detail later in the presentation of correlation
lytically solvable, but provide the exact asymptotic prob-functions
a_b|I|ty density. Indeed, fot— e we can set the left-hand As in the ergodic phase, all quantities relax toward their
side(LHS) of Eq. (28) to zero and the functioi(t) on the - . .
iaht-hand side(RHS) to it tofi luev.. Th limit values exponentially for large times. The rate of con-
fight-hand si & ) 1o its asymptotic value... ‘1hen, vergence is governed by the eigenvalue with smallest modu-
we obtain a set of two ordinary differential equations

which can be solved, giving finally the resu39,46| lus, which is now

(1 -32)(3P . p1=-2y(1-¢e. (33
!E‘;P(X’t) _a 11 6(1-%9, (29 Note that, contrary to the ergodic regime, the eigenvalue is
B(TE) always a real number, so no oscillations occur, at least in the

linearized approximation.
whereX=xv/q, ®(a) is the Heaviside unit-step function, and
B(a,b) denotes the Beta functidd7]. E. Marginal case e=1
We can observe a qualitative change at the vaki®. For
e€>3 the limiting distribution(29) has a maximum fok=0
and approaches 0 at the edges of the supparty,q/ vy,
while for e<3 it has a minimum akx=0 and diverges at the
edges of the support. The tendency for accumulating th
probability close to the pointsgtf y when e decreases can be
regarded as a precursory phenomenon of the transition to the 1 1
nonergodic regime, investigated in the following section. &(t) = m(ss(t) =y s4(t) - 5)

Let us proceed by approaching the marginal casd
from the nonergodic side, i.e., from below. It might be in-
structive to cast Eqg22) in terms of the eigenmodes of the
linearized approximation. Namely, we can introduce the
functions

. . 1 1 —
D. Nonergodic regimee<1 () = T (_ ss(t) + 2ey s(0) + e>, (34)
In this case we have E@24) as stable fixed point. For (26— 1)y Y
(Qo»=0 the average coordinate converges to 0 again, but thgnd express Eq$22) in the form
second moment approaches tleendependent maximum

value £=-2y(1- &+ 2ey%(2¢ £+ )E,

041502-6
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n=-7y n-2€y(2€ £+ & (35) L

The functioné(t) has a straightforward physical interpreta- 0.8
tion: it describes the time evolution of the switching rate of
the external force. Indeed, inserting £E84) into Eq.(21) we
get

() =29°(1 - 2€)&(1). (36)
Equations(35) are a convenient starting point for the in-
vestigation of the marginal regime. Takirgr 1, the linear
term in the equation fo€ vanishes, while the linear term in

the equation fory remains. This suggests that in the long-
time regime the value ofy will be negligible compared tg.

1 10 100 1000

15 20 25 30 35 40

This consideration will yield the leading term in the relax- t

atl(_)rr;]. . < t the followi . FIG. 5. (Color onling Time evolution of the switching rate in
us, Su.ppOS|ndn| ¢l we get the following approxi- the marginal regime=1, for y=1 andq=1. The solid line is the

mate equation fog:

numerical solution, dashed line the asymptotic analytical solution
(40). In the inset the deviation from the expressi@i®) is shown

'5: 4y &, (37)  (solid ling). The dashed line is power dependencet3’?.
which leads to the following asymptotic behavior 1
A = 1 , (42)
()= -5 38 e
) =--—5>, t—o, 38 Atz s
e o

Now we must check the assumption thgis negligible com-  where the valuea; =2 anda;=1 are known exactly and the
pared to&. However, from Eq.(35 we can see that the next pair of parameters is estimated from the numerical so-

leading term in the relaxation af is lution asa,=1/6 anda,=0.9.
11
n(t) = _t_2’ t— oo, (39) IV. CORRELATION FUNCTIONS
Y

Additional information on the properties of the transition
and the assumption is therefore consistent from ergodic to nonergodic behavior _which occurs at the
The consequence to draw is that in thel marginal regim \{alueezl can be gained from the two-time correla_ttlon func-
. . Sions. Let us have>t,>0 and define the correlation func-
the relaxation becomes power law with exponent —1. Espe-

cially, the relaxation of the switching rate follows the behav—tlon
o C(t,ta) = (XOX(t)).- (43)
1 It can be expressed through the functi@i) to s,(t). The
MO =2 T (400 most general formula is

C(t,ty) = (Xye " + (X Q)€ " s,(t) + €7 syt
In Fig. 5 we can compare the numerical solution with the (L) ={Xo) XoQoll (0 (1]

asymptotic behaviof40). We can see not only that the func- 2| A ot
tion \(t) approaches zero according to the power deday, *a [Ze " s(t) + [5(0)
but also the corrections to the asymptotic behavior can be (t)
well approximated by a power. Indeed, from the inset in Fig. — gty sz(tl)]53 1 } (44)
5 we can see that si(ty)
although we suppose throughout this section ¥at 0.
ZtL)\(t) -1=3t0%% t_ oo, (41) We show in Figs. Gergodic regimgand 7 (nonergodic

regime the evolution of correlation functions using the nu-

merical solution fors; to s,. We can observe the damping of
It is interesting to note that the power in the correction is nothe correlations in the ergodic regime, while in the noner-

an integer, so the naive expansion of the solution in powergodic regime the correlations converge to a finite limit. Let
of t1 cannot be used here. Instead, the beha(ddy sug- us now turn to the analytic investigation of the long-time
gests the expression in the form of a continued fraction  behavior of the correlation function.
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FIG. 6. (Color online Correlation function in the ergodic re-
gime, fore=1.2, y=1 andq=1.
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ers of 6. However, we should bear in mind that it is nét
itself, which is small, but the facta 2"1-9t which appears
always together witt.

Finally,
2 2
cluu= 3_/2 ’ (quu)y(ew e
260°w

o =PARP aAtt)ety
(V-M)(Zy—u)ve +0(#),

(47)

using u=2vy(1-e¢) for shorter notation.

We can see that the qualitative difference from the ergodic
regime consists in the fact that fex< 1 the correlation func-
tion converges to a positiveindependent constant/ 2. If

For long enough times we can suppose that we are in th%€ define the Edwards-Anderson order parameter

regime of exponential asymptotic relaxation of the functions

s,(t) to s4(t) and \(t), which is governed by the eigenvalue
closest to 0, as given by Eg®6) and(33).

Let us start with the ergodic reginee> 1. We find that for
botht— o andt; — o the correlation function behaves like

2

eyl = e D)
€L~ €

C(t,tl) =

(45)

Important feature of this result is that the correlation in
asymptotic regime depends only on the time differebce

Oea = lim lim C(t; + 7ty), (48

T—% tg—0
we can see thaig, jumps discontinuously from the value
gea=0 for e>1 to gea=qg?/9? for e<1. This observation
represents another evidence that there is a transition from
ergodic regime to nonergodic glassy regimeeatl. As
the Edwards-Anderson parameter is discontinuous at the
critical point, the transition should be classified as first
order from this point of view. However, because we do
not deal with an equilibrium transition and the phenom-
enon is of purely dynamical origin, the canonic classifica-

—t, and decays to zero when this difference increases. Thidon Of phase transition as first or second order is of lim-

supports the picture of the>1 phase as a usual ergodic
regime without long-time correlations.

The situation is dramatically different far<<1. Techni-
cally speaking, it is important that the function(t) has a
finite limit for large times, lim_ .. A(t)=A, <. For € close
to 1 (i.e., 1-e<1) the approach to this limit value can be
written in the form

A(t) = A, — g e72rdet

wheref is a constant depending an

(46)

For large times the correction will be small and we can

formally write the correlation function as expansion in pow-

(X(#)X(t1)
1
0.8 ~
06 ,',"""'
0.4 ] .
TP
, i
F Tt ’

1]

t—1

M
umm':',',',’,’

FIG. 7. (Color onling Correlation function in the nonergodic
regime, fore=0.8, y=1 andg=1.

ited relevance here.

V. CRITICAL BEHAVIOR AT e—1"

We have already seen that it is possible to characterize the
glass transition a¢=1 through the Edwards-Anderson order
parametermg,. It has discontinuity at the transition, so the
corresponding critical exponent is 0. Here we investigate an-
other quantity, which can play the role of an order parameter,
being zero in the ergodic and nonzero in the nonergodic
phase.

The quantity in question will describe how the initial con-
ditions affect the asymptotic value of the average coordinate.
We have already touched this point in Sec. Ill D. Up to now
we assumed that the initial condition for the noise is such
that(Qg)=0. This assumption has the consequence that both
in ergodic and nonergodic regimes the average coordinate
converges to 0. In this section we investigate the c¢&xg
#0.

From Egs.(15) and(18) we can see that

lim({X(t)) = @0'(6), (49)
te Y
where we defined, as in Sec. Il D,
o(e) = limsy(t), (50)

t—oo

stressing explicitly the dependence aerEquationg22) hold
also in case(Qg) # 0. Therefore, we can proceed without
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1 1 ee*
0'(6) < eX[{— EWL<E):| = Uuppe(€)1 (55)
whereW, (x) is the Lambert function defined by the equation
0.1 W, (x)eM®=x,
= The leading term in the asymptotic behavior of the Lam-
ry bert function for large argument W, (x) =In x. If we use it
as an approximation for calculating the asymptotic behavior
. of o(e), starting with Eq.(55) we finally get
o(e) = \E V1 -, (56)
0.001 : L L . L L which is compatible with the behavi@1). Actually, we can
10°°  107° 107t 107 107 107t 10° see in Fig. 8 that the approximati@¢&6) fits very well with
l—@ the results from numerical integration and lies much closer

than the exact upper bouigds). Thus, we conjecture that the

FIG. 8. (Color onling The critical behavior at— 1. Points formula (56) is in fact the correct asymptotic behavior for

(+) are results of numerical integration. The solid line is the ap-
proximation (56), while the dashed line is the exact upper bound €
Typpel €) given by formula(55).

— 1.

To sum up, in the regime>1, the initial conditions are
irrelevant for long-time dynamics, as expected in the ergodic
phase. On the other hand, fer<1, we observe that the
) ; , ‘asymptotic value of the average coordinate depends on the
obtained the same way as in Secs. lll and IV into the defiyqtia| condition for the noise, which is yet another signature
nition (11) of the functions,(t) and find the limit(50). _ of ergodicity breaking. The factar(e) measures the sensi-

Let us first present the results of numerical integrationyyiw t initial conditions: it vanishes in ergodic phase but
We will turn to the analytic estimate afterwards. Figure 8,,.-ins nonzero in nonergodic phase. So, it may be consid-

shows th'e results of numerical .integration, indicating thatered as a kind of order parameter. Close to the critical point
asymptotically fore—1 the behavior follows the power law .1 it approaches zero continuously as a power with critical

ole) ~ (1 - o). (51)  €xponent 1/2.

further complications. We only need to plug the solution

The exponent 1/2 is still observed only empirically and we
do not possess any proof that this is the exact value.
However, we may get some analytical argument in favor |et us investigate now the response of the particle to the
of this type of behavior from Eqg19)—21), which can be external driving force. Adding the additional terf(t)
rewritten in slightly different form. Defining new function =F, cogwt) at the right-hand side of E@1), one can repeat,
yAt) =s5(t)— 1/y we can write the set of equations for the pair mytatis mutandisall steps leading to the system of equations

VI. RESPONSE TO HARMONIC PERTURBATION

P(t) andA(1), for the functionss;(t) to s,(t). We find that Eqs(17)—(20)
_ 1 hold unchanged, while the influence of the external force
Y=—y = =N=\, modifies the expressiof21) for A(t). Actually, in the present
Y case one gets
\ A(t
A== 2y(1- O+ 267 My, (52) EL; = 1- 2y )+ 29 8,)
with initial conditions ¢(0)=-1/y, A(0)=€vy. If we further . )
define A..= o M(t)dt and ¥..= [ y(t)dt, we can integrate n iz(y e—ytJ F(t)e" dt - F(t)) . (57
both LHS and RHS of Eq$52) and obtain the exact relation q 0

betweenA. and V..,
We assumedQq)=0 and(Xy) =0 here.

€=-2A.,.~ 26/ V.. (53 First quantity to study is the response of the average co-

Knowing A., would solve the problem, becausg¢e)=e =, ordinate. We find

However, in addition to Eq.53) we need some other condi- t o t
tion. It can be established from the observation that the equa-(X(t)) =(Q) e_ytf e MO gt + e_ytj
tion for A(t) can be formally solved in the form

F(t)et dt'.

0 0

t (58)
D) = ey exp(— 2y(1-et+ 267’2[0 ‘Mt,)dt,>' (54) Obviously enough, in the stationary regime the average co-
ordinate oscillates around O with the same frequency as the

and becausei(t) <0, we have[}, #(t")dt’ >W... Therefore, driving forceF(t). We arrive at the standard Debye-type dy-
we can write the following upper bound: namic susceptibility

041502-9



F. SLANINA AND P. CHVOSTA PHYSICAL REVIEW E69, 041502(2004
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102}
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=
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FIG. 10. (Color online Dependence of the constant term in the
Fourier serieg60) for Ag(t) on the amplitude of the driving force

monic external driving force fory=1, q=1, €=0.8, w=2m, and . .
_ . ~ . o (+), in the regimee< 1. The parameters are=1, q=1, €=0.8, and
Fo=0.7 (dashed ling and Fy=0.15 (dotted ling. The solid line the frequency iso=/2. Full line is the function 1_%

shows the time dependence in the absence of the external driving
force.

FIG. 9. (Color onling Response of the switching rate to har-

To assess the weight of the higher harmonics we per-
formed the fast Fourier transform of the time evolutions ob-
x(t-t)= O(t—t)e "), (59) tained by numerical solution, throwing away the initial tran-
sient regime. To illustrate the presence of higher harmonics
Thus, the exact response in terms of the coordinate is lineagye chose the functioss(t). The modulus of its Fourier trans-
This beh_avio.r also does not depend on the \_/alue. of form &(v)=[sy()e?™ * dt is shown in Fig. 12. We can
The situation becomes much more complicated when Wejearly see the peaks at the multiples of the basic frequency.
turn to quantities, which depend nonlinearly on the coordinye can also observe that the higher harmonics have quite
nate, especially the switching ragt). We solved numeri-  considerable weight. In the inset of Fig. 12 we show also the
cally the set of equationgl7)«20) and(57). We can see in  Foyrier transform of the functioR(t). Here, the higher har-
Fig. 9 the evolution of the function(t) within the noner-  onics are much less pronounced.
godic regime, withe=0.8. Comparing the behavior with the  The most important feature of the time evolution under
evolution in the absence of the external harmonic perturbage influence of external harmonic force is the observation
tion we can see that the switching rat@) does not approach  tnat the switching rate remains always positive. This leads to
zero any more, but it oscillates around some finite valuethe already mentioned fact that whatever is the coupling
which we will denote byA,. This qualitative feature holds strength parameter, the mean coordinate in stationary re-
for whatever small external force. However, when the ampli-gime oscillates around zero, irrespective of the initial condi-
tudeF, of the external field goes to zero, also the valudef  tions. However, this is the signature of ergodicity, so the
approaches zero accordingAg~F?, as can be seen from glassy behavior disappears under the influence of arbitrarily

Fig. 10. Generalizing the linear stability analysis of Sec.small external perturbation. Such a behavior was already ob-
Il B to harmonic oscillations, we conclude that the external

field continuously shifts the fixed point, with=0 (i.e., also 0.18

Ay=0), to a position with positived,, but the value of the 0.16 } .
shift vanishes when the amplitude of the perturbation goes to o014 b |
Zero.

Figure 11 exemplifies the evolution of the functiongt) & T 1
and s,(t). We can clearly see that the oscillations are not & 0.1} .
harmonic. Generally, in the stationary regime these functions _= a.0s k |

: ST = 0.
are nonharmonic but periodic with the doubled frequency —
2w. Thus, the same holds also for the functieft). Using @ 006 1
Eq. (57) the stationary response in terms of the switching 0.04 | A A A TA A TA LA [4 4]
rate can be written as Fourier series 002 B AL AL L O L O I L LS
i
2] 0 7z i 5 5 Z
Asi(t) = Ag+ > (A sin Kot + B, cos Ket).  (60) 0 2 4 6 8 10

k=1 t
The amplitudes of the harmonic componeAts A, By, k FIG. 11. (Color onling Response of the functiors(t) (solid
=1,2,...,satisfy a complicated infinite set of quadratic equa-line) ands,(t) (dashed lingto harmonic external driving force for
tions. y=1,q9=1, €=0.8, w=1, andF;=10.
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FIG. 12. (Color onling Fourier transform of the stationary os-
cillations of the functionss(t) under the influence of harmonic ex- 06F b) ]
ternal driving force fore=0.8, w=1r, andFy=10. It was calculated 05t i
using the fast Fourier transform algorithm. In the inset the Fourier
transform of oscillations of the switching rate. The finite width of 04} E
the peaks, the noise, and the continuous part of the spectrum in the —~
inset are due to numerical imprecision of the fast Fourier transform <’ 03f 1
procedure. 0.2 i
served also in the model of sheared collg2®]. 01
Both observations can be easily understood. The external
force drags the particle back and forth. Once moving, the 0
particle induces through the back-reacti®) the fluctua- 0L . , . , . ,
tions of the environmental force, which prevents the system ) 20 40 60 80 100 120 140
from freezing in a nonergodic state. This holds for any posi- ¢

tive amplitude of the driving force. However, when the force
diminishes, there is still longer transient period, where the FIG. 13. (Color onling Time evolution of the average coordi-
system apparently relaxes toward the arrested state, as canige(a) and switching ratéb) in the regimee<1, when the exter-
seen qualitatively in Fig. 9. In the limit of infinitesimally nal harmonic perturbation was switched on at tits&0. The pa-
small driving, the transient time blows up and the asymptoticameters arey=1, q=1, €=0.8, the amplitude of the external
state corresponds to the dynamically arrested state. This pigerturbation isF,=0.3, and the frequency i®=/2. The initial
ture is consistent with the view of glassiness as a purelyondition is(Qg)=1.

dynamical phenomenon.

We also observed the response of the system to a sign
which is switched on only after the system relaxed very clos
to the arrested state. The results can be seen in Fig. 1
Initially, the switching rate relaxes toward zero, but after the

erturbation it settles on oscillating behavior. The averagé . - .
P 9 g As for the nonergodic regime, FDT is not expected to be

coordinate initially approaches nonzero value have cho- 4 .
sen initial condition(Qy) > 0), but the perturbation brings it vall(_j. Indeed, we found that neither standard'FDT_nor a gen-
h&ralized form of the typg61) or those found in aging sys-

to oscillations around zero. This can be interpreted as a sc & . . _ '
matic picture of shear thinning, although the model is too®©MS[36] applies here. Generalized FDT in the form studied

much simplified to account for the shear thinning quantita'" R€f. [36] implies a “weak” ergodicity breaking. From this
tively. point of view we have a “strong” ergodicity breaking in our
We also looked at the role of fluctuation-dissipation theo-model.
rem(FDT) in our model. Usually in ergodic systems in equi-
librium it relates the correlation and response functions
through the identityyC(t,t")/ot' =T x(t,t’). Comparing Egs. VIl. CONCLUSIONS
(45) and (59) we can see that strictly speaking FDT is not  \otivated by the dynamical arrest phenomenon in col-
satisfied. However, a more general formula of the form  |igs, we formulated and solved a stochastic dynamical
J . Oe-1) , P model, where the coordinate of a single particle evolves un-
EC(U ):m[x(t,t )=x(tt)]  (61)  der the influence of stochastic environmental force. The
back-reaction couples the switching rate of the force to the
holds here. Thus, the quantifg?(e-1)/ ye(e-2)](1-x?  average of the square of the velocity of the particle. The
plays the role of ageneralized, time-dependériempera-  strength of the coupling: is the crucial parameter which

3lire. This is consistent with the interpretation, given in Sec.

A, of yas a parameter proportional to inverse temperature.
owever, we should keep in mind that the influence of pa-
ametersy and e is mixed in Eq.(61).
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determines the behavior of the system. The problem reduces Finally, we investigated the response of the system to har-

to a set of coupled nonlinear differential equations, which
was investigated both analytically and numerically.

monic external perturbation. We found that the exact re-
sponse of the coordinate is linear. On the other hand, the

The back-reaction induces a phase transition from the erresponse of the variables which are quadratic functions of the

godic phase foe> 1 to the nonergodic glassy state o+ 1.

coordinate and velocity, such as the switching rate, was non-

The transition is observed qualitatively in the behavior of thejinear and generically contains all higher harmonics, as was
switching rate, decaying to zero in nonergodic state, whileseen in the Fourier transform of the signal. We also observed

staying positive in the ergodic state. The Edwards-Andersog,

at arbitrarily weak external perturbation is sufficient to

parameter, established from the two-time correlation func~qit” the nonergodic glassy state and bring it back to er-

tions, is discontinuous at the transition; it is zero in ergodic
phase(e> 1), while for e<1 it acquires finite value indepen-
dent of e. The critical pointe=1 is characterized by power-
law decay of the switching rate. The leading tetrti! in the
long-time behavior was calculated analytically.

We investigated the critical behavior &t 1 through the
dependence of the average coordinate in the long-time lim
on the initial condition. We find that the asymptotic value of

the average coordinate is proportional to the average initial

value of the force, where the proportionality faciefe) is

¥

godic behavior. We may relate this feature to the notion of
stochastic stabilityf48]; in this view our system is not sto-
chastically stable. However, our finding is in accord with
previously observed behavior of sheared colloj@s]. It
makes also connection to the rheological properties of thixo-
opic fluids[49,5Q, although our model is too simplified to
give quantitative predictions in this direction.

The back-reaction mechanism described by yrepre-
sents the simplest choice. One may ask what would happen if

singular at the transition. In the ergodic phase we havd'e tried another prescription. We expect that the methods

o(e)=0 identically, while in the nonergodic phase, close to
the transition, we found(e) ~ (1-€)Y2 for e—1".

used here will be as well applicable if we generalize &.
as\(t)=(F(VA(t))) for an analytic functiorF(x). More com-

Therefore, we find a situation quite unusual from the pointPlicated situation would appear if the dependence was non-

of view of static equilibrium phase transition. Indeed, we

local in time, e.g., of the formA(t)= YV(t)V(t")) K(t

have two variables, which may be considered as order pa=t')dt" with some kernelK(t). Such an approach would
rameter, namely, the Edwards-Anderson parameter and tH#ing our model closer to the well-studied mode coupling

quantity o(e). While the former is discontinuous at the criti-
cal point, thus indicating first-order transition, the latter is

continuous, suggesting second-order transition. The discrep-

ancy is to be attributed to purely dynamical nature of the
transition.

equations, but it goes beyond the scope of the present work.
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